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ABSTRACT 
Historically, the dominant performance metric used in control charts within the statistical process 

control area has been average run length (ARL). However, because of the skewness of the distribution 

of run length, relying only on ARL presents difficulties. This study examines the multivariate coefficient 

of variation (MCV) chart’s performance with the alternative indicator of its performance being the 

median run length (MRL). The main problem this study attempts to solve is how the distribution of run 

length is skewed, which makes ARL unreliable when used as the only performance metric. A severely 

skewed distribution may cause the ARL to misrepresent the control chart's actual performance, which 

might result in misunderstandings and ineffective process monitoring. This study's goal is to determine 

if, in light of ARL's drawbacks, the MRL offers a more accurate and trustworthy way to gauge the MCV 

chart’s performance. The method does this by calculating the percentiles or percentage points for the 

distribution of run length for the MCV chart through a series of numerical simulations. This approach 

enables a detailed analysis of the distribution's behaviour under varying conditions of coefficient of 

variation shifts. The primary findings indicate that when the coefficient of variation shift increases, the 

skewness decreases for the distribution of run length. This pattern indicates that because the MRL is 

less affected by the skewness compared to the ARL, it offers a more stable and reliable performance 

measure. Moreover, a deeper comprehension of the MCV chart's functionality and performance may be 

gained by analyzing the percentiles for the distribution of run length. The study concludes that when 

compared to the ARL, the MRL can be a more accurate and significant performance metric for the MCV 

chart. The MRL and percentiles for the distribution of run length make it easier to assess the chart's 

performance in a more thorough manner. These findings hold significant implications for improving the 

reliability and applicability of MCV charts across various industrial and research contexts. By adopting 

MRL as an alternative performance measure, practitioners can achieve a more accurate and robust 

assessment of process control in multivariate settings, leading to better decision-making and enhanced 

process quality. 

 
Keywords: average run length, multivariate coefficient of variation chart, percentile of the run 

length distribution  

 

 

 

 

 

 

https://persama.org.my/dismath/home


 

M. H. Lee et al.                                                                                Menemui Matematik (Discovering Mathematics) 47(1) (2025) 81-90 
 

82 

 

INTRODUCTION 

 

The average run length or ARL has been super important for designing control charts. But what 

does that mean? It is the average number of samples plotted on a control chart before any signals 

detected by the control chart (Lee and Khoo, 2006). On the other hand, using the ARL might be 

challenging at times. In fact, when there is a bigger shift in the process, the run length distribution 

might move from being abnormally skewed to practically symmetric. Many researchers have taken 

a good look at run length distributions in control charts. For instance, Teoh et al. (2017) pointed 

out that using variable sample sizes is important for finding moderate shifts in mean values. They 

have done a lot of studies focusing on run length criteria. Since the shape of these run length 

distributions changes depending on how big the mean shifts are, just looking at the ARL can get 

confusing. Instead, using percentiles from the run length distribution might make more sense. Teoh 

et al. (2016) also explored Shewhart (𝑋̅) charts where process parameters were estimated. They 

found that when the process parameters are not known, relying on ARL is not always helpful. In 

those cases, the shape of the distribution for run length changes according to the process shift. 

Moreover, Lim et al. (2019) showed that when shifts are small, we see a right-skewed run length 

distribution for the variable sample size coefficient of variation chart; but as shifts get bigger, it 

can become almost symmetric. Yeong et al. (2021) evaluated the synthetic coefficient of variation 

chart based on different percentiles of the run length distribution.  

 

Basically, calculating median run length (MRL) is finding the halfway point (the 50th 

percentile) in terms of run lengths — and it provides a much better measure for analyzing control 

charts since these distributions can be skewed. The MRL has been suggested as an alternative 

performance criterion to design control charts, see Hu et al. (2020), Chong et al. (2022), Qiao et 

al. (2022), Hu et al. (2023), Kumar and Sonam (2023) and Lee et al. (2023). 

 

For monitoring multivariate data of coefficient of variation (CV), the control chart is called 

the multivariate coefficient of variation (MCV) chart, introduced by Yeong et al. (2016). Many 

researchers have looked into the MCV charts and their effectiveness. Now here comes this study's 

big goal: we are diving into how to use the percentage points for the distribution of run length — 

especially MRL — to better evaluate how well the MCV chart performs.  

