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ABSTRACT 
This study proposes a comprehensive approach to enhance risk management in financial market, 

especially in volatile cryptocurrency markets, by combining machine learning models and extreme event 

detection method. The main focus of the research is on analysing extreme occurrences in financial time 

series data, especially when it comes to the naturally volatile cryptocurrency markets. To detect extreme 

events, the research's initial phase uses the peaks over threshold approach to determine threshold values 

for six cryptocurrencies, namely, Bitcoin, Ethereum, Ripple, Flow, Solana, and Binance Coin. In order 

to predict future severe occurrences based on previous data, machine learning models such as support 

vector machine and random forest are used in the second stage of this study. The random forest model's 

ensemble approach is effective in capturing the complexities of cryptocurrency market dynamics and its 

versatility with different datasets and ability to identify intricate patterns make it a strong choice for 

forecasting severe occurrences in the future. Flow coin is found to be riskier than others with highest 

normalised value at risk and expected shortfall at all of the confidence levels. The integration of advanced 

statistical techniques, machine learning algorithms and risk management principles provides a robust 

framework for understanding and mitigating risks in cryptocurrency ventures. This research establishes 

a guide for further studies and advancements in the emerging field of digital asset investments. 

 
Keywords: Extreme events, Cryptocurrencies, Machine learning 

 

 

INTRODUCTION 

 

Extreme value theory (EVT) offers a robust set of statistical tools designed to assess the probability 

and magnitude of extreme events that fall outside the typical data range. EVT encompasses various 

methods for analyzing and modeling rare events, including the block maxima method, peaks over 

threshold (POT), return periods, expected shortfall (ES), and value at risk (VaR). The POT method 

focuses on modelling exceedances over a specified high threshold, operating under the assumption 

that these exceedances are independent and identically distributed. VaR, widely used in the 

financial industry, is a key risk management tool that estimates potential financial losses during 

unexpected market conditions and quantifies the likelihood of such losses occurring. By 

integrating EVT into VaR calculations, financial institutions can better prepare for and mitigate 

the risks associated with extreme market movements. 

Cryptocurrencies have garnered considerable interest and investment in financial markets due 

to their distinctive characteristics, which include decentralisation, transparency and limited 

availability. Nevertheless, the values of these electronic assets are subject to drastic changes and 
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fluctuations, making them extremely unstable, which brings unusual challenges and dangers to 

investors and regulators. Hence, the conventional risk models and statistical models are 

insufficient to capture extreme events. Therefore, it is necessary to carry out research and utilises 

the concepts of EVT to scrutinise and formulate the model for the exceptional value patterns of 

cryptocurrencies. Besides that, when evaluating the risks of these digital assets, the potential losses 

and tail risks associated with cryptocurrency are important factors to be considered. 

Cryptocurrency markets have long been characterised by extreme volatility, a feature that has 

drawn both attention and concern from investors and regulators alike. Historically, 

cryptocurrencies such as Bitcoin and Ethereum have experienced dramatic price swings within 

short periods. For instance, in 2017, Bitcoin surged to nearly $20,000 before crashing to below 

$6,000 within months, a pattern that repeated in 2021 when it again soared to over $60,000 before 

plummeting by more than 50% shortly after. These fluctuations highlight the susceptibility of 

cryptocurrencies to rapid market changes. Given the persistent volatility and the increasing 

adoption of cryptocurrencies, this research is crucial for developing robust risk management 

strategies. By leveraging EVT and machine learning models, this study aims to enhance the 

prediction of extreme market events and provide actionable insights to safeguard investors and 

stabilise markets in the face of these extraordinary risks. 

