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ABSTRACT 

This paper presents a Bayesian spatio-temporal model for longitudinal data-sets with covariates. The 

main aim is to develop a hierarchical spatio-temporal model that effectively integrates spatial random 

effects to account for unobserved spatial heterogeneity and autocorrelation, temporal random effects to 

capture dependencies and trends over time, and interaction terms to evaluate covariate relationships 

across space and time. By adding interaction terms, spatio-temporal models are significantly enhanced, 

enabling them to capture the complex interdependencies between variables across both spatial and 

temporal dimensions. This improvement allows for a more thorough analysis of the data, leading to 

deeper insights and more effective decision-making in practical applications. The use of a conditional 

autoregressive (CAR) prior is useful in handling the dependencies between neighbouring spatial units. 

The numerical results on simulated data illustrate the validity of the model. 

Keywords: Spatio-temporal model, Spatio effect, Temporal effect, Interaction effect, Bayesian 

hierarchical model 

INTRODUCTION 

Spatio-temporal modelling is a useful approach for analyzing phenomena that show variations 

across both space and time [1]. Bayesian hierarchical binomial logistic regression offers a flexible 

framework that incorporates spatial, temporal, and space-time interaction effects, facilitating 

comprehensive analysis of binary outcomes [2]. 

In spatio-temporal models, the inclusion of space, time, and their interaction is essential for 

capturing the complex dynamics of the phenomenon being investigated [3]. The model utilizes 

spatial random effects to address unobserved spatial heterogeneity and spatial autocorrelation, 

temporal random effects to capture dependencies and trends over time, and interaction terms to 

assess how the relationship between covariates and binary outcomes varies across space and time 

[4]. 

https://persama.org.my/dismath/home
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The pioneering work of [5] introduced a Bayesian hierarchical spatiotemporal model for 

disease risk, accounting for both spatial and temporal effects along with their interaction. 

Subsequent studies have extended this approach to address specific challenges and improve 

computational efficiency. For example, [6] proposed using fixed rank kriging to handle large 

spatial datasets in spatiotemporal models. 

With the growing availability of high-resolution spatio-temporal data, more sophisticated 

models have been developed. This has driven the advancement of new techniques and tools. 

Notably, Bayesian hierarchical modelling has become popular due to its ability to incorporate 

uncertainty and variability at multiple levels of the model [7]. 

        Bayesian hierarchical binomial logistic regression, which integrates spatial, temporal, and 

space-time interaction effects, has wide-ranging applications across various fields. For example, 

[8] used this approach to study infectious disease counts, examining the spatial, temporal, and 

spatio-temporal patterns of disease transmission. 

 The goals of this research include extending a spatio-temporal model that accounts for spatial, 

temporal, and interaction effects, performing simulations to evaluate the model's effectiveness 

based on these trends, and measuring its performance by estimating parameters and assessing 

uncertainty. Additionally, the study aims to examine correlations and dependencies among random 

effects. It contributes significantly to Bayesian spatiotemporal analysis by introducing a 

hierarchical model that incorporates both spatial and temporal random effects with interaction 

terms. The parameters of the model are estimated using Gibbs sampling, and convergence 

diagnostics are applied to verify the model's accuracy in analyzing spatially and temporally 

varying phenomena.  

 

METHODOLOGY 

 

Spatio-Temporal Interaction Modelling 

Spatial and temporal autocorrelations (random effects) were modeled via the conditional 

autoregressive (CAR) model proposed by [9] whose model can be expressed as 

 

                                  𝑌𝑘𝑡|𝑁𝑘𝑡, 𝜃𝑘𝑡~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑘𝑡, 𝜃𝑘𝑡),                                        (1) 

 

𝑤ℎ𝑒𝑟𝑒                       log(
𝜃𝑘𝑡

1−𝜃𝑘𝑡
) = 𝑋𝑘𝑡

𝑇 𝛽 + 𝜙𝑘 + 𝛿𝑡 + 𝛾𝑘𝑡.               (2) 

 The proposed model is decomposed into the spatio-temporal random effects with 3 

components as follows: where 𝜙𝑘 is the spatial effect, 𝛿𝑡 is the temporal effect and 𝛾𝑘𝑡 is the set 

of spatio-temporal auto correlation random effect for the community k and time period t. 𝜃𝑘𝑡 =

