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ABSTRACT 
This study introduces the Enhanced Spectral Gradient (ESG) method, a modified optimisation technique 

designed for large-scale unconstrained problems. The ESG method employs a direct diagonal 

approximation of the inverse Hessian matrix, derived by minimising the log-determinant norm of the 

Hessian, thereby avoiding costly matrix inversions while maintaining numerical stability. By 

incorporating a weak secant condition and a computationally efficient update rule, ESG achieves 

superior convergence properties compared to existing methods. To validate its performance, we 

conducted extensive numerical experiments on 96 test problems from the CUTE and Andrei collections, 

spanning dimensions from 10 to 10,000. Benchmarking against seven state-of-the-art gradient-based 

methods (including MDG, CG variants, and Steepest Descent) revealed that ESG consistently 

outperforms competitors for large performance ratios (τ > 5), as measured by iterations, function 

evaluations, and CPU time. Profiling graphs demonstrated ESG’s robustness, particularly in high-

dimensional settings, where its low-cost backtracking line search and minimal implementation overhead 

offer practical advantages. The ESG method’s drop-in compatibility with existing optimisation 

frameworks, makes it an attractive candidate for integration into scientific computing libraries. This 

work bridges theoretical innovation with practical utility, providing a scalable and efficient solution for 

large-scale optimisation challenges. 

 
Keywords: Spectral Gradient, unconstrained optimisation, inverse Hessian approximation, large-

scale problems, performance profiling. 

 

 

INTRODUCTION 

 

        

Optimisation is a fundamental research problem across various disciplines, including mathematics, 

engineering, computer science, and economics. At its core, optimisation involves identifying the 

best solution from a set of feasible solutions to the optimal value of a function while adhering to 

predefined constraints. A critical step in this process is formulating an objective function (or cost 

function), which quantifies the quantity to be minimised (e.g., error, cost) or maximised. The goal 

is to determine the input parameters that yield the optimal value of this function, often under 

constraints that can be expressed as either equality or inequality conditions. 

https://persama.org.my/dismath/home
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Optimisation techniques have been widely applied in numerous fields, such as neural networks, 

computer vision, and image processing. Various optimisation algorithms have been developed to 

tackle such problems, including gradient descent, Newton’s method, and genetic algorithms. These 

methods are essentially iterative in nature. The methods refine the solution iteratively until 

convergence to an optimal (or near-optimal) point is achieved. The choice of algorithm depends 

on factors such as the problem’s convexity, the differentiability of the objective function, and 

whether the goal is to find global or local optima (Nocedal and Wright, 2006). 

Among these methods, the Steepest Descent (SD) method is one of the oldest and simplest 

iterative optimisation techniques; it updates solutions in the direction of the negative gradient. 

While computationally efficient, SD suffers from slow convergence near minima due to its zig-

zagging behaviour (Cauchy, 1847). Subsequently, more advanced methods, such as the Conjugate 

Gradient (CG) and Quasi-Newton approaches, address these limitations but introduce new 

challenges. For instance, the quasi-Newton method approximates the Hessian matrix to accelerate 

convergence but requires costly matrix inversions, making it computationally expensive for high-

dimensional problems (Nocedal and Wright, 2006). 

To mitigate these computational burdens, Barzilai and Borwein (1988) proposed a family of 

spectral gradient methods.  Unlike traditional quasi-Newton methods that compute full-rank 

Hessian matrices, Barzilai and Borwein approximate the Hessian matrix with a carefully picked 

scalar. Effectively, the Hessian matrix is replaced with a constant diagonal matrix. Sim et al. (2019) 

proposed variable diagonal damping factors in the approximated matrix. The variable diagonal 

elements allow decreasing the value of the objective function by all components simultaneously. 

This paper presents an improved spectral gradient method that employs a spectral parameter 

to approximate the inverse Hessian matrix. Building upon the variable diagonal spectral method 

proposed by Sim et al., we develop an enhanced formulation featuring a variable spectral 

approximation of the inverse Hessian that can be directly incorporated into unconstrained 

optimisation update rules. The proposed method's efficacy is demonstrated through comprehensive 

numerical experiments, which compare its performance against established gradient-based 

optimisation techniques. These comparisons are conducted using standardized test problems from 

the CUTE collection (Bongartz et al., 1995) and additional benchmark problems (Andrei, 2008) 

 

APPROXIMATION OF THE INVERSE HESSIAN MATRIX USING A DIAGONAL 

MATRIX 

Consider a typical unconstrained optimisation problem: 

𝑚𝑖𝑛
𝑥 ∈𝑅𝑛

𝑓(𝑥). 