Cryptocurrencies have attracted significant interest and investment in financial markets due 

to their unique features, including decentralisation, transparency, and limited supply. However, 

these digital assets are prone to extreme volatility, presenting substantial risks and challenges for 

both investors and regulators. Traditional risk and statistical models often fail to adequately 

capture these extreme fluctuations. Therefore, it is crucial to apply EVT in research to analyse and 

model the extreme value behavior of cryptocurrencies. Understanding potential losses and tail 

risks is essential when evaluating the overall risk profile of these digital assets. The primary 

objective of this research is to investigate tail risks and extreme events in cryptocurrency markets 

using EVT. The study will focus on applying machine learning models to forecast future extreme 

events in cryptocurrencies and employ EVT to calculate VaR and ES to assess potential losses and 

associated risks. Additionally, it will analyse the volatility and distributional properties of various 

cryptocurrencies, comparing them to provide insights. The research aims to offer actionable 

recommendations for investors, policymakers, and regulators to better manage and mitigate 

cryptocurrency risks. Machine learning (ML) complements traditional statistical methods like 

EVT in analysing complex financial systems, by handling non-linearities and offering strong 

predictive capabilities. Machine learning models, especially deep learning methods, can capture 

non-linear patterns and interactions that EVT might overlook, enhancing the analysis of tail risks 

in cryptocurrency markets. Moreover, they can better forecast future prices or volatility by learning 

from large datasets, complementing EVT’s focus on extreme outcomes by providing more general 

market predictions. This study aims to fill the gap by integrating EVT with ML techniques to 

enhance the predictive power for extreme price movements and allowing more precise risk 

management strategies, which is crucial in cryptocurrency markets where existing literature often 

lacks robust risk assessment tools. 

 

 

LITERATURE REVIEW 

 

The peaks over threshold method was introduced when statisticians and hydrologists started 

researching extreme events, like floods and heavy rainfall, to determine their frequency and 

severity (de Fondeville and Davison, 2022). Gumbel (1958) first proposed the idea of fitting the 

POT data using generalised extreme value (GEV) distribution in 1958. This idea serves as the 

foundation for the POT method's analysis of extreme events. With the introduction of alternate 
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distribution models like the generalised Pareto (GP) distribution and for the advancement of more 

complex statistical methods for analysing extreme events, the POT method has been further 

improved and expanded over time. 

There have been several research papers that have looked into cryptocurrencies using the POT 

Method. Rui et al. (2022) present a dynamic POT Method to measure and forecast both the lower 

and upper tail VaR of Bitcoin returns. Their study illustrates how well the model predicts Bitcoin's 

tail risk and emphasises how it may be used in risk management and investment plans. Osterrieder 

and Lorenz (2017) studied the POT method's potential for examining the cryptocurrency market's 

tail behavior and its possible effects on risk control and investing tactics. Apart from that, by giving 

stylised information on their return and volatility qualities, the study adds to the body of knowledge 

on cryptocurrencies. It is also discovered that cryptocurrencies have significant skewness and 

volatility and that their returns have large tails and high kurtosis (Ghosh et al. 2023).  The study 

also emphasises the need for more research in this field and the potential of cryptocurrencies as 

alternative financial assets. 

The first neural network mathematical model was introduced in 1943, which launched the 

field of machine learning. The first computer learning program was originally written by Arthur 

Samuel in 1952, and it was designed to play checkers at the championship level. Afterward, Frank 

Rosenblatt created the perceptron, the first neural network intended specifically for computers, in 

1957. There are different types of machine learning techniques, such as classification analysis, 

regression, data clustering, feature selection and extraction, dimensionality reduction, association 

rule learning, reinforcement learning, and deep learning techniques and Mahesh (2020) has offered 

a thorough analysis of how machine learning algorithms may be used to forecast Bitcoin values. 

Risk measures in cryptocurrency are a necessary tool to allow better investment decisions and 

trading tactics. Likitracharoen et al. (2018) used historical and Gaussian parametric VaR to 

approximate VaR of several cryptocurrencies, including Bitcoin. Osterrieder and Lorenz (2017) 

and Gkillas and Katsiampa (2018) used EVT to estimate VaR. Stavroyiannis (2018), who used the 

generalised autoregressive conditionally heteroscedastic (GARCH) model and Pearson type-IV 

distribution to compute the VaR, is another example of related work. He achieved a decent 

performance for VaR 1% but a bad performance for both VaR 2.5% and 5%. Pele and Mazurencu-

Marinescu-Pele (2019) projected a new method based on entropically to predict Bitcoin's daily 

VaR using high-frequency data, and they did so by comparing the proposed method to more 

established ones like historical, normal, and Student's t-GARCH (1,1). Furthermore, GJR-GARCH 

proposed by Glosten et al. (1993) was used to estimate VaR by considering the time-varying 

volatility of cryptocurrencies to estimate VaR considering regimes one, two, and three. 