𝑌𝑘𝑡|𝑁𝑘𝑡 is the proportion of children that having measles in space k at time t, for 𝑘 = 1, ⋯ , 𝑘, 𝑡 =

1, ⋯ , 𝑁  where the 𝑁𝑘𝑡  = 80, 160, 240, 320 and 400 respectively 𝛽  is a vector of regression 

coefficients corresponding to covariates 𝑋 . After adjusting for covariate effects, the first 
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component captures the overall spatial random effect common to all time period, represented by 

𝜙 = (𝜙1, 𝜙2, ⋯ , 𝜙𝑛). The spatial relationships between communities in this study were shown by 

binary neighborhood matrices W. 

 

                    𝜙𝑘|𝜙−𝑘𝑡, 𝑊, 𝜌, 𝜏2~𝑁 (
𝜌𝑆 ∑𝑘

𝑗=1 𝑤𝑘𝑗𝜙𝑗

𝜌𝑆 ∑𝑘
𝑗=1 𝑤𝑘𝑗+1−𝜌𝑆

,
𝜏𝑆

2

𝜌𝑆 ∑𝑘
𝑗=1 𝑤𝑘𝑗+1−𝜌𝑆

).                           (3) 

 

 The second part is a random effects in time that shows the overall trend in time that all 

communities share. This is shown by 𝛿 = (𝛿1, 𝛿2, ⋯ , 𝛿𝑛) where 

 

                     𝛿𝑡|𝛿−𝑡, 𝐷~𝑁 (
𝜌𝑇 ∑𝑁

𝑗=1 𝑑𝑡𝑗𝛿𝑗

𝜌𝑇 ∑𝑁
𝑗=1 𝑑𝑡𝑗+1−𝜌𝑇

,
𝜏𝑇

2

𝜌𝑇 ∑𝑁
𝑗=1 𝑑𝑡𝑗+1−𝜌𝑇

).                                         (4) 

 

 In this study, temporal relationships between dependent variable were determined using an 

adjacency weights matrix, a binary 𝑁 × 𝑁, whrere 𝑁 = 1,2, … , 𝑁 temporal neighborhood matrix. 

𝐷 = 𝑑𝑡𝑗 where 𝑑𝑡𝑗 = 1 is defined if |𝑗 − 𝑡| = 1 and 𝑑𝑖𝑗 = 0 otherwise. 

 The model can also include an optional set of independent space-time interactions, which are 

shown by 𝛾 = (𝛾1, 𝛾2, … , 𝛾𝑛𝑡) where 

 𝛾𝑘𝑡~𝑁(0, 𝜏𝐼
2). (5) 

and 

𝜏𝑆
2, 𝜏𝑇

2 , 𝜏𝐼
2~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(1,0.001) 

where 𝜏𝑆
2, 𝜏𝑇

2 , 𝜏𝐼
2 represents random effects that can happen in spatial, temporal and space-time. 

 

𝜌𝑆, 𝜌𝑇~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

 

and 𝜌𝑆  and 𝜌𝑇  are spatial dependence parameters and temporal dependence parameters that 

control how strong spatial and temporal autocorrelations are. 

 

SIMULATION STUDY 
  

We conducted a simulation study to quantify the ability of the developed model to correctly 

assemble areas based on their temporal trends, spatial trend and interaction trend using the Gibbs 
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sampling approach. Data were simulated using Binomial logistic model, the model consist of the 

data likelihood 𝑌𝑘𝑡~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜃𝑘𝑡) where 

 

log(
𝜃𝑘𝑡

1 − 𝜃𝑘𝑡
) = 𝛽0 + 𝛽1𝑥1𝑘𝑡 + 𝛽2𝑥2𝑘𝑡 + 𝜙𝑘 + 𝛿𝑡 + 𝛾𝑘𝑡 

 

𝑥1𝑘𝑡, 𝑥2𝑘𝑡  are normally distributed covariate with mean 0  and variance 1 , 𝜙𝑘 , 𝛿𝑡 , 𝛾𝑘𝑡 

corresponds to spatial and temporal that are drawn from multivariate normal distribution with 

mean vectors 0  and covariance structure defined as Σ𝐾 = 0.01𝑄𝑊
−1 , where 𝑊  is the 𝐾 × 𝐾 

distance matrix and Σ𝑁 = 0.01𝑄𝐷
−1, where 𝐷 is the 𝑁 × 𝑁 temporal matrix. The spatial-temporal 

covariance structures were simulated using 

 

𝑄𝑊 = 0.8𝐈𝐾𝟏′𝑊 − 𝑊 + 0.2𝐈𝐾𝟏 

 

for spatial effect 

𝑄𝐷 = 0.8𝐈𝑁𝟏′𝐷 − 𝐷 + 0.2𝐈𝑁𝟏 

 

for temporal effect. 