 

The gap in current research is notable. A lot of research still depends heavily on ARL as their 

main performance measure despite its drawbacks. The skewness in the run length distribution 

makes ARL an unreliable metric in certain conditions, see Hu et al. (2020), Chong et al. (2022), 

Qiao et al. (2022), Hu et al. (2023), Kumar and Sonam (2023) and Lee et al. (2023).  

 

This research highlights why MRL is more stable compared to ARL for the MCV chart and 

how it gives us more meaningful insight since it is not overly influenced by skewness. Note that 

the control charts for monitoring MCV in the literature review such as Ayyoub et al. (2020), 

Ayyoub et al. (2021), Adegoke et al. (2022), Ayyoub et al. (2022), Chew et al. (2022), Haq and 

Michael (2022), Ng et al. (2022), Chew et al. (2023) and Hu et al. (2023) were not based on MRL. 

 

This paper’s aim is straightforward: MRL offers better performance evaluations for MCV 

charts which are essential for monitoring processes effectively. The outline is given as: 

(a) We will check out how skewness plays into the MCV chart's run length distribution. 

(b) Next up: compare performance based on MRL versus ARL. 

(c) We will also dive deep into what happens with the MCV chart by looking closely at its 

percentage points (percentiles). 

(d) Lastly, we will show some practical uses of MCV charts using MRL through examples. 
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By hitting these targets, we hope to confirm that MRL gives us something truly valuable and 

reliable for evaluating MCV charts. This way, we are boosting accuracy and effectiveness when 

keeping an eye on processes within multivariate environments. 

 

Here is how this paper flows: Section 2 shares about MCV chart and we will find formulas 

for calculating the percentage points for the distribution of run length. In Section 3, we discuss 

how well the MCV chart does — including an example showcasing its application based on MRL. 

Finally, in Section 4, we will conclude this research. 

 

 

REVIEW OF MCV CHART 

 

Let us consider a random sample of size 𝑛  with number of quality characteristics of p, then 

𝐗𝑖~𝑁𝑝(𝛍, 𝚺) for 𝑖 = 1,2, … , 𝑛. Here, 𝛍 denotes the process mean vector and 𝚺 denotes the process 

covariance, where 𝐗𝑖
𝑇 = (𝑋𝑖1, 𝑋𝑖2, …, 𝑋𝑖𝑝). Consequently, the MCV is defined as 𝛾 = √𝛍𝑇𝚺−1𝛍 

(Voinov and Nikulin, 1996). 

 

Let 𝐗̅ is normally distributed with mean vector of 𝛍 and the covariance matrix of , whereas 

S follows a Wishart distribution with degrees of freedom is given as (n – 1) and covariance matrix 

is given as /(n – 1). To compute the sample MCV (denoted as 𝛾), 𝛍 is estimated from the sample 

mean vector 𝐗̅ = ∑ 𝐗𝑖 𝑛⁄𝑛
𝑖=1  and 𝚺  is estimated from the sample covariance matrix 𝐒 =

∑ (𝐗𝑖 − 𝐗̅)(𝐗𝑖 − 𝐗̅)𝑇 (𝑛 − 1)⁄𝑛
𝑖=1 . Consequently, according to Yeong et al. (2016), 𝛾 is computed 

as 

 

                                                                    𝛾 = √𝐗̅𝑇𝐒−1𝐗̅.            (1) 

 

Let 𝑝 be the number of quality characteristic, then the cumulative distribution function of the 𝛾 is 

calculated as 

 

                                            𝐹𝛾̂(𝑥|𝑛, 𝑝, 𝛿) = 1 − 𝐹𝐹 (
𝑛(𝑛−𝑝)

(𝑛−1)𝑝𝑥2 |𝑝, 𝑛 − 𝑝, 𝛿),          (2) 

 

where 𝐹𝐹(∙ |𝑝, 𝑛 − 𝑝, 𝛿)  is the non-central 𝐹 distribution, where 𝛿  denotes the non-centrality 

parameter, calculated as 𝛿 = 𝑛𝛍𝑇𝚺−1𝛍 = 𝑛 𝛾2⁄  with the degrees of freedom are 𝑝 and (𝑛 − 𝑝). 