 

 

DATA AND METHODS USED 

 

Data   

 

This study focuses on the utilisation of six prominent cryptocurrencies: Binance Coin, Flow, 

Solana, Bitcoin, Ethereum, and Ripple. To obtain the necessary data, the price information was 

downloaded from the coinmarketcap website covering a specific sample period, spanning from 1 

July 2022 to 1 July 2023, resulting in 366 closing prices for each respective series. After that, data 

adjustment process was carried out. 
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Peaks over threshold method 

 

Threshold selection 

 

Several methods are available for determining thresholds. This study employs the bootstrap 

method, a resampling technique that allows us to estimate population statistics from a sample. The 

core principle of the bootstrap method is to generate numerous new samples, known as bootstrap 

samples, to achieve a reliable threshold. 

 

Single bootstrap procedure  

 

A single bootstrap procedure was developed by Caeiro and Gomes (2015) to select the optimal 

threshold level. By overcoming the constrictive assumptions through the estimation of the 

necessary parameters, this procedure enhances the one introduced in Hall (1990). Using an 

auxiliary statistic, the bootstrap procedure simulates the Hill estimator's asymptotic mean square 

error (AMSE) criterion. The sample from a model is given as 𝑋𝑛 = 𝑋1 , 𝑋2 , 𝑋3 , . . . , 𝑋𝑛.  The 

semiparametric estimator is given as 

 

 

𝛾𝑛 (𝑘) = 𝜙𝑛 (𝑋𝑛 ),            1 ≤ 𝑘 < 𝑛. 
 

 

The bootstrap sample from the model, 𝐹𝑛 is defined as 

 

𝐹𝑛 (𝑥) =
1

𝑛
∑ 𝐼[𝑋𝑖 ≤𝑥]

𝑛

𝑖=1

, 

 

with 𝑋𝑖 = 𝑋1 , . . . , 𝑋𝑛1
,        𝑛1 ≤  𝑛. 

 

 

The bootstrap estimator corresponding to the bootstrap sample is as below 

 

 

𝛾𝑛1
(𝑘1 ) = 𝜙𝑘1

(𝑋𝑛1
),             1 ≤ 𝑘1 < 𝑛1. 

 

 

Hall proposed the minimisation of the bootstrap estimate of MSE, 𝛾𝑛1
(𝑘1) as follows 

 

 

MSE(𝑛1, 𝑘1 ) = 𝐸[{𝛾𝑛1
∗ (𝑘1 ) − 𝛾𝑛1

(𝑘0)}2|𝑋𝑛] 

 

 

where 𝑘0 = the initial value of 𝑘 such that  𝑘0 → ∞ as 𝑛 → ∞. 

 

The bootstrap procedure will be applied to estimate the optimal sample fraction is  

 

𝐷𝑛1

𝛽
(1 + 𝑜(1)) 
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with 𝛽 =
2

3
 for both the original estimator and the bootstrap statistics. The optimal performance of 

the bootstrap estimator at a level 𝑘1 where MSE(𝛾𝑛1
∗ (𝑘1 )|𝑋𝑛 ) is minimal is achieved. 

 

 

 

𝑘0
∗(𝑛; 𝑘0, 𝑛1) =

[𝑘00
∗ (𝑛1)]2

𝑘00
∗ (𝑛2 )

 

 

 

The threshold level, 𝑢 is obtained when 

 

 

𝛾𝑛;𝑛1
(𝑘0 ) = 𝛾𝑛 (𝑘0

∗(𝑛; 𝑘0, 𝑛1)). 

 

 

The AMSE of the Hill estimator is 

 

 

AMSE(𝛾𝑛 (𝑘)) = 𝐸(𝛾𝑛(𝑘) − 𝛾)2 = Var(𝛾𝑛(𝑘)) + Bias2(𝛾𝑛(𝑘)). 