 This scheme implies that spatial and temporal correlations are set as 𝜌𝑆, 𝜌𝑇 = 0.8 which also 

results in spatial, temporal and interaction effect defined by 𝜏𝑆
2, 𝜏𝑇

2 , 𝜏𝐼
2 = 0.2. In addition, the 

intercept and covariate coefficients are defined as 𝛽 = (0,0.5,0.5)  and 𝐾 = 16  and 𝑁 =

5, 10, 15, 20  and 25  areal units, 𝑛𝑘𝑡 = 𝑁 × 𝐾 = 80, 160, 240, 320  and 400 . Following, the 

simulation of the covariates and spatio-temporal effects and interaction, the response probability 

𝜃𝑘𝑡 were then simulated using 

 

𝜃𝑘𝑡 =
exp(𝛽0 + 𝛽1𝑥1𝑘𝑡 + 𝛽2𝑥2𝑘𝑡 + 𝜙𝑘 + 𝛿𝑡 + 𝛾𝑘𝑡)

1 + exp(𝛽0 + 𝛽1𝑥1𝑘𝑡 + 𝛽2𝑥2𝑘𝑡 + 𝜙𝑘 + 𝛿𝑡 + 𝛾𝑘𝑡)
. 

 

 The resoponse variable 𝑌𝑘𝑡 was then generated from the 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑘𝑡, 𝜃𝑘𝑡) distribution. The 

next step involve the application of the newly developed R function "binomial.est" to simulate the 

posterior distribution. The posterior distribution for the proposed model was obtained from 10,000 

MCMC independent samples, which were generated from a single Markov Chain that was run for 

120,000  iterations with a 20,000  burn-in period, subsequently thinned by 10  to reduce the 

autocorrelation of the Markov chain convergence and monitored using graphically Geweke 

diagnostic. 

 



 

A.A. Mustapha et al.                                                                     Menemui Matematik (Discovering Mathematics) 47(1) (2025) 28-39 
 

32 

 

 

Figure 1: Trace and Density Plots for Estimated Parameters in MCMC Sampling (Areal Unit 

𝑛𝑘𝑡=80) 

 

 Figure 1: Trace and density plots for the areal unit with 𝑛𝑘𝑡=80, K =16, n = 5 with true values 

𝛽0 = 0, 𝛽1 = 0.5, 𝛽2 = 0.5. The left panel illustrates the MCMC sample progress over iterations, 

while the right panel displays the posterior distribution of the parameters. 

 

Figure 2: Trace and Density Plots for Estimated Parameters in MCMC Sampling (Areal Unit 

𝑛𝑘𝑡=160) 
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 Figure 2: Trace and density plots for the areal unit with 𝑛𝑘𝑡=160, K =16, n = 10 with true values 𝛽0 =

0, 𝛽1 = 0.5, 𝛽2 = 0.5 . The left panel illustrates the MCMC sample progress over iterations, 

while the right panel displays the posterior distribution of the parameters. 

Figure 3: Trace and Density Plots for Estimated Parameters in MCMC Sampling (Areal Unit 

𝑛𝑘𝑡=240) 

 Figure 3: Trace and density plots for the areal unit with 𝑛𝑘𝑡= 240, K =16, n =15 with true 

values 𝛽0 = 0, 𝛽1 = 0.5, 𝛽2 = 0.5. The left panel illustrates the MCMC sample progress over 

iterations, while the right panel displays the posterior distribution of the parameters. 

