
 

 

 

 
Menemui Matematik (Discovering Mathematics) 47(2) (2025) 1-17 

 

 

 

Menemui Matematik  
(Discovering Mathematics) 

 

journal homepage: https://persama.org.my/dismath/home  

 

Statistical Power of Model Selection Methods in Extreme Value 

Modelling 
 

Sunday Samuel Bako1,2, Norhaslinda Ali1,3*and Jayanthi Arasan1,3 

1Institute for Mathematical Research (INSPEM), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor 
2Department of Mathematical Sciences, Kaduna State University, 800241 Kaduna, Nigeria 

3Department of Mathematics and Statistics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor 

 

 *norhaslinda@upm.edu.my 

*Corresponding author 

 

Received:13 Jun 2025   

Accepted:13 August 2025  

 

 

ABSTRACT 
The objective of model selection in extreme value modelling is to identifying the probability 

distribution that best fits an observed sample. Statistical criteria are commonly used for this 

purpose; however, they often have limitations, particularly in distinguishing between 

distributions with similar tail behaviour, especially when the sample size is small and the 

distributions are asymmetric. In this study, we demonstrate, using trimming and subsampling 

techniques, the ability of model selection methods to reject a candidate distribution when it 

differs from the true underlying distribution. Four model selection methods are examined: 

Akaike Information Criterion (AIC), corrected Akaike Information Criterion (AICc), Bayesian 

Information Criterion (BIC), and the Anderson Darling test. Results from the power analysis 

show that BIC is the most effective method for identifying the Lognormal and Gumbel 

distributions, while AIC performs best for the Pearson Type III (P3) distribution. In terms of 

the comprehensive power, AIC demonstrates the highest power, followed by AICc, BIC, and 

the Anderson Darling test. These findings demonstrate that the use of trimming, subsampling, 

and appropriate model selection methods is a viable technique for distinguishing among candidate 

distributions and evaluating the power of model selection criteria. This approach provides a 

practical framework for more reliable model selection in extreme value analysis. 

 
Keywords: Extreme value, Model selection, Trimming, Subsampling  

 

 

INTRODUCTION 

 

Extreme value modeling is an important tool for understanding and predicting rare events 

across various fields, including environmental sciences and finance (see, for example, 

Kousar et al., 2020; Chan et al., 2022). In recent times, the increasing rate of extreme 

events such as rainfall has posed a significant threat due to global warming scenarios, leading 

to constant flooding caused by heavy rainfall, which results in huge losses of human life and 

property globally. This has led to debates in the public domain about the apparent causes of 

increasing extreme events. Researchers have queried the varying rainfall intensity statistics 

under greenhouse conditions. The theory of extreme values and their distributional models 

are often employed to accurately represent the rate of these extreme events. 
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In extreme value analysis, selecting an appropriate probability distribution is fundamental to 

accurately represent the behavior of extreme events. Commonly used distributions include the 

Generalized Extreme Value (GEV), Lognormal, Gumbel, and Pearson Type III (P3) 

distributions (Cunanne 1989). Model se- lection criteria such as the Akaike Information 

Criterion (AIC), corrected AIC (AICc), Bayesian Information Criterion (BIC), and the 

Anderson-Darling (AD) test are frequently employed to identify the best-fitting distribution for 

a given dataset. Laio et al. (2009) found that AIC and BIC are similarly effective for 

selecting extreme value distributions and introduced an Anderson-Darling based criterion 

for model selection. They recommend using either AIC or BIC alongside the AD test; if 

both agree, the selected model is reliable. If not, the discrepancy reflects equifinality. 

Building on this, Di Baldassarre et al. (2009) evaluated AIC, BIC, and the AD test for 

quantile estimation, noting similar overall performance, with the AD test performing better 

as L-skewness increases. These studies highlight the potential of these criteria to reduce 

un- certainty in extreme value modeling. 