       

 

Generalised Pareto distribution (GP) 

 

To simulate the distribution of excesses over the selected threshold we used generalised Pareto 

distribution. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛  be a sequence of independent and identically distributed 

observations which is the closing price of the cryptocurrency with a common distribution function 

𝐹 and let  

 

𝑀𝑛 = max(𝑋1, 𝑋2, . . . , 𝑋𝑛). 

 

 

The distribution 𝑀𝑛 can be derived as: 

 

 

𝑃(𝑀𝑛 ≤ 𝑧) = 𝑃(𝑋1 ≤ 𝑧, . . . , 𝑋𝑛 ≤ 𝑧) = 𝑃(𝑋1 ≤ 𝑧). . . 𝑃(𝑋𝑛 ≤ 𝑧) = (𝐹(𝑧))
𝑛

. 
 

 

Parameter estimation 

 

The scale parameter, 𝜎 and shape parameter, 𝜉, of the GP can be determined using maximum 

likelihood. Suppose that the values  𝑦1 , 𝑦2,. . . , 𝑦𝑘 are 𝑘 excesses of threshold 𝑢. For 𝜉 ≠ 0 the log-

likelihood which is derived from equation as  

 

 

𝑙(𝜎, 𝜉) =  −𝑘 log 𝜎 − (1 +
1

𝜉
) ∑ log (1 +

𝜉

𝜎
𝑦𝑖 )

𝑘

𝑖=1

  

 

 



 

R. Selvaraja and W. L. Shinyie                                                   Menemui Matematik (Discovering Mathematics) 47(1) (2025) 54-68 

59 

 

where (1 +
𝜉

𝜎
𝑦𝑖 )  > 0  for 𝑖 = 1, . . . , 𝑘 ; otherwise, 𝑙(𝜎, 𝜉) = −∞ . In the case, 𝜉 = 0  the log-

likelihood is derived from as  

 

𝑙(𝜎) = −𝑘 log 𝜎 −
1

𝜎
 ∑ 𝑦𝑖

𝑘

𝑖=1

 

 

 

Support vector machine (SVM) 

 

Radial basis function (RBF) kernel  

 

The RBF kernel is commonly referred to as the Gaussian kernel, for datasets containing intricate 

and non-linear patterns or clusters. A localised and finite reaction is possible throughout the whole 

𝑥-axis by mapping the input data into an infinite-dimensional space. The RBF kernel is defined as  

follows 

 

𝐾(𝑥, 𝑦) = exp(−𝛾|𝑥 − 𝑦|2), 
 

 

𝛾 as a positive parameter that controls the shape of the kernel. 

 

 

Optimal hyperplane for SVM model  

 

Lagrangian formulation is applied in nonlinear SVM models to determine the ideal hyperplane in 

higher-dimensional space that divides data points of various classes. With nonlinear SVM models, 

the Lagrangian formulation is very helpful as it enables the data to be transformed into a higher-

dimensional space using kernel functions, perhaps leading to a linear separation. The Lagrange 

multipliers obtained during this process are then used in the decision function of the SVM, which 

is a key component of the model's ability to classify and make predictions based on the input data. 

The decision function of the SVM is as follows  

 

 

𝑓(𝑥) = ∑ 𝑎𝑖𝑦𝑖𝐾(𝑥, 𝑦) + 𝑏

𝑛

𝑖=1

 

 

 

where 

𝑓(𝑥)     : decision function 

𝑎𝑖           : the Lagrange multipliers obtained during the training process 

𝑦𝑖          : class label 

𝐾(𝑥, 𝑦) : RBF kernel 

𝑏            : bias term. 

 

 

Model training and prediction  
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The SVM model must be trained before predictions can be made. The best hyperplane is found by 

the algorithm by adjusting parameters during training. The trained SVM is then applied to test data 

and subsequent data points. The accuracy and precision of the model are assessed by the 

computation of performance measures like root mean squared error. Then the trained SVM model 

is used to forecast future extreme events in the cryptocurrency markets, offering insightful 

information. 

 

Random forest model 

 

Data splitting  

 

The dataset was divided into two parts which were the training set and testing set. This is usually 

done to assess the model's performance on an additional, unseen subset after training it on one. 