In this context, f(x) represents the objective function, while x denotes an n × 1 decision vector. A 

typical iterative formula for updating optimisations with the spectral gradient method is: 

𝑥𝑘+1 = 𝑥𝑘 − 𝐵𝑘
−1𝑔𝑘, 

where xk is the decision vector for the optimisation problem at step k, while gk denotes the gradient 

vector. The matrix Bk in the standard spectral gradient methods is a constant diagonal matrix that 

aims to mimic the effects of the Hessian matrix. 

Sim et al. (Sim et al., 2019) introduced a diagonal matrix approximation for the Hessian matrix, 

with the diagonal components that are following an updating formula given by: 
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𝐵𝑘+1
(𝑖) =  

1

1+𝜔(𝑠𝑘
(𝑖))

2, 

 

        

where i denotes the diagonal component of matrix B, and ω is approximated as: 

 

𝜔 ≈
𝑠𝑘

𝑇𝑠𝑘−𝑠𝑘
𝑇𝑦𝑘

∑ (𝑠𝑘
(𝑖))4𝑛

𝑖=0

. 

Here, 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 and 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘. 

 

However, this formulation could be further simplified by explicitly approximating the inverse 

Hessian, Hk, to fully eliminate the need for matrix inversion. We want Hk to be a diagonal and 

positive-definite matrix that serves as an approximation of 𝐵𝑘
−1. We start with the derivation of 

the updating formula for Hk by considering the log-determinant norm as the objective function: 

 

𝛹(𝐻𝑘) =  tr(𝐻𝑘) −ln (det (𝐻𝑘)), 

where tr(Hk) and det(Hk) are the trace and determinant of Hk.  

We formulate an optimisation problem using the log-determinant norm, constrained by a weak 

secant condition.  

min 𝛹(𝐻𝑘+1 ), 

s.t. 𝑦𝑘
𝑇𝐻𝑘+1𝑦𝑘 = 𝑦𝑘

𝑇𝑠𝑘. 

This choice of norm promotes an ideal inverse Hessian with balanced eigenvalues. The trace term 

penalises excessively large eigenvalues, preventing aggressive step sizes in optimisation. 

Meanwhile, the log-determinant term discourages excessively small eigenvalues, thereby avoiding 

ill-conditioning and ensuring numerical stability. 

Let 𝐻𝑘+1 =  𝑑𝑖𝑎𝑔(𝐻𝑘+1
(1), . . . , 𝐻𝑘+1

(𝑛)) and 𝑦𝑘 = (𝑦𝑘
(1), . . . , 𝑦𝑘

(𝑛)), the objective function and 

the constraint can be written as: 

min (∑ 𝐻𝑘+1
(𝑖)𝑛

𝑖=1 ) −ln (∏ 𝐻𝑘+1
(𝑖)𝑛

𝑖=1 ), 

s.t. (∑ (𝑦𝑘
(𝑖))2𝐻𝑘+1

(𝑖)𝑛
𝑖=1 ) − 𝑦𝑘

𝑇𝑠𝑘 = 0. 

The Lagrangian is defined as: 

𝐿(𝜆, 𝜔) = 𝜔[(∑ (𝑦𝑘
(𝑖))2𝐻𝑘+1

(𝑖)𝑛
𝑖=1 ) − 𝑦𝑘

𝑇𝑠𝑘] + (∑ 𝐻𝑘+1
(𝑖)𝑛

𝑖=1 ) −ln (∏ 𝐻𝑘+1
(𝑖)𝑛

𝑖=1 ), 

where ω is the Lagrange multiplier. Taking the derivative and setting it to zero yields: 

𝜕𝐿

𝜕𝐻𝑘+1
(𝑖) = 1 −

1

𝐻𝑘+1
(𝑖) + 𝜔(𝑦𝑘

(𝑖))
2

= 0, 𝑖 = 0,1,2, . . . , 𝑛, 

that gives: 
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𝐻𝑘+1
(𝑖) =

1

1+𝜔(𝑦𝑘
(𝑖))

2 , 𝑖 = 1,2, . . . , 𝑛. 

Substituting this into the weak secant condition, we get an expression: 

𝐴(𝜔) = ∑ (
1

1+𝜔(𝑦𝑘
(𝑖))

2)
𝑛
𝑖=1 − 𝑦𝑘

𝑇𝑠𝑘. 