Despite the widespread use of these model selection methods, they often face challenges in 

distinguishing between distributions with similar tail behaviors, especially when dealing with 

small sample sizes or asymmetric distributions. This limitation can lead to the selection of 

suboptimal models, thereby affecting the reliability of predictions and subsequent decisions 

based on the analysis (Beirlant & Bladt, 2025; Brewer et al., 2016).While some studies 

have examined the statistical power of model selection methods, particularly their ability to 

correctly reject incorrect models in favor of the true underlying distribution (Zeng et al., 2015; 

Reghenzani et al., 2019), the potential of integrating data preprocessing techniques like 

trimming and subsampling to improve their discriminatory power remain largely unexplored. 

Resampling methods like the bootstrap (Efron, 1979) and subsampling (Politis et al., 

1999) are widely recognized, data-driven simulation techniques employed for statistical 

inference. Subsampling generate multiple datasets from the original sample, typically of fixed 

but smaller size. Unlike the bootstrap, subsampling selects observations without replacement. 

A study by Pol i t is  (1994) and Chernick (2011) has demonstrated that subsampling can 

produce consistent estimators. According to Politis (1994), its key advantage lies in 

generating resamples that closely reflect the underlying distribution, making it a valuable tool 

for distribution selection. Trimming and censoring are used in extreme value analysis to 

reduce the influence of smaller observations on the upper tail without relying on unrealistic 

assumptions about the data generating process, which is critical in modeling extreme events 

(Bhattarai, 2004). 

This study aims to evaluate the statistical power of four widely used model selection 

methods: AIC, AICc, BIC, and the Anderson-Darling test, in the context of extreme value 

modeling. By employing trimming and subsampling techniques, we assess the ability of these 

criteria to correctly identify the true underlying distribution and their ability to correctly reject 

incorrect models in favor of the true underlying distribution across different scenarios and 

sample sizes. The primary objective of this paper is to provide a comprehensive analysis of 

the effectiveness of model selection methods in extreme value modeling, with a focus on 

their statistical power. By exploring the impact of trimming and subsampling, we aim to 

offer practical insights and recommendations for researchers and practitioners seeking to 

enhance model selection accuracy in the analysis of extreme events. 
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METHODOLOGY 

 

Selection of Candidate Probability Distributions 

The reports by Cunnane (1989) summarize probability distributions commonly used in 

extreme value analysis worldwide. Both peak over threshold and annual maximum data 

methods are applicable, but the former is less common due to challenges in threshold selection 

and method complexity (Pan and Rahman, 2021). While annual maximum stream flow data 

can provide reliable estimates, annual maximum rainfall observations are often preferred for 

their spatial and temporal availability in modeling extreme events (Flammini et al., 2022). 

This study selects seven widely recommended probability models for analysis of extreme 

values: Gumbel, lognormal, Frechet, Pearson type III (P3), generalized extreme value, 

normal, and log-Pearson type III (Cunnane, 1989).This study employs the maximum 

likelihood estimation (MLE) method to estimate the parameters of the distribution. A key 

advantage of adopting the MLE approach is its asymptotic efficiency. Moreover, standard 

and widely applicable approximations are available for a variety of important sampling 

distributions (Coles, 2001). The following section provides a brief overview of the maximum 

likelihood method. 

Selection of Candidate Parameter Estimation Methods 

The maximum likelihood estimation (MLE) method estimates distribution parameters by 

maximizing the log-likelihood function based on a set of independent and identically 

distributed observations. Given a probability density functionf(xᵢ;  θ), where  θ denotes the 

vector of unknown parameters, the log-likelihood is defined as 𝑙(𝜃)  =  ∑ᵢ₌₁ⁿ 𝑙𝑜𝑔 𝑓(𝑥ᵢ;  𝜃). 
The parameter estimates are those that maximize this function, typically using numerical 

optimization techniques. Although computationally intensive, particularly for models with 

multiple parameters, MLE generally provides estimators with desirable statistical properties 

(Coles, 2001; Gado, 2016; Kobierska et al., 2018; Haddad and Rahman, 2011). 