The dataset 𝐷 in the context of cryptocurrencies comprises extreme events of the closing price of 

the cryptocurrencies. The data for each observation 𝑖  was represented as (𝑋𝑖 ,  𝑌𝑖 ) where 𝑋𝑖 

(extreme events from the historical data) is a vector of predictor variables and 𝑌𝑖 (future extreme 

events) is the target variable. The data splitting process is represented mathematically as follows: 

 

𝐷 =  𝐷𝑡𝑟𝑎𝑖𝑛 ∪ 𝐷𝑡𝑒𝑠𝑡  

 

where     𝐷𝑡𝑟𝑎𝑖𝑛  : training set which contains 80% of the data  

               𝐷𝑡𝑒𝑠𝑡    : test data contains 20% of the data. 

 

 

Random forest model training  

 

The random forest model, ensemble 𝑁 decision trees (e.g: 𝑁 = 140). 

 

RFmodel = {𝑇1, 𝑇2, . . . , 𝑇𝑛} 

 

 

Each decision tree 𝑇𝑖  is trained using a bootstrapped subset of the training data 𝐷train with a 

random subset of features examined at each split. 

 

 

𝑇𝑖 = Train Decision Tree (𝐷train,𝑖) 

 

 

The predictions of future extreme events are obtained by aggregating the predictions of the 

individual decision trees, 

 

predictions =
1

𝑁
∑ Predict(𝑇𝑖, 𝐷test)

𝑁

𝑖=1

. 

 

 

The outputs of individual decision trees are averaged to provide predictions, which results in a 

more reliable and accurate model. 
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Root mean square error (RMSE) and relative root mean square error (RRMSE) 

 

This analysis involves a simulation that compares the predictive performance of the support vector 

machine and random forest model using the root mean square error and relative root mean square 

error. These indicators show how well the models work by gauging the precision of predictions 

made in a regression setting. RMSE is derived as  

 

 

RMSE = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

where 

𝑛   : the number of data points  

𝑦𝑖   : the actual extreme event at 𝑖𝑡ℎ point 

𝑦̂𝑖  : the predicted extreme event at 𝑖𝑡ℎ point, and RRMSE is   

 

 

RRMSE = (
RMSE

Mean|𝑦|
) × 100 

 

where Mean|𝑦| is the mean of the absolute values of the actual extreme events. 

 

Risk Measure 

 

Value at Risk (VaR) 

 

VaR is a statistical method that is used to calculate the potential loss of a specific investment or a 

portfolio of investments over a certain period, at 𝑎 specific level of confidence under normal 

market conditions. The formula that will be used to calculate VaR using GP is as follows: 

 

 

VaR = 𝑢 +  
𝜎

𝜉
 [(

𝑛

 𝑁𝑢
𝑎)

−𝜉

− 1] 

 

 

where 𝑁𝑢 means the number of observations that exceeded the given threshold. 

 

 

Expected shortfall (ES) 

 

ES which is also known as the conditional value at risk quantifies the amount of tail risk present 

in an investment portfolio. The expected average loss that an investment can experience above a 

specific confidence level is denoted by the expected shortfall 
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ES = ∫ 𝑢 +  
𝜎

𝜉
 [(

𝑛

 𝑁𝑢
𝑎)

−𝜉

− 1]
1

𝑎

𝑑𝑥 =
VaR + 𝜎 − 𝑢𝜉

1 − 𝜉
, for 𝜉 ≠ 0. 

 

 

RESULTS AND DISCUSSION 

 

Threshold level 

 

The threshold levels determined for each cryptocurrency using single bootstrap procedure are 

shown in Table 1. The threshold of Bitcoin which is 29340.26 shows its role in determining the 

extreme events in the closing prices of Bitcoin. As a result, sudden price spikes or sharp declines 

occur. The threshold values vary greatly in size among various cryptocurrencies. For example, 

compared to Flow and Ripple, the threshold values for Bitcoin and Ethereum are significantly 

greater. 