The inverse of the cumulative distribution function of 𝛾 is computed as  

 

                                        𝐹𝛾̂
−1(𝑥|𝑛, 𝑝, 𝛿) = √

𝑛(𝑛−𝑝)

(𝑛−1)𝑝
[

1

𝐹𝐹
−1(1 − 𝑥|𝑝, 𝑛 − 𝑝, 𝛿)

],         (3) 

 

where 𝐹𝐹
−1(∙ |𝑝, 𝑛 − 𝑝, 𝛿) is the inverse of the cumulative distribution function of the non-central 

𝐹  distribution with non-centrality parameter is calculated as 𝛿 = 𝑛 𝛾2⁄ , where the degrees of 

freedom are 𝑝 and (𝑛 − 𝑝). 

 

For the MCV chart, let 𝛼0 represent the likelihood of Type I error and 𝛿0 = 𝑛 𝛾0
2⁄ , where 𝛾0

2 

is the known in-control MCV. Two one-sided charts – one labeled the upward MCV chart, while 

the other one is the downward MCV chart – are examined in this study. According to Yeong et al. 

(2016), ARL0 = 1 𝛼0⁄  for both upward and downward MCV charts, where ARL0 is the in-control 

average run length. 

 



 

M. H. Lee et al.                                                                                Menemui Matematik (Discovering Mathematics) 47(1) (2025) 81-90 
 

84 

 

Due to a decrease in 𝛾, the process is out-of-control when 𝛾 < LCL, then the lower control 

limit LCL is calculated as 

 

                                                                     LCL = 𝐹𝛾̂
−1(𝛼0|𝑛, 𝑝, 𝛿0)             (4) 

 

for the downward MCV chart. Due to an increase in 𝛾, the process is out-of-control when 𝛾 > 

UCL, then the upper control limit UCL is calculated as 

 

                                                          UCL = 𝐹𝛾̂
−1(1 − 𝛼0|𝑛, 𝑝, 𝛿0)           (5) 

 

for the upward MCV chart. Here, 𝛿0 = 𝑛 𝛾0
2⁄ . Let ARL1 be the out-of-control average run length, 

then ARL1 = 1/𝛽, where 𝛽 is the probability in detecting a process shift with the size of 𝜏 = 𝛾1 𝛾0⁄ , 

where 𝛾1 is the out-of-control MCV. Here,  

 

                                                                𝛽 = 𝐹𝛾̂(LCL|𝑛, 𝑝, 𝛿1)           (6) 

 

for the downward MCV chart, whereas 

 

                                                          𝛽 = 1 − 𝐹𝛾̂(UCL|𝑛, 𝑝, 𝛿1)           (7) 

    

for the downward MCV chart, where 𝛿1 = 𝑛 (𝜏𝛾0)2⁄ . Note that 0 <  < 1 (i.e. 𝛾1 < 𝛾0) for the 

downward MCV chart in detecting a decreasing multivariate CV; while  > 1 (i.e. 𝛾1 > 𝛾0) for the 

upward MCV chart in detecting an increasing multivariate CV.  

 

 

PERCENTAGE POINTS OFR DISTRIBUTION OF RUN LENGTH 

 

As the number of plotted samples until the first out-of-control signal is triggered, the run length 

(RL) of the MCV chart is determined. The ARL and MRL, respectively, are the average and 

median values of the RL. The RL's probability distribution function 

 

                                                          Pr(RL = 𝑙) = 𝛽𝑙−1(1 − 𝛽)           (8) 

  

is provided by Brook and Evans (1972), where 𝑙 ∈ {1, 2, 3, … } and the cumulative distribution 

function of RL is calculated as 

 

                                                                Pr(RL ≤ 𝑙) = 1 − 𝛽𝑙,           (9) 

  

then the 100𝜌 percentage point of the RL distribution can be determined as 𝑚 value such that 

 

                                               Pr(RL ≤ 𝑚 − 1) ≤ 𝜌 and Pr(RL ≤ 𝑚) > 𝜌                   (10) 