Model Selection Methods 

To evaluate the appropriateness of different probability distributions in the context of 

subsampling and trimming, this study considers the Akaike information criterion (AIC), 

the corrected Akaike information criterion (AICc), the Bayesian information criterion 

(BIC), and the Anderson-Darling (AD) goodness-of-fit test. Additionally, the Kullback-

Leibler information measures the difference between the true model 𝑓(𝑦) and a model 

that approximates it more closely,𝐾ⱼ =  𝑔ⱼ(𝑦,  𝜃 ̂), is utilized by the AIC (Akaike, 1998). 

The AIC is expressed as follows: 

−2 𝑙𝑛[𝐿(𝐷 | 𝜃 ̂)]  +  2𝑚                          (1) 

where 𝑚  represents the total count of parameters derived for estimation for the  𝑗𝑡ℎ underlying 

model, and  𝐿(𝐷 |  𝜃 ̂)  =  ∏ᵢ₌₁ⁿ 𝑔ⱼ(𝑦ᵢ, 𝜃 ̂)  is the likelihood function (Linhart and Zucchini, 

1986). For model selection, the maxima of the log-likelihood function are used, with a larger 

penalty applied on models that have more estimated parameters 𝑚 . In practice, after 

calculating the 𝐴𝐼𝐶ⱼ, the best-fitting model is identified as the one with the least  AIC. 

A second-order version of AIC, known as AICc, is defined as 

−2 𝑙𝑛[𝐿(𝐷|𝜃 ̂)]  +  2𝑚 (
𝑛

𝑛
−𝑚− 1)                           (2) 
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with 𝑛 representing the sample size. The distinction between AIC and AICc lies in the 

fact that AICc applies a more substantial penalty for the number of parameters estimated 

m compared to AIC (Calenda et al., 2009; Burnham and Anderson, 2004). The BIC is like 

the AIC but is based on a Bayesian approach. The concept of the BIC was introduced by 

Schwarz (1978) and its formula is expressed as 

−2 𝑙𝑛[𝐿(𝐷 | 𝜃 ̂)]  +  𝑚 𝑙𝑛(𝑛).                           (3) 

The BIC applies a heavier penalty for the number of estimated parameters m that is greater 

than the AIC. The Anderson-Darling test evaluates an observed cumulative distribution 

function (CDF) against a theoretical CDF, placing more emphasis on the tails of the 

distribution. The test statistic for the AD test can be represented as follows: 

−𝑛 − (1/𝑛) ∑ᵢ₌₁ⁿ (2𝑖 −  1) [𝑙𝑛 𝐹(𝑦ᵢ)  +  𝑙𝑛(1 −  𝐹(𝑦_(𝑛 − 𝑖 + 1)))].        (4) 

By emphasizing the tails, the Anderson-Darling test measures model fit through a weighted 

sum of squared differences between sample and theoretical distributions. 

 

TEST PROCEDURE 

According to Cunnane (1989), the Gumbel, lognormal and Pearson Type III (P3) 

distributions, which are widely used two-parameter and three-parameter models in extreme 

value analysis, will serve as the parent distributions for the simulation experiment. Multiple 

subsamples will be drawn from these distributions without replacement, and each subsample’s 

length is based on the size of the initial sample. Trimming improves the representation of maxima 

in the data (Wang, 1996), and the trimming proportions are carefully selected to retain a 

sufficient number of observations for analysis. As noted by Politis et al. (1999), subsampling 

requires that each subsample be smaller than the original dataset. The AIC, AICc, and BIC 

model selection techniques are applied to both trimmed and untrimmed subsamples, selecting 

the distribution that yields the smallest value. The Anderson-Darling (AD) test is also used 

to evaluate the goodness of fit. This procedure is repeated for various subsample sizes, and the 

selection frequency of each candidate distribution is recorded. The procedure for the 

power test is structured as follows: 

 

1. Let 𝑓(𝑦)  =  𝑔ⱼ ∗ (𝑦, 𝜃 ∗) represent the parent distribution with specified 

parameters. Generate a substantial number of subsamples, each of size𝑛, from the 

parent distribution. 

2. A subsamples of size 𝑏 , where𝑏 <  𝑛 , is chosen without replacement from the 

subsamples generated in step 1. The subsample size 𝑏 is determined by the size n of 

the original sample. 