 

Table 1: Threshold levels for cryptocurrencies 

 

Cryptocurrencies Thresholds 

Bitcoin (BTC) 29340.3 

Ethereum (ETH) 1884.5 

Ripple (XRP) 0.5061 

Flow (FLOW) 1.8616 

Solana (SOL) 36.7658 

Binance Coin (BNB) 324.91 

 

 

Parameter estimation  

 

The generalised Pareto distribution (GP) model was used to describe the characteristics of the 

extreme events in the dataset. Based on the observed extreme events, we determined a threshold 

for each cryptocurrency and fitted the GP to exceedances over this threshold using the maximum 

likelihood estimation (MLE) method. As a result, this allowed us to estimate the two parameters 

which are the shape and the scale parameters. This has provided insight into the tail behavior and 

spread or the width of the distribution. The results that explained the statistical properties of the 

cryptocurrency's price distributions will offer a nuanced perspective on risk management, 

volatility, and more. The estimation of the parameters is presented in Table 2. 

 

Table 2: Parameter estimates for cryptocurrencies 

 

Cryptocurrencies Shape Parameter, 𝜉 Scale Parameter, 𝜎 

Bitcoin −1.6274 2205.51 

Ethereum 0.2908 44.327 

Ripple −0.7030 0.0269 
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Flow −0.2720 0.5393 

Solana −0.7861 7.7081 

Binance −0.2330 10.189 

 

For Bitcoin, a negative shape parameter indicates a heavy-tailed distribution, suggesting a 

higher likelihood of extreme events due to the slow decline in the tail. The high scale parameter 

reflects that these extreme events are widely distributed in magnitude. For Ethereum, the positive 

shape parameter implies that the tail is not significantly heavy, indicating less extreme behavior. 

The scale parameter shows variability in extreme events, with magnitudes spread over a range. 

Ripple's negative shape parameter points to a heavy right tail, while the scale parameter indicates 

a significant spread in the data. Flow’s negative shape parameter deviates from the norm, showing 

a statistically significant heavy tail, and the high scale value reflects larger magnitudes. Solana 

also exhibits heavy-tailed behavior with more extreme events than expected in a standard 

distribution. The high scale parameter suggests a broader range of magnitudes. Finally, Binance 

Coin's negative shape parameter suggests a heavy right tail, and the large scale parameter indicates 

significant variability in the data. Cryptocurrencies with negative shape parameters like Bitcoin, 

Ripple, Flow, Solana, and Binance exhibit a heavy-tailed behavior suggesting a greater chance of 

extreme events. Furthermore, high-scale parameters (Bitcoin, Solana, Binance) imply that extreme 

events are dispersed over large-magnitude distributions. Risk management requires an 

understanding of magnitude variability and tail behavior. Overall, these parameter estimates help 

with risk assessment and management techniques by offering insights into the magnitude 

variability and tail behavior of extreme events for each cryptocurrency. Awareness of these traits 

aids in creating risk models and mitigation techniques that are more reliable and customised to the 

unique features of each coin. 

 

 

Model performance 

 

Support vector machine (SVM) and random forest models were used to predict future extreme 

events based on the peaks obtained through the POT method. Table 3 and 4 summarises the RMSE 

and RRMSE values for both models across six cryptocurrencies. 

 

Table 3: RMSE and RRMSE results for support vector machine model 

 

Cryptocurrency Bitcoin Ethereum Ripple Flow Solana Binance 

RMSE 7739.98 247.43 0.1186 1.3954 33.108 84.731 

RRMSE 0.5226 0.5043 0.3783 6.728 0.4007 0.9756 

 

 

Table 4: RMSE and RRMSE results for random forest model 

 

Cryptocurrency Bitcoin Ethereum Ripple Flow Solana Binance 

RMSE 7789.52 246.73 0.1162 1.418 33.051 82.446 

RRMSE 0.5259 0.5029 0.3710 6.837 0.4000 0.9730 
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For Bitcoin both the models have similar RMSE and RRMSE values. The RRMSE of both 

models is around 0.52. This indicates a moderate level of predictive error. Hence, the SVM and 

the random forest model both perform similarly for BitCoin. For Ethereum, the RMSE is similar 

for both the SVM and random forest model but the RRMSE for the random forest model is better 

than the SVM model. For Ripple, both models have very low RMSE value, which shows a strong 

predictive analysis. The RRMSE of the random forest model is also lesser compared to the SVM 

Model.  