Note that A′(ω) < 0, A(ω) is monotonically decreasing for ω ∈ [0,∞). Thus, when 𝑦𝑘
𝑇𝑦𝑘 > 𝑦𝑘

𝑇𝑠𝑘, 

A(ω) = 0 has a unique positive solution. In order to speed up the computation of Hk, we avoid 

solving A(ω) = 0 directly, but approximate the value of ω by applying one step of the Newton-

Raphson method with the initial value ω0 = 0. Consequently, the resulting Lagrange multiplier for 

step k is approximately 

𝜔𝑘 ≈ 𝜔0 −
𝐴(𝜔)

𝐴′(𝜔)
=

𝑦𝑘
𝑇𝑦𝑘−𝑦𝑘

𝑇𝑠𝑘

∑ (𝑦𝑘
(𝑖))

4𝑛
𝑖=1

. 

For cases where  𝑦𝑘
𝑇𝑦𝑘 < 𝑦𝑘

𝑇𝑠𝑘, we will adopt the standard practice for most quasi-Newton 

methods of applying the Oren-Luenberger scaling (Luenberger, D.G., 1984). Combining both 

scenarios, we have the new updating formula for Hk + 1: 

𝐻𝑘+1 = {

diag (𝐻𝑘+1
(1)

, ⋯ , 𝐻𝑘+1
(𝑛)

), if 𝑦𝑘
𝑇𝑦𝑘 > 𝑦𝑘

𝑇𝑠𝑘,

𝑦𝑘
𝑇𝑠𝑘

𝑦𝑘
𝑇𝑦𝑘

𝐼, otherwise.
 

 

ALGORITHM IMPLEMENTATION 

To ensure an optimal step size and stable iterations, we employ a standard iterative method with 

backtracking line search in our general unconstrained optimisation 𝑚𝑖𝑛
𝑥 ∈𝑅𝑛

𝑓(𝑥) problem. Let the step 

length be 𝛼𝑘 and 𝛼𝑘 satisfies the Armijo condition (Armijo, 1966): 

𝑓(𝑥𝑘 + 𝛼𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝑐𝛼𝑔𝑘
𝑇𝑑𝑘 , 

where 0 < 𝑐 < 1. 

 

Algorithm 1: Backtracking Armijo Line Search 

1. Initialize 𝑐 ∈ (0,1), 𝜏 ∈ (0,1) and initial step length, α. 

2. Check if  𝑓(𝑥𝑘 + 𝛼𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝑐𝛼𝑔𝑘
𝑇𝑑𝑘, 

3. If satisfied, set 𝛼𝑘 = 𝛼 and update 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑑𝑘 . 
4. Otherwise, reduce 𝛼 via 𝛼𝑘+1 = 𝜏𝛼𝑘 and go to Step 2. 

 

 

Combining the proposed updating rule of 𝐻𝑘+1 and the Armijo line search, we have the novel 

enhanced spectral gradient method: 

 

Algorithm 2: Enhanced Spectral Gradient Method 

1. Initialize 𝑘 = 0, 𝑥0 ∈ ℜ, 𝐻0 = 𝐼, and tolerance 𝜖.  

2. Compute 𝑔0 = ∇𝑓(𝑥0) and 𝑑0 = −𝑔0. 
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3. If ‖𝑔𝑘‖ ≤ 𝜖, terminate; else compute 𝛼𝑘 via backtracking. 

4. Update 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘. 

5. Compute 𝑔𝑘+1 = ∇𝑓(𝑥𝑘+1). 
6. Update 𝐻𝑘+1 using Eq. (18). 

7. Compute 𝑑𝑘+1 = −𝐻𝑘+1𝑔𝑘+1. 
8. Increment 𝑘 and repeat from Step 3. 

 

 

NUMERICAL EXPERIMENTS AND COMPARISONS 

 

Here we report numerical experiments on an extensive 96 tester problems from the Constrained 

and Unconstrained Testing Environment (CUTE) dataset (Bongartz et al., 1995), as well as the 

Unconstrained Optimization Test Functions Collection by Andrei (Andrei, 2008).  Both 

collections of test functions are non-linear, user customisable variable sizes, from both synthetic 

and real-world problems.  

 

The benchmarking with these test functions is carried out via the evaluation of the profiling 

graphs in terms of: (1) computational time, (2) number of iterations, and (3) number of function 

evaluations. All experiments were conducted on a 10th Gen Intel Core i5 processor. 