3. Trimming is applied to each subsamples of size 𝑏  that is chosen. The trimming 

proportions will be systematically selected so as not to take away too many 

observations, thereby reducing the number of samples available for analysis. 

4. Fit the candidate distributions, 𝑗 =  1, 2, 3, . . , 7, of the trimmed and untrimmed (0%) 

samples in step 3 to the model selection methods, and compute their values, 𝐴𝐼𝐶ⱼ,
𝐴𝐼𝐶𝑐ⱼ, 𝐵𝐼𝐶ⱼ and 𝐴𝐷ⱼ,  for each of the candidate distributions. 
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5. The preferred model 𝐾ᵢ ∗ is the one with the smallest AIC score, denoted as 𝐴𝐼𝐶ᵢ ∗
 =  𝐴𝐼𝐶_𝑚𝑖𝑛. If   𝑖 ∗  equals 𝑗 ∗, then the AIC is chosen because it accurately 

identifies the actual underlying distribution. Similar procedure is carried out for AICc 

and BIC. In the AD test, if the non-exceedance probability 𝑃(𝐴₂) of the test statistic 

𝐴² exceeds𝑘, where𝑘 =  1 −  𝛼, the candidate distribution is rejected. 

6. The testing procedure in steps 1−5 is repeated for different subsample sizes b, and the 

number of times each selection method successfully identifies the optimal model is 

recorded. 

The acceptance proportion for each parent distribution is defined as follows: 

 𝑃𝑀𝑆𝐻𝑏𝑖 = 𝑀𝑆𝐻(𝑏𝑖,𝑗) ⁄ 𝑏                           (5) 

where 𝑀  is the method used for model selection, 𝑆  is the function used as parent 

distribution, 𝐻 is the candidate distribution, 𝑏 is the total subsample size used, 𝑏ᵢ is the 

𝑖𝑡ℎ  sample of the subsample 𝑏 , 𝑗  is the trimming proportion, and 𝑀𝑆𝐻₍𝑏ᵢ, ⱼ₎  is the 

accepting times for a specific candidate distribution. 

The samples with length 𝑛 with subsample size 𝑏 were generated from the Lognormal, 

Gumbel, and P3 distributions, and the Normal, Gumbel, EV2, GEV, P3, LP3, and 

Lognormal distribution are used as candidate distributions. After that, we estimate the 

parameters of the samples for all the candidate distribution using the maximum likelihood 

estimation method for both the trimmed and untrimmed samples, and test for the most suitable 

models amongst the candidate distributions using the model selection methods; AIC, AICc, 

BIC, and the AD tests. The length of the data and subsample size was varied. The subsample 

size depends on the length of the data. The significance level of the AIC, AICc, BIC, and AD 

test were all set at 5% level of significance and the acceptance proportion of each candidate 

distributions for both the trimmed and untrimmed samples are computed. 

In model selection, the candidate distribution is often arbitrarily chosen from a set of 

commonly used probability distribution functions (PDFs). Therefore, the evaluation of a model 

selection method should consider not only the accuracy of identifying the correct distribution when 

the sample is drawn from the true parent distribution, but also its ability to reject incorrect 

hypotheses when the assumed PDF differs from the actual one. An ideal model selection method 

should maintain high accuracy when the data are generated from the assumed PDF while also 

minimizing the rate of false acceptance when the data originate from other distributions. To 

address this, a formula is proposed to describe the power of a model selection method for a specific 

PDF: 

 

𝑃𝑜𝑤𝑒𝑟(𝑀𝑆𝐻₍𝑏ᵢ, ⱼ₎)  =  𝑃𝑀𝑆𝐻₍𝑏ᵢ, ₛ₌ₕ₎ × [∑₍ₛ ≠ ₕ₎ (1 −  𝑃𝑀𝑆𝐻₍𝑏ᵢ, ⱼ₎)] / 4         (6) 

Considering the powers for different probability density functions, the comprehensive 

power for each model selection method can be described as follows: 

𝑃𝑜𝑤𝑒𝑟(𝑀)  =  [∑ₛ 𝑃𝑜𝑤𝑒𝑟(𝑀𝑆)] / 4.                          (7) 

 

The terms in Equations (6) and (7) are as defined in Equation (5). 
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RESULTS AND DISCUSSION 

 

Figure 1 to Figure 12 gives the acceptance proportion of the four model selection methods 

for samples generated from the Lognormal, Gumbel, and P3 parent distributions for trimmed 

and untrimmed samples for varying sample and subsample size. 

