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ABSTRACT 
Real estate investment offers portfolio diversification through direct property ownership or real estate 

investment trusts (REITs). This study optimizes a mixed-asset portfolio, including stocks, bonds, and 

REITs from Malaysia and Singapore stock markets using machine learning models for price prediction 

and Genetic Algorithm (GA) for assets’ allocation. Machine learning models, including Ordinary Least 

Squares Linear Regression (LR), Support Vector Regression (SVR), K-Nearest Neighbors (KNN), and 

Extreme Gradient Boosting (XGBoost), were used for price prediction, with SVR performing best based 

on root mean squared error, mean absolute error, and mean squared error metrics. Predicted prices from 

SVR were then used in a GA for portfolio optimization, initially unconstrained and subsequently with 

risk constraints for practical applicability. The unconstrained GA produced unrealistically high Sharpe 

ratios, while GA with risk constraints led to more balanced returns. The final portfolio achieved better 

returns with controlled risk, highlighting the benefits of REITs in portfolio diversification. The proposed 

approach highlights the synergy between machine learning and GA, providing a framework for 

constructing better mixed asset portfolios.  

 
Keywords: REITs, Mixed-Asset Portfolio, Machine Learning, Genetic Algorithm  

 

 

INTRODUCTION 

 

Real estate investment offers an attractive option for portfolio diversification. It acts as a hedge 

against market volatility and provides a stable stream of income. Investors can participate in real 

estate directly through property purchases or indirectly via Real Estate Investment Trusts (REITs). 

REITs offer advantages like professional management and stock-like liquidity, mitigating the high 

upfront capital requirements typical of direct property investment (Habbab and Kampouridis, 

2024). 

 

Accurately predicting future asset prices is crucial for optimizing mixed-asset portfolios that 

include REITs. This predictive accuracy ensures investments are allocated to maximize returns 

while minimizing risks. However, the existing literature on price prediction often focuses on a 

limited range of algorithms and rarely explores the specific context of REITs within portfolio 

optimization (Behera et al., 2023). 

 

Several researchers have explored using Machine Learning (ML) models to predict REIT 

prices. Chen et al. (2014) experimented with ML regression algorithms, including Grey Relational 
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Analysis (GRA) and Artificial Neural Networks (ANN), to predict REIT returns. Li et al. (2017) 

studied how neural network algorithms predicted prices for both stocks and REITs. They 

demonstrated that the ML model achieved higher accuracy than the traditional autoregressive 

integrated moving average (ARIMA) model. Loo (2020) compared predictions from ANN and 

linear regression (LR) models on Hong Kong-listed REITs. Lian et al. (2021) compared price 

prediction between ARIMA and a backpropagation neural network on the Vanguard real estate 

exchange-traded fund (ETF). 

 

In the use of Genetic Algorithm (GA) for portfolio optimization, Li and Wu (2021) presented 

a GA model that constructs an investment portfolio including real estate assets with reduced risk 

under uncertainty conditions. Their study proved that GA is effective in finding optimal weights 

in a portfolio with real estate assets. Adebiyi et al. (2022) also adopted a GA model to optimize a 

mixed-assets portfolio including real estate assets using historical market data . They suggested 

that GA could effectively optimize a portfolio, even for mixed-asset portfolios with different asset 

classes. However, limited insights into the inclusion of real estate investment in an investment 

portfolio make composing a portfolio with real estate challenging. This is because real estate assets 

possess distinct risk and return characteristics compared to stocks and bonds, with low volatility 

being one of the reasons. 

 

Therefore, this study aims to fill this gap in knowledge of real estate assets, empowering 

individual investors to make more informed portfolio decisions. Real estate assets can also bring 

more investment opportunities to the public due to their lower entry costs compared to direct 

property purchases. Habbab and Kampouridis (2024) previously studied this process in the US, 

UK, and Australian markets, while Marzuki and Newell (2019) focused on the Belgium market. 

This paper will focus on the Malaysia and Singapore markets. 

 

 

RESEARCH BACKGROUND 

 

A financial investment portfolio comprises a variety of assets such as stocks, bonds, commodities, 

cash, and equivalents, including closed-end funds and ETFs. For example, the Singapore stock 

market includes assets such as Business Trusts, Structured Warrants, and Daily Leverage 

Certificates, just to name a few (Jayaraman, 2021). In Bursa Malaysia, offerings include fixed 

income securities like ICULS (Irredeemable Convertible Unsecured Loan Stock) and ETBS 

(Bonds and Sukuk traded in Bursa Malaysia), as well as the LEAP market (Malaysia’s Leading 

Entrepreneur Accelerator Platform). Asset types can vary by country to meet different market 

needs. 