Figure 4: Trace and Density Plots for Estimated Parameters in MCMC Sampling (Areal Unit 𝑛𝑘𝑡=320) 
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 Figure 4: Trace and density plots for the areal unit with 𝑛𝑘𝑡=320, K =16, n = 20 with true 

values 𝛽0 = 0, 𝛽1 = 0.5, 𝛽2 = 0.5. The left panel illustrates the MCMC sample progress over 

iterations, while the right panel displays the posterior distribution of the parameters. 

Figure 5: Trace and Density Plots for Estimated Parameters in MCMC Sampling (Areal Unit 

𝑛𝑘𝑡=400) 

 Figure 5: Trace and density plots for the areal unit with 𝑛𝑘𝑡=400, K =16, n = 25 with true 

values 𝛽0 = 0, 𝛽1 = 0.5, 𝛽2 = 0.5. The left panel illustrates the MCMC sample progress over 

iterations, while the right panel displays the posterior distribution of the parameters. 

 

 

Figure 6: RMSE Across Different Areal Unit Sizes for  β0, β1, β2, τS, and τT  



 

A.A. Mustapha et al.                                                                     Menemui Matematik (Discovering Mathematics) 47(1) (2025) 28-39 
 

35 

 

 Figure 6: Graph showing RMSE values for β0, β1, β2, τS, and τT across various areal unit sizes. 

The figure illustrates how RMSE for each parameter fluctuates with spatial scale, providing 

insights into the impact of areal unit size on model accuracy for different parameters. 

Table  1: Posterior mean estimates and 95% credible intervals (C.I) for parameters 𝛽0, 𝛽1, 𝛽2,  

𝜏𝑆 , 𝜏𝑇 , 𝜏𝐼 , 𝜌𝑠  and 𝜌𝑇  across different areal units, 𝑛𝑘𝑡 = N * K= 80, 160, 240, 320, 400 with 

longitudinal value, K =16, and sample size N = 5,10,15,20, 25 and true parameter values 𝛽0 = 0, 

𝛽1 = 0.5, 𝛽2 = 0.5 and 𝜌𝑠=𝜌𝑇=0.8 

Areal 

Unit nkt 

Parameter Mean 

estimate 

95% C.I S.E RMSE Geweke 

Z-test 

80 β0 -2.4864 (-2.5522, -2.4206) 0.0332 1.4398 1.4 

 β1 0.1228 (0.0562, 0.1887) 0.0319 0.7571 0.6 

 β2 0.0051 (0.0016, 0.0131) 0.0324 0.6779 -0.6 

 𝜌𝑆 0.4486 (0.0267, 0.9245) 0.2624 0.4740 0.5 

 𝜌𝑇 

𝜏𝑆 

𝜏𝑇 

𝜏𝐼 

0.3998 

0.0049 

0.0072 

0.0037 

(0.0165, 0.9083) 

(0.0016, 0.0129) 

(0.0018, 0.0234) 

(0.0013, 0.0086) 

0.2587 

0.0021 

0.0058 

0.0023 

0.3629 

- 

- 

- 

-0.8 

-0.9 

0.8 

-1.0 

160 β0 1.5708 (1.4037, 1.6223) 0.0564 0.9729 8.3 

 β1 0.5675 (0.4583, 0.6726) 0.0533 0.6461 2.4 

 β2 0.4822 (0.3773, 0.5842) 0.0546 0.5331 2.8 

 𝜌𝑆 0.4631 (0.0249, 0.9270) 0.2645 0.4259 -1.1 

 𝜌𝑇 

𝜏𝑆 

𝜏𝑇 

𝜏𝐼 

0.3597 

0.0108 

0.0093 

0.0620 

(0.0165, 0.8728) 

(0.0024, 0.0361) 

(0.0019, 0.0325) 

(0.0028, 0.3209) 

0.2538 

0.0170 

0.0064 

0.0425 

0.3908 

- 

- 

- 

0.1 

2.8 

-0.6 

0.8 

240 β0 1.5570 (1.4536, 1.6702) 0.0489 1.0093 0.3 

 β1 0.5314 (0.4428, 0.6219) 0.0450 0.6454 2.1 

 β2 0.5165 (0.4281, 0.6092) 0.0459 0.5433 -0.1 

 𝜌𝑆 0.4151 (0.0235, 0.9124) 0.2665 0.4396 -1.7 

 𝜌𝑇 

𝜏𝑆 

𝜏𝑇 

𝜏𝐼 

0.4200 

0.0158 

0.0088 

0.0310 

(0.0194, 0.9038) 

