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ABSTRACT 

To address the scarcity of high-resolution BEV charging data, a novel feature engineering technique 
was applied, transforming start-stop electricity charging data sourced from the My Electric Avenue  
project into the count of concurrent charging events. Recognizing the nonlinear, dynamic, and noisy 
nature of BEV charging patterns, a Long Short-Term Memory (LSTM) network was chosen to model 
the electricity demand arising from multiple concurrent BEV charging events. The selected LSTM  
network comprises a single layer with 125 units of LSTM cells employing a tanh activation function  
and a single dense output layer. This study investigates the error distribution of LSTM networks across 
a range of epochs beyond the point of initial convergence, focusing on the Mean Absolute Percentage 
Error (MAPE) as the primary error metric. Unlike previous analyses that often concentrate on specific 
epochs or report loss values without considering the variability of performance metrics across epochs, 
this study examines MAPE values at intervals between 10 and 50 epochs, with increments of 10 epochs. 
The LSTM network converges earlier than epoch 10, and the lowest MAPE was achieved at epoch 20. 
The lowest recorded MAPE was 1.19%, with a corresponding Root Mean Squared Error (RMSE) of 
0.51 . The findings contribute to optimizing LSTM training and improving the generalization of the 
model to unseen data.  

 
Keywords: Battery Electric Vehicles, Long Short-Term Memory, Charging Patterns  

 
 

INTRODUCTION 
 
The widespread embrace of Battery Electric Vehicles (BEVs) on a global scale has resulted in 
numerous nations making exclusive commitments to the sale of BEVs for new passenger cars, 
spanning the cutoff period between 2035 and 2040. This dedicated approach signifies a strategic 
initiative aimed at mitigating the release of greenhouse gases (GHGs) into the atmosphere, given 
that BEVs depend entirely on onboard batteries for propulsion. Notably, since 2016, the carbon 
dioxide (CO2) emissions stemming from Internal Combustion Engine Vehicles (ICEVs) have 
contributed to roughly one-quarter of global emissions (Yi et al., 2022). 
 

The simultaneous charging of multiple BEVs imposes strain on the electric grid, giving rise 
to challenges associated with grid capacity. Electric utility companies are proactively projecting 
the demand capacity originating from BEVs to avert losses stemming from overgeneration. 
Furthermore, these companies are compelled to enhance electricity generation and grid 
infrastructure to accommodate escalating demands that surpass existing capacity levels. The 
haphazard deployment of BEV charging stations and the surge in charging power demand may 
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exert an adverse impact on the reliability of power grids (Chang et al., 2021). This uncoordinated 
demand for EV charging power leads to deteriorating voltage profiles, overloading, harmonic 
distortions, and accelerates the aging of power equipment (Chang et al., 2021). 
 

Electricity possesses a distinctive characteristic wherein, in principle, demand and supply 
equilibrium is imperative and must be maintained continuously (Nguyen & Hansen, 2017). Fast 
charging stations, owing to their elevated power requirements, accentuate the significance of 
accurately predicting charging demand. This predictive capability contributes significantly to 
ensuring the reliability and resilience of the power grid (Yi et al., 2022). The uncoordinated 
charging patterns observed in the substantial adoption of plug-in electric vehicles introduces a 
distinct periodicity and fluctuation, making conventional load forecasting techniques ineffective 
(Zhu et al., 2019). 
 

Many studies have been conducted to model BEV charging data collected at public charging 
stations (Buzna et al., 2019; Chang et al., 2021; Dokur et al., 2022; Kim et al., 2019; Koohfar et 
al., 2023; Mohsenimanesh et al., 2022; Yi et al., 2022; Zhang et al., 2022; Zhu et al., 2019) It is 
acknowledged that acquiring charging data from private charging locations poses challenges. In 
contrast, this study aims to model BEV charging data collected specifically at private charging 
locations. 
 