 

A fundamental principle in managing an investment portfolio is diversification, or spreading 

investments across various financial instruments and sectors to mitigate risk. This approach aims 

to maximize returns by ensuring that different investments react differently to the same event, such 

as the impact of the COVID-19 pandemic. Regardless of the portfolio’s composition, it should 

always reflect the investor’s risk tolerance, return objectives, time horizon, and other constraints 

like tax position, liquidity needs, legal considerations, and unique circumstances. 

 

Each financial product has its own benefits and risks. A diversified portfolio, or a mixed assets 

portfolio is crucial as it determines the portfolio's risk/reward profile and long-term performance 

expectations. Investors often categorize funds based on their holdings, which may focus on a core 

asset class like equities or fixed income. Other possible investments include commodities or 

international assets. Portfolio managers use various methodologies to decide the asset mix, with 
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modern portfolio theory offering a framework for analyzing investments and determining 

appropriate allocations based on risk preferences and management goals. Asset allocation 

portfolios combine equity and fixed income classes, with equities historically offering higher 

returns and higher risks, while fixed income investments tend to provide lower returns with lower 

risk. Balancing these elements is essential for defining the asset mix of an investment portfolio. 

 

On the other hand, a REIT is a fund or trust that owns and manages income-generating 

commercial properties such as shopping complexes, hospitals, plantations, industrial properties, 

hotels, and office buildings. Management companies for REITs can deduct distributions paid to 

shareholders from their corporate taxable income. To maintain this tax-free status, REITs must 

have most of their assets and income tied to real estate and must distribute at least 90% of their 

total income to investors or unit holders annually (Baker and Chinloy, 2014). 

 

REITs offer other advantages. First, REITs are immediate candidates for dividend or yield-

oriented investors. Consequently, income-oriented funds have been increasing their portfolio 

holdings in REITs. Secondly, some REITs are almost mirror image of conventional corporate 

entities. Other firms hold cash in tax-avoidance strategies because of high and varying corporate 

tax rates. Investors treat REITs differently from stocks, some view REITs as a separate asset class 

(Baker and Chinloy, 2014). 

 

 

MODERN PORTFOLIO THEORY 

 

Modern Portfolio Theory (MPT) provides a framework for addressing asset allocation by assuming 

that investors prefer to minimize risk while achieving a given level of expected return. The theory 

suggests that investors will only accept higher risk if it is accompanied by higher anticipated 

returns. The balance between maximizing returns and minimizing risk depends on individual risk 

tolerance, and MPT offers a mathematical approach to navigate this trade-off (Habbab and 

Kampouridis, 2024). 

 

MPT is based on the Efficient Market Hypothesis (EMH), which asserts that a security's price 

reflects all available information and its true economic value. In an efficient market, prices are 

solely influenced by available information, not by managerial decisions. This theory is vital for 

investment decision-making and forecasting market trends that affect asset allocation (Habbab and 

Kampouridis, 2024). 

 

Effective portfolios, according to MPT, are those that maximize expected return for a given 

level of risk or minimize expected risk for a given return. The expected return of a portfolio is 

calculated by considering the historical returns of its assets, weighted according to the proportion 

of each asset in the portfolio. This can be expressed as: 

 

        𝐸(𝑟𝑝) = ∑ 𝑤𝑖𝐸(𝑟𝑖)
𝑛
𝑖=1 ,                                 (1) 

 

where 𝐸(𝑟𝑝) is the expected return of the portfolio, 𝑤𝑖 is the weight of the 𝑖-th asset, 𝐸(𝑟𝑖) is the 

expected return of the 𝑖-th asset, and 𝑛 is the number of assets in the portfolio.  

 

The expected risk of a portfolio, however, is not merely the sum of individual asset risks. 

Instead, it depends on the interdependencies of the assets, captured by their pairwise correlations. 

The greater the correlations between the assets, the higher the portfolio's expected risk. The 

portfolio variance, which represents risk, is given by: 
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𝜎𝑝
2 = ∑ 𝑤𝑖

2
𝑖 𝜎𝑖

2 + ∑ ∑ 𝑤𝑖𝑗≠𝑖 𝑤𝑗𝑖 𝜎𝑖𝜎𝑗𝜌𝑖,𝑗 ,       (2) 

 

where 𝜎𝑝
2 is the portfolio variance, 𝜎𝑖

2 is the variance of the 𝑖-th asset, and 𝜌𝑖,𝑗 is the correlation 

between the 𝑖-th and 𝑗-th assets. 

 

MPT emphasizes the importance of diversification in managing portfolio risk.  While the risk 

of individual assets within a portfolio is important, so too are the correlations between them.  

Diversification aims to combine assets with low pairwise correlations, as these assets can offset 

each other's risk and contribute to a lower overall portfolio risk (Habbab and Kampouridis, 2024). 