(0.0021, 0.0768) 

(0.0020, 0.0276) 

(0.0159, 0.0542) 

0.2640 

0.0098 

0.0111 

0.0554 

0.3587 

- 

- 

- 

-0.5 

0.9 

0.4 

-1.9 

320 β0 1.5344 (1.3893, 1.7163) 0.0830 0.9844 3.1 

 β1 0.5135 (0.4305, 0.6079) 0.0454 0.5889 -0.5 

 β2 0.5021 (0.4198, 0.5931) 0.0471 0.4401 2.4 

 𝜌𝑆 0.4151 (0.0181, 0.9005) 0.2634 0.4453 -0.3 

 𝜌𝑇 

𝜏𝑆 

𝜏𝑇 

𝜏𝐼 

0.5523 

0.0078 

0.0233 

0.0206 

(0.0429, 0.9619) 

(0.0020, 0.0262) 

(0.0040, 0.0708) 

(0.0073, 0.0584) 

0.2634 

0.0114 

0.0049 

0.2818 

0.3536 

- 

- 

- 

-0.8 

7.6 

1.2 

-0.6 

400 β0 1.5623 (1.4580, 1.7575) 0.0505 1.0005 37.2 

 β1 0.5097 (0.4364, 0.5985) 0.0347 0.7209 7.7 

 β2 0.5544 (0.4792, 0.6419) 0.0349 0.6421 13.6 

 𝜌𝑆 0.4097 (0.0157, 0.9185) 0.2667 0.4422 1.4 
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 𝜌𝑇 

𝜏𝑆 

𝜏𝑇 

𝜏𝐼 

0.3733 

0.0131 

0.0128 

0.1900 

(0.0112, 0.8685) 

(0.0022, 0.0451) 

(0.0024, 0.0395) 

(0.0142, 0.8984) 

0.2375 

0.0667 

0.0053 

0.1199 

0.3571 

- 

- 

- 

0.7 

12.7 

0.7 

1.2 

 

ANALYSIS AND DISCUSSION 

The relationship between the log-odds of 𝜃𝑘𝑡 and the predictors was expressed as 
ln(𝜃𝑘𝑡)

1−𝜃𝑘𝑡
= 𝛽0 +

𝛽1𝑥1𝑘𝑡 + 𝛽2𝑥2𝑘𝑡. The regression coefficients were specified as 𝜷 = (0,0.5,0.5). 

 To obtain the posterior distribution for our proposed model, we conducted Markov chain 

Monte Carlo (MCMC) sampling. 20,000 MCMC independent samples were generated from a 

single Markov chain and discarded the initial 2,000 samples as a burn-in period and thinned the 

remaining samples by 10 to reduce autocorrelation. Convergence of the MCMC chain was 

assessed using the Geweke diagnostic method, as well as graphical checking. 

 The MCMC sampling allowed us to obtain a posterior distribution that provided insights into 

the model’s performance and the uncertainty associated with the estimated parameters. 

 The trace plots and the density plots for the estimated parameters 𝛽̂0, 𝛽̂1and 𝛽̂2 show that the 

density plots approximate a normal distribution, with average values falling between -2.4864, 

0.1228 and 0.0051 for parameter values 𝛽0, 𝛽1 and 𝛽2 respectively. The posterior estimate for the 

spatial and temporal autocorrelation, 𝜌𝑆 and 𝜌𝑇 are 0.4486 and 0.3998 with 95% credible intervals 

(0.0267, 0.9245) and (0.0165, 0.9083) respectively for the areal unit size of 80 and it was observed 

that the correlations values are positive correlation, the intercept, 𝛽0 is -2.4864, with the 95% 

credible interval as (-2.5522, -2.4206), making the percent of baseline outcome close to -2.49 with 

fairly high accuracy. The main goal is to estimate the effects of the covariates; hence, Covariate 1 

has a positive 𝛽1, = 0. 1228 with the 95% credible interval of (0.0562, 0.1887) implying a small 

effect on the result was noted. Covariate 2, 𝛽2 has a very low impact and it has a mean estimate of 