As per the findings presented by Dokur et al. (2022), and Chang et al. (2021), publicly 
accessible chargers constitute only 25% and 8%, respectively. Despite private chargers drawing 
power at a rate ranging from 1% to nearly 13% compared to public chargers, the sheer quantity of 
private chargers can be up to 11 times higher than that of public chargers. Nevertheless, it is 
noteworthy that despite this prevalence, most time series studies on BEV charging patterns tend 
to concentrate on public chargers, given the limited availability of data on private chargers. 
 

Artificial intelligence exhibits the capability to effectively handle nonlinear, dynamic, and 
noisy time series data. Various techniques have been employed for time series analysis, including 
Artificial Neural Network (ANN), Hidden Markov Model (HMM), Genetic Algorithm (GA), 
Decision Tree (DT), Rough Set Theory, Bayesian Analysis (BA), K-Nearest Neighbors (KNN), 
Particle Swarm Optimization (PSO), Multilayer Perceptron (MLP), Recurrent Neural Networks 
(RNN), LSTM, and Convolutional Neural Network (CNN) (Lin et al., 2021). 
 

Recurrent Neural Network (RNN) is a specific type of neural network designed for processing 
sequence data. However, RNN has limitations related to gradient vanishing issues during error 
backpropagation, making it challenging to learn from long historical data. Addressing this 
limitation, LSTM networks have been introduced. The LSTMs overcome the drawbacks of 
traditional RNNs by integrating short-term memory with long-term memory through gate control 
mechanisms (Wu et al., 2020). The LSTM has demonstrated superior performance in long time 
horizon forecasting compared to other artificial intelligence methods. This efficacy is particularly 
pronounced when utilizing past load data to discern the effects and relationships among time series 
(Zheng et al., 2017). In contrast to traditional power load, BEV load exhibits stronger random 
fluctuations (Shen et al.,2022) 
 

The effectiveness of LSTM is typically assessed by analyzing their performance across 
different epochs during training. However, it has been observed that many studies limit their 
analysis to specific epochs, potentially overlooking significant variations in the error function as 
training progresses. This selective focus may lead to an incomplete understanding of the model's 
true performance over the entire training process. The selective focus on specific epochs, often at 
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the later stages of training, raises concerns about the generalizability and robustness of the 
conclusions drawn from these studies. LSTM networks, like other deep learning models, may 
exhibit fluctuations in the error function even after convergence, indicating that the model's 
performance can vary significantly across epochs.  
 

Chang et al. (2021) set the epoch hyperparameter at 50, 100, and 150 epochs while the analysis 
focused exclusively on the results at 150 epochs, disregarding variations in the error function at 
subsequent epochs. Dokur et al. (2022) only considered LSTM performance at 3 epochs, which 
may not capture the full convergence patterns of the model, potentially leading to incomplete 
conclusions about the model’s generalization ability. Kim et al. (2019) set the epoch 
hyperparameter at 10, 30, 50, 70, 80, 100, 120, and 140 epochs. Despite this range, the analysis 
centered solely on the results at 100 epochs, missing out on potential insights from other epochs. 
Analysis by Koohfar et al. (2023) was limited to 100 epochs. This selective reporting does not 
reflect possible trends in the error function before or after 100 epochs, potentially skewing the 
understanding of the model's performance. Yi et al. (2022) focused on LSTM performance at 200 
epochs. While this might capture the model's state at convergence, it overlooks the variations in 
the error function across other epochs, which could provide valuable insights into the training 
dynamics. Zhu et al. (2019) analyzed the training and loss function at 1, 10, 20, and 30 epochs. 
However, the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) metrics were 
only reported at 30 epochs, neglecting the patterns of these error metrics at earlier epochs. 
 