 

Correlation measures the strength and direction of the relationship between two assets.  

Positively correlated assets tend to move in the same direction, while negatively correlated assets 

move in opposite directions.  In MPT, low correlation between assets is desirable as their 

movements tend to counteract each other, leading to a more stable portfolio with lower overall 

risk. Conversely, high correlation between assets amplifies risk, as both assets are likely to move 

in the same direction, potentially leading to significant losses. 

 

A key concept in MPT is managing the correlation structure within a portfolio.  By including 

assets with diverse correlation levels, investors can achieve a more balanced risk profile. Assets 

with low or negative correlations can help mitigate the risk associated with highly correlated assets.  

Therefore, MPT advocates for constructing portfolios that optimize expected return for a given 

level of risk by strategically considering the correlations between assets. 

 

 

METHODOLOGY 

 

While ANN with multiple variables have been the dominant approach for predicting REIT prices, 

other ML models remain less explored. This study aims to bridge this gap by comprehensively 

evaluating four ML models: Ordinary Least Squares Linear Regression (LR), Support Vector 

Regression (SVR), k-Nearest Neighbors Regression (KNN), and Extreme Gradient Boosting 

(XGBoost). The predicted results obtained from these models will then be used in a GA to optimize 

asset weights within an investment portfolio. The GA adopted in this study will find the optimal 

weights for a given set of assets based on the return and risk parameters derived from MPT. 

 

Data Collection and Preprocessing 

 

This study will conducts all the ML prediction and GA optimization using data from two country: 

Malaysia and Singapore. 30 assets including 10 from stocks, 10 from bonds, and 10 from real 

estates, were chosen randomly from the available market. The data used in the ML method was 

from a 12-month period of December 2023 to November 2024. These data of adjusted closing 

prices were collected from Yahoo Finance database (url: https://finance.yahoo.com/ ). The reason 

of adjusted closing prices were being used is that it allows investors to obtain an accurate record 

of the stock's performance. It is extremely useful if an analyst is examining the historical returns 

because it can provide actual representation of the firm's or companies' equity value. The adjusted 

closing price factors in anything that might bring impact to the assets' price after the market close 

on each trading day, such as stock splits, right offerings, or dividends. However, The adjusted 

closing price is excellent for long-term analysis but can hide valuable insights about nominal price 

levels and short-term price behaviors, such as those caused by stock splits or dividends. Long-term 

https://finance.yahoo.com/
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investing and analysis were assumed in this study. Table 1 shows the list of assets and their 

respective tickers chosen in this study.  

 

Table 1: Lists of assets and tickers 

MALAYSIA SINGAPORE 

REITS 
5116.KL Al-'Aqar Healthcare REIT A17U.SI CapitaLand Ascendas REIT 

5269.KL Al-Salam Real Estate Investment Trust AJBU.SI Keppel DC REIT 
5130.KL Atrium Real Estate Investment Trust AU8U.SI CapitaLand China Trust   

5106.KL Axis Real Estate Investment Trust D5IU.SI  Lippo Malls Indonesia Retail Trust 

5121.KL Hektar Real Estate Investment Trust J69U.SI Frasers Centrepoint Trust  
5227.KL IGB Real Estate Investment Trust J91U.SI ESR-REIT  

5212.KL Pavilion Real Estate Investment Trust   ME8U.SI Mapletree Industrial Trust  

5176.KL Sunway Real Estate Investment Trust P40U.SI Starhill Global Real Estate Investment Trust  
5110.KL Uoa Real Estate Investment SK6U.SI Paragon REIT   

5109.KL YTL Hospitality REIT T82U.SI Suntec Real Estate Investment Trust  

BONDS 
0800EA.KL ABF Malaysia Bond Index A35.SI ABF Singapore Bond Index Fd 
0820EA.KL FTSE Bursa Malaysia KLCI ETF BYJ.SI Phillip SGX APAC Dividend Leaders REIT ETF  

0821EA.KL Dow Jones Islamic Market Malaysia Titans 25 ETF CFA.SI NikkoAM-StraitsTrading Asia ex Japan REIT ETF 

0822EA.KL Principal FTSE ASEAN 40 Malaysia CLR.SI Lion-Phillip S-REIT ETF 
0824EA.KL MSCI Malaysia Islamic Dividend ETF  CYC.SI ICBC CSOP FTSE Chinese Government Bond Index ETF  

0828EA.KL TradePlus Shariah Gold ETF G3B.SI Nikko AM Singapore STI ETF 

0829EA.KL TradePlus S&P New China Tracker ETF MBH.SI Nikko AM SGD Investment Grd Corp Bd ETF  
0836EA.KL TradePlus DWA Malaysia Momentum Tracker ETF OVQ.SI Phillip Sing Income ETF 