 

As for Flow, the RRMSE is large, indicating that both models have greater difficulty 

forecasting severe occurrences than for other cryptocurrencies. The random forest model shows 

slightly better RRMSE for Flow. Furthermore, for Solana, the SVM's RRMSE is slightly smaller 

than random forest model's. The SVM has slightly better relative RMSE for Binance compared to 

random forest model. 

 

In conclusion, with low RRMSE and low RMSE values, both models function well for Ripple. 

Both models perform similarly for Ethereum and Bitcoin. With comparatively high RRMSE 

values for both models, the Flow appears to be the cryptocurrency that is most difficult to be 

predicted. Based on the better RRMSE values, the random forest model seems to have an 

advantage over Ethereum, Ripple, Solana and Binance. This indicates that random forest model is 

better at handling noisy and complex data by averaging out predictions from multiple decision 

trees and make it more robust for cryptocurrencies with more volatile or complex price movements. 

 

 

Risk evaluation 

 

Table 5: Value at risk results for six cryptocurrencies 

 

Cryptocurrencies 1% VaR 5% VaR 10% VaR 

Bitcoin 1.0439 1.0143 0.9478 

Ethereum 1.0738 1.0160 0.9983 

Ripple 1.0602 1.0277 0.9976 

Flow 1.5236 1.2261 1.0520 

Solana 1.2268 1.1252 1.0228 

Binance 1.0570 1.0218 1.0020 

 

 

Table 6: Expected shortfall results for six cryptocurrencies 

 

Cryptocurrencies 1% ES 5% ES 10% ES 

Bitcoin 1.045307 1.034071 1.008748 

Ethereum 1.137177 1.055677 1.030748 

Ripple 1.06658 1.04750 1.0298 

Flow 1.639358 1.405513 1.268662 
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Solana 1.244359 1.187506 1.130131 

Binance 1.07169 1.043075 1.027036 

 

 

Table 5 and 6 presents the value at risk (VaR) and expected shortfall (ES) values calculated at 

three different confidence levels which are 1%, 5%, and 10% respectively. At all the confidence 

levels, Flow Coin has the highest normalised VaR and ES. This shows that it is riskier than the 

others. Bitcoin continuously displays lower normalised VaR and ES indicating a reduced level of 

risk. The risk associated with Solana is higher, specifically at a 1% confidence interval, suggesting 

a larger downside risk. At varying degrees of certainty, the risk profiles of Ethereum and Binance 

are comparable. 

 

Several risk management techniques, based on the normalised VaR and ES analysis, are 

available to investors navigating the cryptocurrency market. The key to reducing the impact of 

individual asset volatility is diversification which involves spreading the investments over a 

variety of cryptocurrencies. Regular monitoring of market conditions, news, and regulatory 

development is very important for decision-making. Investors should assess their risk tolerance 

and align it with their chosen investment strategy, adopting a more conservative approach. 

Furthermore, it is critical to maintain up-to-date knowledge of the unique traits, applications, and 

possible risks associated with each of the cryptocurrencies. 

 

Active volatility management, hedging strategies, and caution in portfolio exposure are 

recommended for assets with higher risk profiles, such as Solana or Flow. Conversely, stable assets 

like Bitcoin can serve as a stabilising element in a diversified portfolio, particularly for those with 

a lower risk appetite. In summary, managing the ever-changing world of cryptocurrency 

investments requires a well-rounded and knowledgeable approach, as well as constant observation 

and flexibility. 

 

Volatility of the cryptocurrencies 

 

Annualised volatility is the degree of price swings or variability in an asset's daily returns over a 

given time frame, usually a year. It provides information on the possible size of price fluctuations, 

which helps to quantify the amount of risk involved with an investment. The annualised volatility 

of the six cryptocurrencies is shown in Table 7. 

