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ABSTRACT 
In the digital era, ensuring the security of data transmission and storage remains a critical concern. The 

RSA cryptosystem plays a pivotal role in safeguarding information through asymmetric encryption. 

While the Somsuk-RSA variant enhances security, it introduces computational challenges, particularly 

during decryption. This study proposes innovative methods to accelerate decryption by substituting the 

Euler function with the more efficient Carmichael function, outperforming the original RSA and 

Somsuk-RSA systems. The analysis highlights the inherent slowdown in the Somsuk-RSA decryption 

process, emphasizing the need for optimization. The study presents effective strategies for improvement. 

A comparative evaluation with prime key sizes of 512, 1024, and 2048 bits demonstrates that the 

enhanced Somsuk-RSA cryptosystem achieves significantly faster decryption times than the original 

Somsuk-RSA approach. 
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INTRODUCTION 

 

A public-key cryptosystem known as RSA (Rivest-Shamir-Adleman) was first published in 1977 

by Ron Rivest, Adi Shamir, and Leonard Adleman. A user of RSA generates and disseminates a 

public key based on two significant prime integers and an extra value. The prime numbers are not 

disclosed. With the public key, anyone can encrypt communications, but only someone who knows 

the prime numbers can decrypt them. (Al Hasib and Haque, 2008). 

 

After RSA was proposed, numerous researchers attempted to improve its algorithm. Researchers 

frequently enhance the RSA algorithm using various mathematical techniques without altering the 

program’s fundamental core. As a result, we will examine the RSA variant algorithms that have 

been put out in the past to enhance the RSA cryptosystem. 

 

To overcome the shortcomings of the original RSA cryptosystem and boost its efficiency and 

security, researchers have put forth several improvements and modifications over time. This 
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literature review aims to give a general overview of significant RSA cryptosystem variants, 

emphasizing their special traits, benefits, and possible concerns. 

 

Islam et al. (2018) propose a Modified RSA (MRSA) proposal that aims to reduce the main 

weaknesses of the RSA system. The main worry in most cases is that it is easily breakable because 

keys can be calculated easily based on N . Since the RSA modulus N  is the only product of two 

prime integers, it can be easily tracked. So, instead of using two huge primes, MRSA utilized four. 

The key generation time for MRSA is longer since it depends on a large factor value N . 

Additionally, compared to the RSA approach, encryption and decryption take more time. 

 

Raghunandan et al. (2019) propose an enhanced RSA approach to overcome the integer 

factorisation attack's drawback by making the factorisation process more complex. They do this 

by utilizing a phony/fake public key exponent f  instead of e  and a phony modulus instead of N . 

By reducing the time required for encryption and decoding, this technique will offer more security 

than RSA. 

 

The factoring challenge put forth by Ismail et al. (2018) served as the foundation for a novel, 

straightforward ESF-RSA public key cryptosystem. The secret key generation process for the 

newly suggested cryptosystem does not call for an inverse modular operation. Additionally, the 

size and value of the secret key are decreased if the public key and modulus in ESF-RSA are fixed. 

Therefore, compared to RSA, ESF-RSA encryption and decryption procedures are more effective. 

 

Although RSA is a strong encryption technique, a factorization attack can be used to break it. 

Puneeth et al. (2022) enhanced the RSA algorithm, emphasizing the security feature of RSA’s 

resilience to factorization attacks, is presented. The common modulus N  is replaced with a third 

variable that the algorithm offers and serves as the network’s public key. 

 

Shah et al. (2023) have established a groundbreaking generalized RSA cryptosystem based on 2N  

prime numbers. This innovative approach significantly enhances security in the digital landscape 

by employing 2N  distinct primes for factoring the variable N . This method not only facilitates a 

higher encryption exponent derived from the massive product of these primes but also fortifies 

overall security. In contrast to the traditional RSA algorithm, the time required for factoring 

dramatically increases when utilizing multiple prime integers and larger encryption exponents. 