0837EA.KL TradePlus MSCI Asia ex Japan REITs Tracker ETF   QK9.SI iShares MSCI India Climate Transition ETF  

0838EA.KL VP-DJ Shariah China A-Shares 100 ETF ES3.SI SPDR Straits Times Index ETF 

STOCKS 
1066.KL RHB Bank Berhad   D05.SI DBS Group Holdings Ltd 

1961.KL IOI Corporation Berhad G13.SI Genting Singapore Limited 

2445.KL Kuala Lumpur Kepong Berhad OV8.SI Sheng Siong Group Ltd   
3026.KL Dutch Lady Milk Industries Berhad MZH.SI Nanofilm Technologies International Limited 

3182.KL Genting Berhad O39.SI Oversea-Chinese Banking Corporation Limited  

4197.KL Sime Darby Berhad QC7.SI Q & M Dental Group (Singapore) Limited  

4863.KL Telekom Malaysia Berhad S08.SI Singapore Post Limited  

5908.KL DKSH Holdings (Malaysia) Berhad Z74.SI Singapore Telecommunications Limited  

6012.KL Maxis Berhad 8K7.SI UG Healthcare Corporation Limited  
6033.KL PETRONAS Gas Berhad   BS6.SI Yangzijiang Shipbuilding (Holdings) Ltd. 

 

 

The datasets obtained were split into 70% for training, 10% for validation, and 20% for testing. 

However, it cannot be assured that one ML model's will perform well when it encounter new and 

unseen data. In order to ensure that the ML model is robust and generalizes well to new data, cross 

validation can be processed and added to prevent overfitting in a ML model. The 5-fold cross 

validation carried out in this study was by randomly divides the datasets into 5 different sets of 

data in the above mentioned percentage. The ML method will then use the first set of data for 

training, second set of data for validation, and the third set of data for testing, for 5 different folds 

of datasets split by sklearn.model_selection, KFold in the Python libraries. After the data being 

split into 5 folds, they can now being proceeded into the next step, which is data preprocessing. 

 

In order to maintain the stationarity of the time series data, differencing and scaling of data 

preprocessing is required before the data is applied in the ML training process. Differencing the 

dataset will remove the upward trend and keeping the average constant over time. Stationarity is 

crucial in time series analysis models such as ARIMA, as this model will assume the data is 

independent with one another. However, it is impossible for a market price time series to be 

independence without any data preprocessing (Aderson et al., 2021). 

 

In this process, the following equation will be applied 
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𝑁𝑡 =
𝐷−𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛
,                        (3) 

 

to normalizes the independent variable to a range of values between 0 to 1. The target variable is  
𝑁𝑡, the standardized value of each differenced price 𝐷, and 𝐷𝑚𝑖𝑛 or 𝐷𝑚𝑎𝑥 are the minimum and 

maximum value of 𝐷 from the whole set of data. 

 

Table 2 is an example of differenced data, followed by graph of the original and differenced 

time series (Figure 1(a) and 1(b)) using the same dataset from Table 2.   

 

Table 2: Example of time series differentiation and feature selection 

𝑡 𝑃𝑡 𝑃𝑡−1 𝐷𝑡 𝑁𝑡 𝑁𝑡−1 

1 1.290928 – – – – 

2 1.256731 1.290928 –0.034197 0.002353 – 

3 1.248182 1.256731 –0.008549 0.334901 0.002353 

4 1.222534 1.248182 –0.025648 0.113198 0.334901 

5 1.196887 1.222534 –0.025647 0.113203 0.113198 

6 1.196887 1.196887 0.000000 0.445750 0.113203 

7 1.162690 1.196887 –0.034197 0.002349 0.445750 

8 1.196887 1.162690 0.034197 0.889150 0.002349 

9 1.222534 1.196887 0.025647 0.778297 0.889150 

10 1.205436 1.222534 –0.017098 0.224051 0.778297 

 

 

Table 2 included the column of time steps, 𝑡, the adjusted closing price of the asset, 𝑃𝑡, 𝑃𝑡−1 

which is one-lagged value of the adjusted closing price, the differenced 𝐷𝑡  values which is 

calculated as 𝑃𝑡 − 𝑃𝑡−1 . Following by the normalized value of 𝐷𝑡  which is 𝑁𝑡 , and its lagged 

values with 𝑛 determined by Akaike Information Criterion (AIC). 

 

 
 (a) Sunway REIT original time series.        (b) Sunway REIT differenced time series. 

 

Figure 1: Example of original and differenced time series using Sunway REIT data. 