0.0051 with 95% credible intervals of (0.0016, 0.0131). Therefore there’s moderate level of spatial 

and temporal autocorrelation of the clusters but with high variability. The posterior correlation of 

the spatial, temporal and interaction random effects are 𝜏𝑆, 𝜏𝑇, 𝜏𝐼 are 0.0049, 0.0072 and 0.0037 

with 95% credible intervals (0.0016, 0.0129), (0.0018, 0.0234) and (0.0013, 0.0086) respectively 

which indicated that there’s a positive correlations, also considering the trace plots in Figure 1 for 

all the parameters, they shows that all the chains “wingled” and they overlap well, so the plots 

generated appear well and convergence is considered. Standard errors of these estimates vary from 

-1 to 1 as it can be seen from the Geweke Z-test values. 0 to 1. 4, meaning there is over all 

agreement, but some degree of variation. 

 Figure 2, displays the trace plots and the density plots for the estimated parameters 𝛽0, 𝛽1 and 

𝛽2. Additionally, as shown in Table 1, the size of the areal unit corresponds to the intercept, 𝛽0 

estimate for the areal unit size of 160 is 1.5708 with 95 % credible interval of (1.4037, 1.6223), 

purporting that the baseline outcome is around 1.57 with high precision. The coefficient of 

covariate 1 is large and positive at 0.5675 with C. I. of (0.4583, 0.6726), for which it can be seen 

that it has a strong positive relationship. Covariate 2, 𝛽2 is equal to 0 with the mean estimate of 

the parameter 0.4822 with a credible interval of (0.3773, 0.5842), which reveals a significantly 

positive impact. The spatial and temporal autocorrelation, 𝜌𝑆 and 𝜌𝑇 are 0. 4631 and 0.3597 with 

95% credible interval (0.0249, 0.9270) and (0.0165, 0.8728) proved the moderate spatial 

autocorrelation of the study area. Spatial variance, 𝜏𝑆 equals 0.0108, which is not very dissimilar 

among regions. Temporal variance, 𝜏𝑇 is slightly higher at 0 for gender and approximately 0. 0093, 
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interaction variance, 𝜏𝐼 is 0.0620. Geweke Z-test values range from -0. 6 to 2. 8 asserting that the 

majority of parameters have reached the corresponding values, while some of them indicate higher 

fluctuations. 

 When the areal unit size is 240, Figure 3 displays the trace and density plots for the estimated 

parameters, 𝛽0, 𝛽1 and 𝛽2, as represented by the intercept, 𝛽0 normal baseline outcome of 1.5570 

with 95% credible intervals of (1.4536, 1.6702) reveal a stable baseline result. 

Covariate 1, 𝛽1is positively related with mean estimate of 0.5314 with corresponding 95% credib

le intervals of (0.4428, 0.6219). Covariate 2, 𝛽2is estimated at the mean of 0.5165 with a credible

 interval of (0.4281, 0.6092) which indicates a positive correlation of the variable. The spatial an

d temporal autocorrelation,  𝜌𝑆 and  𝜌𝑇 are 0.4151 and 0.4200 shows moderate spatial 

autocorrelation with 95% credible interval (0.0235, 0.9124) and (0.0194, 0.9038). Concerning the 

dispersion of spatial relationships, The posterior correlation of the spatial, temporal and interaction 

random effects are 𝜏𝑆, 𝜏𝑇, 𝜏𝐼 are 0.0131, 0.0128 and 0.1900 with 95% credible intervals (0.0022, 

0.0451), (0.0024, 0.0395) and (0.0142, 0.8984) respectively which indicated that there’s a positive 

correlations. The numbers of cell cycles per day for lobsters are 0.0131 and 0.0128, both quite 

close to each other indicating little variation. For Geweke Z-test values vary from -1. 9 to 0. 9 of 

which, revealed different levels of convergence of the parameters. 