 

 
 

Figure 1: The acceptance proportions of the model selection methods for a subsample size of 20, 
based on untrimmed samples generated from the lognormal parent distribution. 
 
 

 
 

Figure 2: The acceptance proportions of the model selection methods for a subsample size of 25, 
based on untrimmed samples generated from the lognormal parent distribution. 
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Figures 1 and 2 displays the acceptance proportions of the model selection methods 

for the candidate distributions when the true parent distribution is Lognormal, based on 

untrimmed samples with varying sample and subsample sizes. The model selection 

methods correctly identify the lognormal distribution as the underlying distribution in 

approximately 0.40 to 0.84 of times. Among the methods, the Bayesian Information 

Criterion (BIC) yields the best performance in recognizing the true distribution, followed 

by AICc, AIC, and the Anderson-Darling (AD) test. Although AIC and AICc exhibit 

similar selection tendencies, AICc generally shows superior performance relative to AIC. 

The AD test successfully chooses the lognormal distribution in approximately 0.40 to 

0.55 of the cases. 

An analysis of Figures 3 and 4 reveals that, for untrimmed samples, the model 

selection methods sometimes struggle to differentiate the Gumbel distribution from the 

lognormal distribution. As shown in Figure 3, only the BIC consistently selects the 

underlying distribution, with an acceptance proportion of approximately 0.40. However, as 

the sample size increases, the Gumbel distribution is identified as the parent distribution 

by each model selection methods in approximately 0.33 to 0.50 of times across the entire 

set of subsample sizes. Among the methods, the BIC demonstrate the highest effectiveness 

at recognizing the underlying distribution, followed by the AICc, AIC, and Anderson-

Darling (AD) test, in that order. 
 
 

 
 

Figure 3: The acceptance proportions of the model selection methods for a subsample size of 20, 
based on untrimmed samples generated from the Gumbel parent distribution. 
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Figure 4: The acceptance proportions of the model selection methods for a subsample size of 25, 
based on untrimmed samples generated from the Gumbel parent distribution. 
 

When the Pearson Type III (P3) distribution is used as the parent distribution, the model 

selection methods tend to favor selecting a two-parameter distribution over the true three-

parameter parent distribution across all sample and subsample sizes for the untrimmed data 

(see Figures 5 and 6). This tendency may reflect an implicit preference for model parsimony 

which favours the simplest model that sufficiently models the inherent data generation. 

 

 
 

Figure 5: The acceptance proportions of the model selection methods for a subsample size of  
20, based on untrimmed samples generated from the P3 parent distribution. 
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Figure 6: The acceptance proportion of model selection methods for a subsample size of  
25, based on untrimmed samples generated from the P3 parent distribution. 
 
 

 
 

Figure 7: The acceptance proportions of the model selection methods for a sub- sample size  
of 20 with a 10% trimming proportion, based on samples generated from the Lognormal 
parent distribution. 
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As shown in Figure 7, when the lognormal distribution is the parent distribution for 

trimmed samples, the findings reveal that either the lognormal or the EV2 distribution is 

selected as the underlying distribution at a 10% trimming level. The lognormal distribution 

is preferred in approximately 0.30-0.48 of cases, while the EV2 distribution is chosen in about 

0.28-0.45 of cases. However, increasing the trimming level to 15% for a sample size of 40, 

all model selection methods identify the EV2 distribution as the underlying distribution in 

approximately 0.57-0.67 of cases (see Figure 8). 

The tendency of the four model selection criteria to identify the EV2, which is a three-

parameter distribution as the parent distribution can be explained to be the influence of lower 

observed values favoring the selection of three-parameter models. 