 

AIC is a widely used metric for model selection (Yamaoka, 1978; Vrieze, 2012) as an 

estimator of prediction error. The value of 𝑛 may vary depending on the specific dataset, resulting 

in a different number of features for each dataset. In this study, the value of 𝑛 is limited at 3 in all 

the ML methods to preserve sufficient amount of data for the training, validation, and testing 

process. After the ML method obtained the predicted time series value, the differencing and scaling 

process will be done reversely to calculate the performance metrics as decribed in this paper. 
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Machine Learning Models for Price Prediction 

 

Once the data has been pre-processed and the relevant lagged features have been created, they will 

then be transferred to ML models to predict the prices of the datasets, which belong to three asset 

classes: REITs, stocks, and bonds. The price will serve as the target variable for this regression 

task. This study will evaluate the performance of four widely-used ML models: LR, SVR, 

XGBoost, and KNN. 

 

To implement these ML models, the following Python libraries will be utilized: sklearn, and 

xgboost. The specific functions that will be used to fit the models to the training data are: 

 

sklearn.linear_model.LinearRegression 

sklearn.svm.SVR 

xgboost 

sklearn.neighbors.KNeighborsRegressor 

 

To optimize the performances of the ML models, parameters included in functions above were 

determined using a grid search method. The best parameters were chosen by Grid Search method 

in Python. The range of parameters used in ML models are as Table 3.  

 

Table 3: ML models and its parameters 

Model Parameter  Value Range 

SVR 

Kernel function ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’ 

Degree of kernel function 1, 2, 3 

Kernel coefficient (gamma) ‘scale’, ‘auto’ 

Tolerance of stopping criterion 0.001, 0.01, 0.1 

Epsilon 0.1, 0.5, 0.8 

XGBoost 

Number of estimators 10, 20, 30 

Maximum depth of a tree 3, 4, 5 

Maximum child weight 1, 5, 10 

Learning rate 0.001, 0.01, 0.1 

KNN 

Number of neighbors 5, 10, 20 

Weights ‘uniform’, ‘distance’  

Algorithm ‘auto’, ‘ball_tree’, ‘kd_tree’ 

 

 

LR was not tuned as it lacks parameters to be tuned. The ML models were then fitted to the training 

data, validated, and lastly applied to the test set using predict attribute of the respective model. 

The predicted prices from test sets were recorded for the usage in the GA optimization.  

 

Performance Metrics of Machine Learning Models 

 

The performance metrics that will be evaluated in this study includes: 

 

i) Mean Squared Error (MSE) 

The MSE is a cost function commonly used in regression. MSE measures the amount of error in 

statistical models. It assesses the average squared difference between the observed and predicted 
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values. When a model has no error, the MSE equals zero. As model error increases, its value 

increases.  

 

𝑀𝑆𝐸 =
∑ (𝑃𝑡−𝑃̂𝑡)2𝑇

𝑡=1

𝑇
,      (4) 

 

where 𝑇 is the number of observations, 𝑃𝑡  refers to the actual value of the price, and 𝑃̂𝑡 is the 

predicted value of the price. 

 

ii) Mean Absolute Error (MAE) 

The MAE is another common cost function used in regression problems to measure the average 

difference between the predicted and actual values. It focuses on the absolute value of the errors, 

giving equal weight to both overestimations and underestimations. The smaller the MAE, the 

better the model’s predictions align with the actual data. 

 

𝑀𝐴𝐸 =
∑ |𝑃𝑡−𝑃̂𝑡|2𝑇

𝑡=1

𝑇
,        (5) 

 

where 𝑇 is the number of observations, 𝑃𝑡  refers to the actual value of the price, and 𝑃̂𝑡  is the 

predicted value of the price. 

 

iii) Root Mean Squared Error (RMSE) 

The RMSE is one of the main performance indicators for a regression model. It measures the 

average difference between values predicted by a model and the actual values. It provides an 

estimation of how well the model is able to predict the target value (accuracy). The lower the value 

of the RMSE, the better the model is. 

 

𝑅𝑀𝑆𝐸 = √∑ (𝑃𝑡−𝑃̂𝑡)2𝑇
𝑡=1

𝑇
,     (6) 

 

where 𝑃𝑡  refers to the actual value of the price, 𝑃̂𝑡 is its predicted value, and 𝑇 is the number of 

observations.  

 

The differenced and scaled values are reverted back to their original price values, to calculate the 

cost function, which is why 𝑃𝑡 acts as the target variable in Eq. (4) to (6). This is because all the 

cost functions measure the error between predicted and actual prices. Without reverting, these 

errors would be based on the scaled units, not reflecting the true difference in real prices. 

Additionally, the ML model evaluation aims to understand performance on the original price scale. 

Reverting ensures the cost function operates on original price values, providing a more meaningful 

measure of prediction accuracy. 