 

where 0 <  < 1. By setting  = 0.5 in Eq. (10), we can observe that m = MRL, where calculating 

the 50th percentile for the distribution of RL is giving the value of MRL.  
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RUN LENGTH PERFORMANCE FOR THE MULTIVARIATE COEFFICIENT OF 

VARIATION CHART 

 

Figures 1-4 and 5-8 show some graphs. They display the probability distribution of RL for both 

upward (Figures 1-4) and downward (Figures 5-8) MCV charts, where the probability is calculated 

using Eq. (8). This applies when p = 2, n = 5, 0 = 0.5 and ARL0 = 370. The UCL computes to be 

1.319976 for the upward MCV chart. Meanwhile, the LCL stands at 0.050858 for the downward 

MCV chart. Based on these figures, it is pretty clear that as τ increases, the skewness for the 

distribution of run length gets smaller. This means that judging the MCV chart’s performance only 

by ARL is not enough. Instead, if we look at MRL for evaluating the upward and downward MCV 

charts, we can get more useful insights. 

 

 

 

 

Figure 1: The distribution of RL when  = 

1.00 for upward MCV chart  

 Figure 2: The distribution of RL when  = 

1.10 for upward MCV chart  

   

 

 

 

Figure 3: The distribution of RL when  = 

1.50 for upward MCV chart  

 Figure 4: The distribution of RL when  = 

2.00 for upward MCV chart  

   

 

 

 

Figure 5: The distribution of RL when  = 

1.00 for downward MCV chart  

 Figure 6: The distribution of RL when  = 

0.25 for downward MCV chart  
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Figure 7: The distribution of RL when  = 

0.10 for downward MCV chart  

 Figure 8: The distribution of RL when  = 

0.05 for downward MCV chart  

 

Tables 1 and 2 share the UCL and LCL values based on ARL or MRL for p = 2 and n  {5, 

10, 15}, with ARL0 or MRL0  {250, 370, 500} and 0  {0.1, 0.5}. Here, ARL0 represents the 

in-control ARL, while MRL0 indicates the in-control MRL. An interesting trend here is as sample 

size n grows larger, UCL dips down while LCL climbs up. Also noteworthy is how UCL and LCL 

calculated using MRL are quite different from those using ARL; specifically UCL computed from 

MRL is greater than the one calculated using ARL, while LCL computed from MRL ends up being 

less than the one calculated using ARL. 

 

Table 1: UCL for the upward MCV chart (p = 2) 

 

0 
MRL0 or 

ARL0 

 MRL-based UCL ARL-based UCL 

  n = 5 10 15 5 10 15 

0.1 250  0.189821 0.162846 0.151103 0.184364 0.159431 0.148441 
 370  0.195542 0.166420 0.153888 0.190237 0.163106 0.151306 

 500  0.199822 0.169092 0.155968 0.194626 0.165849 0.153443 

0.5 250  1.313890 0.995483 0.880674 1.237604 0.960147 0.856262 

 370  1.401535 1.034174 0.907017 1.319976 0.998234 0.882561 

 500  1.473131 1.064328 0.927266 1.386928 1.027864 0.902748 

 

Table 2: LCL for the downward MCV chart (p = 2) 

 

0 
MRL0 or 

ARL0 

 MRL-based LCL  ARL-based LCL  

  n = 5 10 15 5 10 15 

0.1 250  0.010952 0.035432 0.047459 0.012381 0.037308 0.049200 
 370  0.009597 0.033537 0.045717 0.010849 0.035292 0.047347 

 500  0.008668 0.032166 0.044430 0.009804 0.033835 0.045995 

0.5 250  0.051343 0.164934 0.221844 0.058058 0.173870 0.230236 

 370  0.044980 0.155878 0.213307 0.050858 0.164268 0.221215 

 500  0.040645 0.149446 0.207089 0.045953 0.157351 0.214655 

 

The percentage points for the upward (refer to Table 3) and downward (refer to Table 4) MCV 

charts for the distributions of run length are calculated using Eq. (10). These statistics demonstrate 

that ARLs are generally greater than comparable MRLs; in this instance, MRL represents the 50th 

percentile. When τ = 1, it can be seen via closer inspection that the value of ARL0 lies between the 

60th and 70th percentiles of distribution for run length. This implies that there is a rightward tilt 

in the in-control distribution of run length. 
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The lower percentage points in Tables 3 and 4 (e.g. the 1st, 5th, and 10th percentiles with τ at 

1.00) give us a peek into early false alarms. For instance, there is a chance of about 10% that we 

might get a false alarm by the time we hit the 39th sample point when τ = 1 for the MCV chart. 