When the Gumbel distribution is used as the parent distribution and trimming is 

introduced, all model selection criteria consistently identify the P3 distribution as the best-

fitting model (see Figure 9). This suggests a chance for the selection techniques to favor a 

three-parameter distribution over the actual parent distribution having two-parameter. 

However, as one of the objectives of extreme value analysis is the accurate estimation of 

quantiles, this outcome may not invariably pose a limitation. In certain situations, a model 

that fits the data well might prove not be optimal for quantile estimation. This shifts the focus 

from identifying the true parent distribution to selecting the most operationally effective 

model for quantile estimation. 
 

 
 

Figure 8: The acceptance proportions of the model selection methods for n = 40, b = 30, 
and a 15% TP, based on samples generated from the LN parent distribution. 
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Figure 9: The acceptance proportions of the model selection methods for a sub- sample size 
of 20 with a 10% trimming proportion, based on samples generated from the Gumbel parent 
distribution. 
 

 
 

Figure 10: The acceptance proportions of the model selection methods for a sub- sample size 
of 20 with a 10% trimming proportion, based on samples generated from the P3 parent 
distribution. 
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Figure 11: The acceptance proportions of the model selection methods for a sub- sample size 
of 25 with a 15% trimming proportion, based on samples generated from the P3 parent 
distribution. 
 

The ability of the model selection methods to correctly identify the true underlying 

distribution following trimming can be attributed to the removal of the undesirable influence 

of lower observations on the upper tail of the distribution, particularly in the case of three-

parameter distributions. 

 
 

Figure 12: The acceptance proportions of the model selection methods for n = 40, b = 30, 

and a 15% TP, based on samples generated from the P3 parent distribution. 
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Figure 13: The power of the model selection criteria for the two-parameter Lognormal 
and Gumbel parent distributions. 
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Figure 14: The power of the model selection criteria for the three-parameter Pearson Type 
III (P3) parent distribution. 
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Figure 14 displays the statistical power of the AIC, AICc, BIC, and Anderson- Darling 

(AD) test when the parent distribution is the Pearson Type III (P3) distribution. The 

power increases with both the length of the series and the subsample size for each test 

method, with a trimming proportion of 15% resulting in higher power. When the subsample 

size increases to 30, the AIC and AICc methods exhibit identical power, followed by the 

AD test and then the BIC (see Figure 15). 
 

 
Figure 15: The power of model selection criteria for n = 40, b = 30, and a 15% TP, based 
on samples generated from the P3 parent distribution. 
 

 
Figure 16: The comprehensive power of the model selection criteria for the Lognormal, 
Gumbel, and P3 parent distributions 
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highest overall power, followed by AICc, BIC, and the Anderson-Darling (AD) test. The 

differences in power among AIC, AICc, and BIC are relatively small. 
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CONCLUSION 

 

An intensive numerical analysis was conducted to evaluate the performance of four model 

selection criteria: the Akaike Information Criterion (AIC), the corrected Akaike Information 

Criterion (AICc), the Bayesian Information Criterion (BIC), and the Anderson-Darling 

(AD) test, in the presence of subsampling and trimming. The parent distributions 

considered were the Lognormal, Gumbel, and Pearson Type III (P3) distributions. Based 

on the comparison of the model selection methods, several conclusions can be drawn: No single 

model selection method consistently outperforms the others across all cases. The model selection 

methods supported by subsampling successfully identify the true underlying distribution for 

untrimmed samples when the distribution is two-parameter. However, this success is not as 

evident when the parent distribution is three-parameter. When trimming is applied, all 

model selection methods successfully identify the true parent distribution even for three-

parameter distributions. Overall, the combination of trimming and subsampling, together 

with model selection method, produces favourable results for extreme value analysis. The 

most powerful model selection methods are BIC for the Lognormal and Gumbel 

distribution, and AIC for the P3 distribution. Regarding comprehensive power, the AIC 

exhibits the best overall performance, followed by AICc, BIC, and the Anderson-Darling 

test. This study highlights the viability of trimming and subsampling in strengthening the power 

of model selection, which plays a central role in extreme value modelling especially when sample 

sizes are limited and distributions are asymmetric. 
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