 

Genetic Algorithm for Portfolio Optimization 

 

After the price prediction process is completed by the ML models, a GA will then be used to 

optimize the weights of assets in the portfolio. GAs have been previously successfully applied into 

financial portfolio optimization (Habbab and Kampouridis, 2024). Metrics derived from MPT will 

be present as follows: 

 

a. Sharpe ratio, which is computed as the ratio of the difference between the mean return and 

the risk-free rate to the standard deviation of the returns, that is 
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𝑆 =
𝑟−𝑟𝑓

𝜎𝑟
,      (7) 

 

where 𝑟 is the average return of the investment, 𝑟𝑓 is the risk-free rate, and 𝜎𝑟 is the standard 

deviation of the returns. Generally, the higher the Sharpe ratio, the more attractive the risk-

adjusted return. 

 

b. The average return of each asset is calculated as the simple average of the returns of that 

asset, that is 

 

𝑟 =
∑ 𝑟𝑡

𝑇
𝑡=1

𝑇
,      (8) 

 

where 𝑟𝑡 is the return observed for each time point 𝑡 and 𝑇 is the number of observations. 

 

c. To calculate the return 𝑟𝑡, the predicted price time series needs to transformed to returns 

through the following formula: 

 

𝑟𝑡 =
𝑃̂𝑡−𝑃̂𝑡−1

𝑃̂𝑡−1
.      (9) 

 

d. The standard deviation of returns is calculated as the square root of the average of the squared 

differences between the average return and each observed return follows: 

 

𝜎𝑟 = √∑ (𝑟−𝑟𝑡)2𝑇
𝑡=1

𝑇
.     (10) 

 

Among the formulas above, Eq. (7) will be used as the fitness function in all the GA optimization.  

 

The predicted prices from the best performing ML model, will be used as the main input in 

the GA implementation. Firstly, daily return of each asset will be calculated using Eq. (8). Mean 

assets return will then computed by calculating the mean of daily assets return. In this study, each 

chromosome of the GA having genes of 60, representing the 60 assets chosen at the beginning of 

the algorithm. A chromosome is represented as: 

 

𝒄 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤60],                      (11) 

 

where 𝑤𝑖 is the weight of portfolio assigned to each gene, and the sum of all genes are always 

normalized to 1, as ∑ 𝑤𝑖
60
𝑖=1  and 0 ≤ 𝑤𝑖 ≤ 1, which represents total weight of a chromosome or a 

portfolio always equals to 100%.  

 

The initialization of the weights to each gene was done by assigning a random number to it. 

This is to ensure diversity and avoids premature convergence to suboptimal solutions in the 

investment portfolio. In this study, the size of population is 50. The following Figure 2 represents 

a chromosome with random weights assigned: 

 

 
Figure 2: Example of a chromosome with randomly assigned weights. 
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Figure 3 showcased the algorithm of the complete GA process. 

 

 
Figure 3: Algorithm of proposed GA. 

 

 

RESULTS AND DISCUSSION 

 

Price Prediction by Machine Learning 

 

Table 4 shows the numerical results obtained from ML price prediction in terms of RMSE, MAE 

and MSE. 

 

Table 4: Numerical results of performance metrics of the ML models 

ML Model 
Validation Test 

RMSE MAE MSE RMSE MAE MSE 

KNN       

All assets 0.375457 0.310458 1.036949 0.170986 0.137835 0.218166 

REITs only 0.098747 0.080446 0.014256 0.046547 0.039218 0.003367 

LR       

All assets 0.386247 0.318532 1.124226 0.105330 0.071834 0.070605 

REITs only 0.099014 0.080186 0.014531 0.028230 0.020610 0.001112 

SVR       

All assets 0.400317 0.327846 1.184027 0.096812 0.089691 0.046982 

REITs only 0.099445 0.080218 0.014612 0.026321 0.001657 0.000981 

XGBoost       

All assets 0.375441 0.311331 1.027224 0.161823 0.130576 0.194712 

REITs only 0.098792 0.079994 0.014298 0.043333 0.035610 0.002859 

 

Among the ML methods studied, SVR is ranked as top in terms of average RMSE, MAE, and 

MSE of all 30 assets, and also of all REITs. It then followed by LR, XGBoost, and lastly KNN. 

 

In order to present the significant of the differences of the ML models, Friedman non-

parametric test had also been performed. In this test, lower rank represents better model's 
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performance, which represents having lower value of performance metrics in predicting the prices 

of assets. The test was carried out to compare the RMSE, MAE, and MSE for all four ML models, 

and the results are presented in Table 5.  