 

Our benchmarking process is to compare our proposed Enhanced Spectral Gradient (ESG) 

method against seven state-of-the-art gradient-based optimisation technique that commonly 

implemented in scientific packages. The acronyms of the algorithms used are listed below: 

1. ESG  – Enhanced Spectral Gradient (proposed method) 

2. MDG   – Multiple Damping Gradient (Sim et al., 2019) 

3. CG-FR  – Conjugate Gradient (Fletcher-Reeves, 1960) 

4. CG-PRP  – Conjugate Gradient (Polak-Ribière-Polyak, 1969) 

5. CG-LS  – Conjugate Gradient (Liu-Storey, 1991) 

6. CG-DY  – Conjugate Gradient (Dai-Yuan, 1999) 

7. CG-HZ  – Conjugate Gradient (Hager-Zhang, 2006) 

8. SD   – Steepest Descent (Cauchy, 1847) 

The above algorithms are implemented in Python programming language and tested on a total 

of 7,680 test problems of various sizes. The specifications of the implementation details are 

outlined as follows: 

 

• Total test functions: 7,680. 

• Dimension of x:  Evaluated across a range from 10 to 10,000 dimensions. 

• Stopping criteria:  

o Solution is considered as converged when ‖𝑔𝑘‖ < 10−4. 

o Algorithm would stop when reaching a maximum iteration of 10,000. 

• Parameters for backtracking Armijo (BTA) condition: 𝑐 = 0.1, τ=0.5, initial step length 

α=1, and a maximum of 15 backtracking iterations per line search. 
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PERFORMANCE EVALUATION RESULTS 

The benchmark of ESG with the other optimisation algorithms are assessed using the standard 

performance profiling graphs popularised by Dolan and Moré (2002). The following show the 

profiling graphs on different performance metrics (iterations, function calls, and CPU time) across 

all methods.  

 
Figure 1: Profiling graph by number of iterations 

 

 

 
 

Figure 2: Profiling graph by number of function calls 
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Figure 3: Profiling graph by computation time. 

 

In Figure 1 to Figure 3, the horizontal axis is the performance ratio, τ, in log-scale. The 

performance ratio compares an algorithm’s performance on a specific problem to that of the best-

performing algorithm. The vertical axis shows the cumulative probability of the performance ratio, 

indicating the overall performance ranking of each individual algorithm.  A line with higher 

cumulative probability for large value of performance ratio indicates superior performance. The 

dark solid line in the figures is the Enhanced Spectral Gradient method, which clearly out-performs 

other algorithms for large performance ratio. 

 

It is worth noting, for small values of τ, that CG methods often exhibit improved convergence 

in specific test problems due to incorporation of the stringent line search strategy in these CG 

methods to achieve optimal convergence. This leads to the comparable performance of ESG with 

these CG methods for τ < 2.  

 

In comparison, the MDG method outperforms all CG methods in efficiency, as it integrates 

damping with the line search strategy (Sim et al., 2019). However, due to its use of an approximate 

Hessian inverse, the MDG method may demand more computational time than the ESG method 

when solving high-dimensional optimization problems.  

 

Unsurprisingly, for larger values of τ, τ > 5, the ESG method outperforms both the MDG 

method and other CG methods. This advantage stems from ESG's more direct inverse Hessian 

approximation, whereas MDG might incurs higher computational costs due to matrix inversion in 

its update formula. Consequently, ESG could be a replacement candidate algorithm for an efficient 

and practical alternative for large-scale optimization, especially when a low-cost backtracking line 

search is the preferred approach. 

 

 

CONCLUSION 

 

This study presents the Enhanced Spectral Gradient (ESG) method, an improved diagonal spectral 

gradient approach designed for large-scale unconstrained optimization. The ESG method employs 

a direct diagonal approximation of the inverse Hessian matrix, derived by minimising the log-
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determinant norm of the Hessian matrix. To assess its effectiveness, we conducted numerical 

experiments comparing ESG with the MDG method and various conjugate gradient (CG) methods. 

The profiling graph results demonstrate that ESG consistently outperforms other gradient-based 

methods in overall efficiency.  

 

The ESG method offers particular practical advantages as it maintains compatibility with 

standard backtracking line search techniques. Its straightforward implementation makes it an 

attractive option for integration into existing unconstrained optimisation libraries. The transition 

to ESG requires minimal modifications, simply replacing the gradient update formula while 

preserving current stopping criteria and line search procedures. This minor adjustment can 

potentially yield significant performance improvements, making ESG an efficient upgrade for 

current optimisation frameworks. 
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