The study clearly demonstrates that RSA and generalized RSA (GRSA) differ fundamentally in 

their security measures and operational speeds.  

 

It is important to note that RSA is inherently slow in single-precision multiplication and actual 

running times. As a direct result, it is rarely employed for encrypting user data. Therefore, a 

multitude of researchers have proactively developed various variants of RSA-based cryptosystems 

to enhance the algorithm without compromising security. 

 

Therefore, we want to overcome this deficiency. To increase the effectiveness of the Somsuk-RSA 

cryptosystem, we suggest a unique decryption technique that switches the Euler function for the 

Carmicheal function. The performance of this new decryption technique will then be compared to 

that of the original RSA cryptosystem and Somsuk-RSA cryptosystem. 

 

 

 

 

 



 

N. A. Mohamad Azlan et al.                      Menemui Matematik (Discovering Mathematics) 47(2) (2025) 84-94 
 

86 

 

PRELIMINARIES 

 

2.1 Fundamental Concept of Number Theory 

Cryptography heavily relies on number theory, especially in the design and analysis of 

cryptographic algorithms. Below are some fundamental concepts from number theory relevant to 

this study. 

 

Definition 2.1 (Euler Function) The notion of this function is ( )N  and defined as follows, 

where 0 kp pK  are the prime factors of N . Given 

0 1

0 1
ke ee

kN p p p=   K  

( ) ( ) ( ) ( )0 11 11

0 0 1 11 1 1 ke ee

k kN p p p p p p − −−= −  −   −K  

The totient function describes the number of values less than N , which are relatively prime to N . 

For RSA, we are only concerned with values of N which are the product of two primes, p  and q , 

so ( )N  is always just ( )( )1 1p q− − . 

 

Definition 2.2 (Carmichael Funtion) The notion of this function is ( )N  and defined the 

smallest positive integer m  such that  

( )1 modma N  

for every a  that is coprime to N . The Carmichael function is also known as the reduced totient 

function or the least universal exponent function. By the fundamental theorem of arithmetic, any

1N   can be written in a unique way 

( )1 2

1 2 ( )           Naa a

NN p N p N p 

= = =K  

where 1 2p p p  K  are primes and the 0ia  . For this project, only use this formula: 

( ) ( )
( )

1, 1
gcd( 1, 1)

N
N lcm p q

p q


 = − − =

− −
 

 

2.2 Rivest-Shamir-Adleman (RSA) Cryptosystem 

A public-key cryptosystem known as RSA (Rivest-Shamir-Adleman) was first published in 1977 

by Ron Rivest, Adi Shamir, and Leonard Adleman. A user of RSA generates and disseminates a 

public key based on two significant prime integers and an extra value. The prime numbers are not 

disclosed. Anyone can encrypt communications With the public key, but only someone who knows 

the prime numbers can decrypt them. (Al Hasib and Haque, 2008). 

 

The three steps of the RSA algorithm are key generation, encryption, and decryption. These terms 

define the RSA cryptosystem. 
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Algorithm 1 RSA Key Generation Algorithm 

Require: The size k  of the security parameter 

Ensure: The public key ( ),e N  and the private key ( ),d N  

1. Choose two random and distinct prime p  and q  such that 2k p , 12kq +  

2. Compute N pq=  and ( ) ( )( )1 1=N p q − −  

3. Choose e  such that ( )3 e N   and ( )( )gcd , 1e N =  

4. Compute d  such that ( )1 mod ed N  

5. Return the public key ( ),e N  and the private key ( ),d N  

 

Algorithm 2 RSA Encryption Algorithm 

Require: The plaintext m  and the public key ( ),e N  

Ensure: A ciphertext c  

1. Choose integer m  such that 0 m N   

2. Compute ( )mod ec m N  

3. Return the ciphertext c  

 

Algorithm 3 RSA Decryption Algorithm 

Require: Ciphertext c  and private key ( ),d N  

Ensure: A plaintext m  

1. Compute ( )mod dm c N  

2. Return the plaintext m  

 

 

2.2.1 Proof of Correctness for RSA Decryption 

Proposition 2.1 Rivest et al. (1978). Let N pq=  and ( ) ( )( )1 1=N p q − −  . For every integer m  

such that ( )gcd , 1m N = , and ( )mod ec m N . Then ( )mod dm c N . 