 

Table 5: Statistical test of performance metrics distribution of “all assets” and “REITs only” 

based on Friedman non-parametric test 

ML model 
Average Rank 

All assets REITs only 

KNN 3.60 4.00 

LR 2.00 2.00 

SVR 1.00 1.00 

XGBoost 3.40 3.00 

 

The results obtained from Friedman non-parametric test had shown similar results in terms of 

all three performance metrics. Apart from proving the significant difference between the ML 

models, a post-hoc test have also been performed to compare the models pairwise. To discover if 

the rank differences obtained from the Friedman test are significant, Nemenyi test was performed. 

The Nemenyi test works by computing average rank of each models and taking their difference. If 

the average rank differences are larger than or equal to the critical difference (CD) computed, it 

could be conclude that the performances of the two models corresponding to these differences are 

significantly different from one another. The CD was computed using this formula, 

 

𝐶𝐷 = 𝑞𝛼√
𝑘(𝑘+1)

6𝑛
,                     (12) 

 

where 𝑘 is the number of models, 𝑛 is the number of datasets, and 𝑞𝛼 is the critical value from the 

Nemenyi table based on the number of models and significance level, 0.05 (Japkowicz and Shah, 

2011). After performing the Nemenyi test with 𝑞𝛼 = 2.728, a critical difference of 𝐶𝐷 =  2.2274 

was obtained. 

 

Table 6: Statistical test of performance metrics distribution of “all assets” and “REITs only” 

based on Nemenyi post-hoc test 

Pairs of ML 

Models 

All Assets REITs only 

Difference Significant Difference Significant 

KNN vs. LR 1.60 NO 2.00 NO 

KNN vs. SVR 2.60 YES 3.00 YES 

KNN vs. XGBoost 0.20 NO 1.00 NO 

LR vs. SVR 1.00 NO 1.00 NO 

LR vs. XGBoost 1.40 NO 1.00 NO 

SVR vs. XGBoost 2.40 YES 2.00 NO 

 

From the performance metrics and test analysis carried out, it could be concluded that SVR 

demonstrates superior performance in terms of RMSE, MSE, and MAE. This owed to its capability 

to effectively model complex, non-linear relationships through the use of kernel functions like the 

RBF kernel. These kernels enable SVR to capture intricate patterns in the data that simpler 

methods, such as LR, often overlook. Furthermore, SVR's hyperparameters, including the 

regularization parameter (∁), kernel coefficient (𝛾), and epsilon (𝜖), offer precise control over the 

model’s bias-variance tradeoff and its tolerance for minor errors. By prioritizing the minimization 



 

W.T. Foo and L.S. Lee                                                                   Menemui Matematik (Discovering Mathematics) 47(2) (2025) 52-67 

63 

 

of significant deviations while disregarding smaller ones, SVR adeptly manages data variability 

more efficiently and robustly compared to alternatives like KNN or XGBoost. 

 

On the other hand, the reason LR ranked second among the four ML models, despite lacking 

parameter tuning, may stem from its simplicity and efficiency when handling relatively well-

balanced datasets. LR excels particularly well when the relationships between the features and the 

target variable are predominantly linear. In cases where the dataset exhibits minimal noise, well-

scaled features, and a lack of strong non-linearities, LR can deliver competitive results without the 

complexity associated with additional hyperparameter tuning. This simplicity allows it to avoid 

overfitting, which can occasionally be a concern for more advanced models like XGBoost or KNN 

when not properly tuned. 

 

Portfolio Optimization by Genetic Algorithm 

 

Figure 4 shown the graph of evolution of value of Sharpe ratio and expected risk over 300 

generations of GA.  

 
Figure 4: Graph of Sharpe ratio and expected risk of best chromosome of 300 Generations 

 

From Figure 4, the Sharpe ratio at generation 300 (29.601678) is around 87.94 times higher 

than the Sharpe ratio at generation 0 (0.336626) . The Sharpe ratio exhibits a steady and 

significant increase over the 300 generations. This indicates that the GA effectively identified 

better solutions with higher risk-adjusted returns as generations progressed. Notable jumps in the 

Sharpe ratio occur in the early generations around 275 , followed by more incremental 

improvements as the algorithm approaches convergence. While the expected risk decrease 

constantly across all generations. This stability suggests that while the GA focused on improving 

the Sharpe ratio, it maintained a slight decreasing level of risk, aligning with the objective of risk 

control. 

 

The Sharpe ratio shows rapid improvement during the first 250 generations, suggesting that 

the algorithm quickly identifies promising solutions. However, after approximately 200 

generations, the increment Sharpe ratio begins to slow down, indicating that the GA has likely 
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converged to an optimal or near-optimal solution. This stagnation suggests that the GA has 

exhausted its capacity to further improve performance within the given constraints. 