 

Table 7: Annualised volatility for cryptocurrencies 

 

Cryptocurrencies Annualised Volatility 

Bitcoin 0.5245 

Ethereum 1.1289 

Ripple 1.0207 

Flow 0.7076 

Solana 0.5691 

Binance Coin 0.7140 
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Out of all the cryptocurrencies analysed in this study, Ethereum has the greatest annualised 

volatility, meaning that its price swings are the largest. When compared to the other 

cryptocurrencies, Bitcoin has the lowest annualised volatility, indicating more steady price 

changes. The modest volatility levels of Flow, Solana and Binance Coin show a balance between 

price fluctuations and stability, while Ripple exhibit moderate to high volatility. 

 

As shown with Ethereum, more volatility might present chances for significant gains. On the 

other hand, it also increases risk because prices might change quickly. Those who are looking for 

these kinds of assets should have risk management plans in place and be well-prepared for the 

volatility that comes with them. Conversely, cryptocurrencies with lower annualised volatility like 

Bitcoin and Solana are thought to be more stable. Investors who value consistency and are wary 

of potentially significant price fluctuations could find this reduced volatility appealing. Such 

investments might act as the cornerstone of a more cautious strategy. 

 

Investors need to understand that the marketplaces for cryptocurrencies are quite volatile. It 

is important to consistently observe market circumstances and make necessary modifications to 

investing strategy. The state of the market, changes in regulations, and breakthroughs in 

technology are just a few of the variables that can cause volatility levels to fluctuate over time. 

One essential tactic for reducing risk is still diversification. Effective portfolio risk management 

may be achieved by having a well-diversified cryptocurrency portfolio that consists of assets with 

various risk profiles. Volatility may present short-term trading opportunities, but maintaining a 

long-term outlook is essential for long-term success in the cryptocurrency space. Comprehending 

the underlying principles that propel the worth of a cryptocurrency and remaining updated on 

prospective advancements may enhance the scope of an investing plan. 

 

 

CONCLUSION 

 

In this study, we explored extreme events in the cryptocurrency markets, focusing on six prominent 

cryptocurrencies: Bitcoin, Ethereum, Ripple, Flow, Solana, and Binance. By using the peaks over 

threshold approach and machine learning models (support vector machine and random forest), we 

aimed to predict future extreme events. Our analysis showed that the random forest model 

consistently had lower RRMSE values than SVM, suggesting superior predictive capabilities. 

Notably, Ethereum, Ripple, Solana, and Binance displayed lower relative RRMSE values within 

the random forest model, indicating a better capacity to forecast severe occurrences. The model's 

ensemble approach captures the complexities of cryptocurrency market dynamics, making it a 

strong choice for future forecasting. We also examined risk management through volatility, value 

at risk (VaR), and expected shortfall (ES). Flow coin emerged as the riskiest, with the highest 

normalized VaR and ES across all confidence levels, emphasizing the importance of understanding 

and mitigating potential losses.  

 

The practical implications of this findings on cryptocurrency trading and investment strategies 

are significant in order to provide insights into which model performs better under specific 

conditions, allowing traders to select the most suitable model for predicting price movements. This 

can lead to more accurate trading decisions and reduced financial risk. Besides that, traders can 

better time their entry and exit points, potentially increasing profits and minimizing losses. This is 

especially crucial in the highly volatile cryptocurrency market. 
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The limitation of this study is the challenge of generalising findings across different 

cryptocurrencies due to their unique market behaviors and varying degrees of volatility. This 

makes it difficult to create universally applicable models that effectively predict price movements 

or manage risk across all digital assets. Future research could explore adaptive machine learning 

models that can dynamically adjust to the specific characteristics of each cryptocurrency. 

Additionally, investigating the integration of real-time data streams and external factors such as 

regulatory changes and macroeconomic indicators into time series models may provide a more 

comprehensive understanding of cryptocurrency risk management. 

 

In conclusion, the amalgamation of sophisticated statistical methodologies, machine learning 

strategies, and risk management tenets furnishes a sturdy structure for comprehending and 

alleviating hazards within the domain of cryptocurrency. This research provides a strong basis for 

future exploration and innovation in the emerging field of digital asset investments. 
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