 In the case of an areal unit size of 320, Figure 2 shows the trace and density plots for the 

estimated parameters, 𝛽0, 𝛽1 and 𝛽2, the intercept was found to be 1.5344 represented by 𝛽0 with 

a 95% credible interval of (1.3893, 1.7163), which showed that the baseline outcome has stabilised 

at 1.53. The coefficient for Covariate 1 is 𝛽1 0.5135 with credible interval of (0.4305, 0.6079) 

which reveals positive impact. Estimate of Covariate 2 is 𝛽2  with a mean estimate of 

0.5021 with a 95% credible interval of (0.4198, 0.5931); showing a positive influence. The estim

ate of the primary spatial and temporal auto-correlation coefficient, 𝜌𝑆  and 𝜌𝑇  are 0.4245 and 

0.5523, with the 95% credible interval of (0.0181, 0. 9005) and (0.0429, 0.9619) Thus, the 

observed correlations among the random effects suggest a moderate level of spatial and temporal 

autocorrelations. The spatial variance, 𝜏𝑆 is 0.0078, indicating high spatial variability. In contrast, 

the temporal variance, 𝜏𝑇  is 0.0233, which suggests a lower level of temporal variability. The 

interaction variance, 𝜏𝐼 is 0.0206, indicating a moderate level of interaction between spatial and 

temporal effects with 95% credible interval (0.0020, 0.0262), (0.0040, 0.0708) and (0.0073, 0.0584) 

shows moderate interaction effects, all of which indicating that there’s positive correlation. 

Geweke Z-test values vary from -0. 8 to 7. 6, for most of the parameters, the convergence is good 

as shown from the above results. 

 Similarly, for the areal unit size of 400, Figure 5 presents the trace and density plots for the 

estimated parameters 𝛽0 , 𝛽1  and 𝛽2 , the intercept is estimated at 1 or 𝛽0  1.5623 with a 95% 

credible interval of (1.4580, 1.7575), implying that the baseline outcome is about 1.56 with high 

precision. The estimate of Covariate 1, 𝛽1 is equal to 0. All firm-specific controls were significant 

at the 5% level and positive in sign with mean values of 0.5097 with credible interval of (0.4364, 

0.5985). On Covariate 2, 𝛽2 the mean estimate is also equal to 0. As for the 95% credible interval 

values of the formula, they total 0.5544 with (0.4792, 0.6419) that, generally, indicate a positive 

impact. The specific spatial and temporal autocorrelation 𝜌𝑆 and 𝜌𝑇  are 0.4097 and 0.3733, with 

the 95% credible interval of (0.0157, 0. 9185) and (0.0112, 0.8685), and hence values suggesting 

moderate levels of spatial autocorrelation. Spatial variance, 𝜏𝑆  is equals 0.0131, reflecting 

moderate variability. Temporal variance, 𝜏𝑇  is 0.0128, and interaction variance, 𝜏𝐼  is 0.1900 

respectively, and low variability, all of which indicating that there’s positive correlation. The p-

value based on the Geweke Z-test lie within the range of 0.7 to 37.2, which indicates fairly 

acceptable levels of convergence for most of the parameters used, although some of the individual 

parameters seem to be very high. 



 

A.A. Mustapha et al.                                                                     Menemui Matematik (Discovering Mathematics) 47(1) (2025) 28-39 
 

38 

 

 

CONCLUSION 
 

In this study, we extended Bayesian spatio-temporal models with space-time interaction effects. 

The simulation results indicated that the model effectively captured the relationship between 

covariates and health outcomes, with moderate spatial and temporal autocorrelations across the 

regions studied. Covariate 1 consistently played a significant role, while the overall variances 

indicated low to moderate variability in spatial and temporal effects. 

The results demonstrated a good fit, suggesting that the model accurately reflects the 

relationship between the predictors and health outcomes in the longitudinal epidemiological data. 

Convergence diagnostics, including trace plots and the Geweke Z-test, further validated the model 

by confirming that the MCMC chains stabilized and produced reliable parameter estimates. 

The RMSE analysis across different areal unit sizes indicates that the parameters β0, β1, and 

β2 are influenced by spatial scale, with fluctuations showing higher sensitivity at smaller units. In 

contrast, the spatial correlation ρS and temporal correlation ρT remain relatively stable, suggesting 

that larger areal units yield consistent spatial and temporal dependencies. This stability implies 

that larger spatial scales may enhance the reliability of correlation estimates.  

The insights gained from this analysis could contribute to a better understanding of spatial 

and temporal disease patterns, particularly in the epidemiology of infectious diseases like measles. 

These findings could also inform future public health interventions in regions susceptible to 

disease outbreaks. 
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