Proposition 2.2 Rivest et al. (1978). Let ( ),e N  and ( ),d N  be the public and private keys for the 

RSA cryptosystem, respectively. Suppose 0 m N   such that ( )gcd , 1m N =  and 

( )mod ec m N . Then ( )mod dm c N . 

2.3 Somsuk-RSA Cryptosystem 

To shorten the computation time for the RSA decryption procedure, Somsuk (2017) introduces a 

new equation. The private key is typically produced with a larger value than the public key to 

prevent simple access by outside parties. However, the decryption process takes longer when the 

private key is huge. The new exponent shrinks to a little integer when a high private key is 

employed in the suggested method. The experimental results show that the suggested approach 

can quickly finish the RSA decryption procedure when the private key is large, especially close to 

the Euler value. 
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Here is Somsuk-RSA cryptosystem: 

Algorithm 4 Somsuk-RSA Key Generation Algorithm 

Require: The size k  of the security parameter 

Ensure: The public key ( ),e N  and the private key ( ),x N  

1. Choose two random and distinct prime p  and q  such that 2k p , 12kq +  

2. Compute N pq=  and ( ) ( )( )1 1=N p q − −  

3. Choose d  such that 
1

2 22 2
k k

d
+

   

4. Compute e  such that ( )( )1 mod ed N  

5. Obtain x  such that ( )x d N+ =  

6. Return the public key ( ),e N  and the private key ( ),x N  

 

Algorithm 5 Somsuk-RSA Encryption Algorithm 

Require: The plaintext m  and the public key ( ),e N  

Ensure: A ciphertext c  

1. Choose integer m  such that 0 m N   

2. Compute ( )mod ec m N  

3. Return the ciphertext c  

 

Algorithm 6 Somsuk-RSA Decryption Algorithm 

Require: The ciphertext c  and the public key ( ),e N  

Ensure: A plaintext m  

1. Compute ( ) ( )1 mod 
x

m c N−  

2. Return the plaintext m  

 

THE PROPOSED FAST DECRYPTION METHOD FOR NEW RSA-SOMSUK 

CRYPTOSYSTEM 

 

3.1 Methodology 

 

It suggests that the tiny value of the private key should not be selected because it is simple for third 

parties to calculate using Wiener’s attack. Consequently, it needs to be large to evade this assault. 

However, the private key has a big value and directly impacts the decryption process, which has a 

high computational cost. 

 

As a result, the revised equation for RSA’s decryption process in this study substitutes the 

Carmichael function for the Euler function. The comparative analysis will use mathematical 

software with 512-bit, 1024-bit, and 2048-bit prime sizes. The mathematical software is used to 

compare computing time using different methods, which are 512-bit, 1024-bit, and 2048-bit. For 

every n , the prime number being used is the same, and every three cryptosystems run about a 

hundred times to get the best average result time. 
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3.2 New Design Algorithm: New Somsuk-RSA Cryptosystem 

 

Here is the new Somsuk-RSA cryptosystem: 

Algorithm 7 New Somsuk-RSA Key Generation Algorithm 

Require: The size k  of the security parameter 

Ensure: The public key ( ),e N  and the private key ( ),x N  

1. Choose two random and distinct prime p  and q  such that 2k p , 12kq +  

2. Compute N pq=  and ( ) ( )( )1= lcm 1N p q − −  

3. Choose d  such that 
1

2 22 2
k k

d
+

   