 

Table 3: ARLs and percentage points of the RL distribution when p = 2, n = 5, 0 = 0.5, UCL = 

1.319976, and ARL0 = 370 for the upward MCV chart 

 

 ARL 
Percentage points of RL distribution 

1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 

1.00 370.00 4 19 39 83 132 189 257 339 445 595 851 

1.25 51.84 1 3 6 12 19 27 36 48 62 83 119 

1.50 18.13 1 1 2 4 7 10 13 17 22 29 41 

1.75 9.70 1 1 1 3 4 5 7 9 12 15 22 

2.00 6.49 1 1 1 2 3 4 5 6 8 10 14 

 

 

Table 4: ARLs and percentage points of the RL distribution when p = 2, n = 5, 0 = 0.5, UCL = 

0.050858, and ARL0 = 370 for the downward MCV chart 

 

 ARL 
Percentage points of RL distribution 

1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 

1.00 370.00 4 19 39 83 132 189 257 339 445 595 851 

0.80 204.55 3 11 22 46 73 105 142 187 246 329 470 

0.60 92.77 1 5 10 21 33 48 64 85 112 149 213 

0.40 29.94 1 2 4 7 11 16 21 27 36 48 68 

0.20 4.81 1 1 1 1 2 3 3 4 6 7 10 

 

On another note — the higher percentage points from out-of-control run length distributions 

tell us when an out-of-control signal might likely trigger based on certain sampling points with a 

higher chance of happening. For example, based on Table 3 for the upward MCV chart, there is a 

solid chance of about 90% for an out-of-control signal to be detected by the time we reach point 

number 119 when there is a shift at τ = 1.25. 

 

 

AN ILLUSTRATIVE EXAMPLE 

 

The operation of MCV charts with the MRL will be examined in this section, following the 

example provided by Yeong et al. (2016). They made use of values such as 0 = 0.001042, n = 5 

and p = 2. For the data, see Table 5, which includes eight sample MCVs. We can now see the 

upward and downward MCVs curves for those sample MCVs by looking at Figures 9 and 10. The 

UCL = 0.0020135 and LCL = 0.00010025 control limits were used. We use an equation we refer 

to as Eq. (10), which is based on these limits on MRL0 = 370. 

 

Based on Figures 9 and 10, all the sample MCVs fall within those control limits. Figure 9 

shows that every sample is plotted below the UCL on the upward MCV chart. Meanwhile, Figure 

10 tells us that all samples are plotted above the LCL for the downward MCV chart. It means that 

both upward and downward MCV charts are not giving any out-of-control signals, which suggests 

that everything is running smoothly and in control. 
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Table 5: Data for the illustrative example 

 

Sample 

number 

1 2 3 4 5 6 7 8 

Sample 

MCV 

0.001692 0.001069 0.000872 0.00086 0.001436 0.000846 0.000615 0.000632 

 

 

 

 

 

Figure 9: Illustrative example for the upward 

MCV chart  

 Figure 10: Illustrative example for the 

downward MCV chart 

 

 

CONCLUSION 

 

Based on the numerical results, it is evident that the numbers tell us something interesting. For 

both upward and downward MCV charts, the distribution of run length tends to the right. This 

skewness is variable. The distribution is skewed when there is no shift. However, the shape of the 

run length distribution is almost symmetry as the shift increases. We also looked at the percentage 

points in these charts' run length distributions. This gives us a far better grasp of the performance 

of the MCV charts. 

 

For future research, we could create an MCV chart that uses adaptive schemes, that are 

variable sample sizes or sampling intervals. In addition, this study assumed we knew the process 

parameters. It might be interesting to see how the MCV chart works when we have to estimate the 

process parameters instead. 
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