 

From Figure 4, it was observed that extremely high Sharpe ratios were achieved, this is 

because of the portfolio’s exploiting negligible risk values. This phenomenon arises from the 

mathematical structure of the Sharpe ratio: 

 

𝑆 =
𝑟−𝑟𝑓

𝜎𝑟
 .                     (13) 

 

As the denominator (risk, 𝜎𝑟) approaches zero, even small returns result in disproportionately high 

Sharpe ratios, which are not reflective of practical portfolio performance. This necessitated the 

introduction of a risk constraint to ensure realistic and interpretable outcomes. The risk constraint 

was implemented by introducing a risk floor. In the fitness function, the adjusted risk was 

calculated as: 

 

Adjusted Risk =  max(Portfolio Risk, Risk Floor).               (14) 

 

Experiments with different values of risk were carried out and it was found that GA 

optimization with risk value of 0.002 provided a reality level of Sharpe ratio, which should be 

ranged around 2 to 3. From Figure 5, it could be observed that the Sharpe ratio are now of value 

2.897166, a reality level of good Sharpe ratio, with expected return of 0.006318. In this portfolio, 

the expected return is about 3.16 times of the risk level, where it represents a balanced risk-return 

profile. The slightly higher risk provides a realistic return potential while maintaining excellent 

risk management. 

 

 
Figure 5: Graph of Sharpe ratio and expected risk of best chromosome of 500 Generations (with 

risk of 0.002) 
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Figure 6 shown the pie chart of optimized portfolio obtained from the best chromosome of 

500 generations with the adjusted risk level of 0.002, bringing the Sharpe ratio of 2.897166 and 

expected return of 0.006318. 

 

 
Figure 6: Final optimized portfolio obtained from GA 

 

It can be concluded that, if an investor would like to invest in Malaysia and Singapore stock market, 

he/she can invest for 13% for Malaysia Bonds, 21% of Malaysia REITs, 14% of Malaysia stocks, 

17% for Singapore Bonds, 15% for Singapore REITs, and 20% of Singapore stocks based on 60 

assets experimented in this study. This allocations can help in giving the best performance of a 

portfolio, and is aligned with findings from previous studies (Habbab and Kampouridis, 2024). 

The results prove that the inclusion of REITs into one's investment portfolio is significant. Apart 

from bringing lower risks to the portfolio, it also brought better risk-return adjusted portfolio due 

to its diversification potential. 

 

 

CONCLUSIONS 

 

This study began with price prediction of assets using four ML models: KNN, LR, SVR, and 

XGBoost. ML model that produced the best performance metrics in terms of RMSE, MAE, and 

MSE is identified as SVR. Statistical tests, including Friedman and Nemenyi post-hoc analysis, 

also validated the superiority of SVR in both general assets and REIT-specific datasets. Knowing 

that the high accuracy of the SVR among four ML models, the predicted prices from this model is 

then used as the first step in GA, in order to optimize the relevant mixed-assets portfolio. By using 

Sharpe ratio as the fitness function of the GA, the best weight of assets in the portfolio were 

determined.  

 

Along with the better accuracy in price prediction, SVR also happened along with longer 

training and computational times. Single round of model training and price predicting of an asset 

will typically took around 3.5  to 4.5  minutes. Meanwhile, other ML models (LR, KNN and 

XGBoost) usually completed the training and predicting phases within the range of 5 to 60 seconds. 

  

The main finding of this research is that it highlights the importance of robust ML models 

like SVR in predicting prices in a financial setting. Better accuracy of prediction is essential for 



 

W.T. Foo and L.S. Lee                                                                   Menemui Matematik (Discovering Mathematics) 47(2) (2025) 52-67 
 

66 

 

the GA optimization in order to return a more reliable portfolio. The inclusion of REITs in a mixed-

assets portfolio can enhanced the diversification and provide stable returns due to their low 

volatility and correlation with other type of assets, such as stocks or bonds.  

 

However, this study only utilized historical data from Malaysia and Singapores stock market. 

Broader datasets, such as those from the European countries could enhanced the generalization of 

prediction and optimization. Following that, researchers could possibly experiment on the 

differences between predicting adjusted closing prices and closing prices. As focusing on the 

adjusted closing price might obscure nominal price trends and short-term behaviours of an asset.  

 

Researchers could also test on different crossover and mutation parameter to further improve 

the GA's performance. Hybridizing ML models with other optimization methods such as particle 

swarm optimization or simulated annealing would also be a good direction to experiment with. 

Moreover, researchers could also start to incorporate real-world constraints, such as taxes and 

liquidity to ensure a more practical and realistic portfolio's weight recommendations. 

 

As summary, this study demonstrates the potential of teaming ML models and GA 

optimization in portfolio management. By addressing prediction accuracy and balancing risk-and-

return, the proposed methodology provides a framework for constructing efficient mixed-asset 

portfolios especially in Malaysia and Singapore stock markets, helping investors to achieve their 

financial goals in a more assured way. 
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