4. Compute e  such that ( )( )1 mod ed N  

5. Obtain x  such that ( )x d N+ =  

6. Return the public key ( ),e N  and the private key ( ),x N  

 

Algorithm 8 New Somsuk-RSA Encryption Algorithm 

Require: The plaintext m  and the public key ( ),e N  

Ensure: A ciphertext c  

1. Choose integer m  such that 0 m N   

2. Compute ( )mod ec m N  

3. Return the ciphertext c  

 

Algorithm 9 New Somsuk-RSA Decryption Algorithm 

Require: The ciphertext c  and the public key ( ),e N  

Ensure: A plaintext m  

1. Compute ( ) ( )1 mod 
x

m c N−  

2. Return the plaintext m  

 

3.3 Proof of Correctness 

 

Computing ( ) ( )1 mod 
x

m c N−  using the Algorithm 9, m  will be certainly recovered. The reason 

is as follows. 

 

Proposition 3.1 Suppose e , d , x  and N  as defined in Algorithm 7. Let ( )mod ec m N  be the 

ciphertext where 0 m N  . Then, the plaintext m  can be recovered from Algorithm 9. 
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Proof: Suppose e , d , x  and N  as defined in Algorithm 7. Let ( )
( )

( )
 

gcd 1, 1

N

p
N

q


 =

− −
, 

( )x dN= − , and ( )( )1 mod ed N  and ( )mod ec m N  be the RSA parameter. Thus, we 

have 

 

( ) ( )1
x x

ec m
−

−   

        exm−  

                   
( )( )e N d

m
− −

  

                  ( )e N ed
m

− +
  

                       ( )e N edm m
−

   

                               ( ) ( )1e N k N
m m

 − +
   

                                    ( ) ( )1e N k N
m m m

 −
    

                          ( ) 1 1
e N

m m
−

    

                      ( ) 1e N
m m

−
   

          11 m   

                       ( )mod m N  

 

From Definition 2.2, it follows that ( ) 1k Nm  = . Since m N , then we have ( ) ( )1 mod 
x

m c N−= . 

 

Example 3.1 Consider a scenario where two parties, a sender and a recipient, are involved in 

communication. The security parameter is set to 62n = . 

 

Key Generation: Recipient generates two distinct primes 5270450229848425421p =  and 

7484594782929751261q = . 

1. Compute 39447184294014433304172066596039205881N pq= =  

2. Compute ( )
( )

( )
 

gcd 1, 1

N

p
N

q


 =

− −
 and get

( ) 1972359214700721664570851079163051460  N =  

3. Choose that 
1

2 22 2
n n

+

 , which is 1972359214700721643946140955353248551 d =  

4. Compute ( )( )
1

mod 798236715144239558053344617163202871e N
d

= =  

5. Obtain x  such that ( )x d N+ =  , then   20624710123809802909x =  

 

Encryption: The sender receives the recipient’s public key. The sender wants to send a message

  7908767739938060921m = . 

1. Compute ( ) 9602523284462970954021074644467656554 mod ec m N =  
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Decryption: The recipient receives a ciphertext                               

9602523284462970954021074644467656554c =  from the sender. To decrypt c , the recipient 

then performs: 

1. Compute ( ) ( )1 7908767739938060921mod 
x

m c N− =  

PERFORMANCE ANALYSIS 

 

4.1 Comparative Analysis 

 

This section thoroughly analyses the findings, focusing on the decryption performance of various 

RSA cryptosystem varieties in second. Each algorithm was executed 100 times through the code. 

The evaluation utilized prime sizes of 541, 1024, and 2048 bits for each cryptosystem. This 

analysis primarily clarifies the relevance of the found patterns and differences in decryption times 

across the three algorithms. There are RSA, Somsuk-RSA, and new Somsuk-RSA. 

 

Table 1: Comparative of Key Generation 

 Running time (sec) 

Bit length RSA Somsuk-RSA 
New 

Somsuk-RSA 

512 1.625  1.797  2.674  

1024 2.020 2.496 1.832 

2048 1.529  1.679 2.197 

 

From Table 4.1, the Original RSA technique demonstrated the fastest key generation among the 

three in bit length (2048), taking 1.529 seconds. However, the new Somsuk-RSA algorithm is 

substantially faster, taking only 1.832 seconds for a bit length of 1024. Additionally, the quickest 

RSA for 512 is 1.6254, the original version. Thus, the optimal cryptosystem for key generation is 

the original RSA key generation. 

 

Table 2: Comparative of Encryption 

 Running time (sec) 

Bit length RSA Somsuk-RSA 
New 

Somsuk-RSA 

512 0.551  0.381 0.430 

1024 0.710  0.589 0.471 

2048 1.101  1.000 1.086 

 

Table 4.2 shows that, in terms of bit length (2048), the Somsuk-RSA technique was the fastest at 

the encryption part, requiring 1.000 seconds. But the original RSA technique is much faster. It 

takes just 1.101 seconds for a 1024-bit bit length. Furthermore, the original 0.43 version of RSA 

is the fastest for 512. Therefore, Somsuk-RSA is the best cryptosystem for the encryption portion. 

 

Table 3: Comparative of Decryption 

 Running time (sec) 

Bit length RSA Somsuk-RSA 
New 

Somsuk-RSA 

512 0.481  0.319 0.309 

1024 0.583   0.566 0.327 

2048 0.386  0.380 0.314 
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According to Table 4.3, the new Somsuk-RSA technique took 0.314 seconds to decrypt the data, 

which is the fastest bit length (2048). Furthermore, the new Somsuk-RSA algorithm is 

significantly faster, requiring only 0.327 seconds to process a 1024-bit length. Also, the new 

Somsuk-RSA, 0.309, is the fastest RSA for 512. Therefore, the new Somsuk-RSA cryptosystem 

is best for the decryption section. 

 

4.2 Graph Comparison 

 

To have a clearer view of the comparison across the three algorithms which are the RSA, Somsuk-

RSA, and new Somsuk-RSA, the bit length is represented by the x -axis, while the y -axis 

represents the running duration in seconds. The following figure is the graph comparison of key 

generation times. 

 

 
Figure 1: Graph running time vs bit length for key generation 

 

Next is the graph comparison of encryption times. 

 

 
Figure 2: Graph running time vs bit length for encryption 
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The last one is the graph comparison of decryption times. 

 

 
Figure 3: Graph running time vs bit length for decryption 

 

CONCLUSION 

 

This study presents an innovative enhancement to the Somsuk-RSA cryptosystem by replacing 

the Euler function with the Carmichael function. It is well-known that the risk of unauthorized 

access can be reduced by ensuring that the private key is larger than the public key. However, a 

larger private key often leads to slower decryption processes. The proposed technique addresses 

this challenge by significantly improving decryption efficiency.  

 

The effectiveness of this approach is evaluated by comparing its performance with the original 

Somsuk-RSA and the classical RSA cryptosystems. A comparative analysis is conducted using 

mathematical software, examining key sizes of 512, 1024, and 2048 bits, with 100 trials 

performed for each algorithm. The test results are generated using an optimized algorithm, and 

decryption speeds are recorded in seconds based on the corresponding bit lengths. The findings 

consistently demonstrate that the modified Somsuk-RSA achieves faster decryption times than 

both the original RSA and the conventional Somsuk-RSA.  

 

In summary, the enhanced Somsuk-RSA outperforms the existing RSA and Somsuk-RSA schemes 

in terms of decryption speed. Decryption efficiency is significantly improved by employing the 

Carmichael function instead of the Euler function. This study successfully develops and 

implements the improved Somsuk-RSA cryptosystem, achieving its intended objectives. 
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