In this study, we aim to investigate the error distribution of an LSTM model across a range of 
epochs beyond its initial point of convergence. Specifically, we will analyze the MAPE as our 
primary error metric. Unlike traditional analyses that often focus on the loss function or specific 
epoch numbers, this study will provide a detailed examination of how MAPE values behave over 
a series of epochs after the model has converged. To explore the variability of error metrics post-
convergence, we will evaluate the MAPE across epochs ranging from 10 to 50, with increments 
of 10 epochs. This range is selected to capture the performance of the model not only at early 
stages of training but also as it progresses through additional iterations. By analyzing the error 
distribution across these epochs, this study aims to uncover any underlying trends or fluctuations 
that might be overlooked when focusing on a single epoch, as seen in some prior studies. 
 

Siami-Namini et al. (2019) provided an extensive report of loss values across multiple epochs, 
offering a useful reference for understanding the loss landscape during training. However, their 
study did not delve deeply into specific error metrics like MAPE, nor did it examine the 
distribution of errors across different epochs post-convergence.  
 

The detailed analysis of MAPE across a range of epochs is not only a methodological 
refinement but also has significant implications for model generalization. This study will examine 
how the error distribution evolves with continued training, the point at which additional epochs 
cease to provide meaningful improvements or may even lead to overfitting. This insight is crucial 
for optimizing LSTM training processes and ensuring robust model performance on unseen data. 
 
 

METHODOLOGY 
 
The study of BEV charging patterns has predominantly relied on the analysis of authentic data 
obtained from public charging facilities. Specifically, Buzna et al. (2019) employed actual BEV 
load data derived from a dataset collected in 1700 charging stations in the Netherlands. Meanwhile, 
Chang et al. (2021) utilized a dataset encompassing BEV charging power demand from fast 
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charging stations across the entire Jeju Island area. Dokur et al. (2022) conducted their study using 
7891 charging events collected from various public stations in Elaad Netherlands in 2019. 
 

As per the findings presented by Dokur et al. (2022), and Chang et al. (2021), publicly 
accessible 
chargers constitute only 25% and 8%, respectively. Despite private chargers drawing power at a 
rate ranging from 1% to nearly 13% compared to public chargers, the sheer quantity of private 
chargers can be up to 11 times higher than that of public chargers. Nevertheless, it is noteworthy 
that despite this prevalence, most time series studies on BEV charging patterns tend to concentrate 
on public chargers, given the limited availability of data on private chargers. 
 

EA Technology initiated a BEV loaner program (My Electric Avenue). This program involved 
providing a select group of participants with a few hundred Nissan Leaf first generation BEVs, 
spanning between 2013 and 2015. The objective of the program was to comprehensively study 
user charging patterns, with a particular focus on understanding BEV charging patterns. 
Participants were equipped with Level 1 home chargers as part of the initiative. At the conclusion 
of the program, EA Technology gathered comprehensive data from various aspects of the initiative. 
The collected data encompassed information such as the locations of the chargers, the start and 
stop timestamps of charging events, the battery charge levels at the onset and conclusion of 
charging events, and the recorded distances traveled by the participating vehicles. 
 

Forecasting methods can be categorized according to various techniques, including classical, 
machine learning, and deep learning approaches (El-Azab et al., 2023). The majority of statistical 
or traditional methods, such as Autoregressive integrated moving average (ARIMA), Seasonal 
Autoregressive Integrated Moving Average (SARIMA), Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH), Linear Regression, Linear Discriminate Analysis (LDA), and 
Support Vector Machine (SVM), rely on assumptions of linearity, stability, and normally 
distributed data (Lin et al., 2021). However, the stochastic nature of BEV charging demand, 
influenced by individual BEV owners' driving and travel patterns, introduces variability and 
unpredictability (Buzna et al., 2019). 
 

Figure 1 visualizes a single LSTM cell, its input layer, output layer, and hidden internal layers. 
The LSTM cell takes input from the previous cell state memory (ct-1), previous cell hidden state 
(ht-1), and current input data (xt). Internally, the intermediate state of forget gate (ft), input gate (it), 
and prior cell state (ćt) is calculated. Outputs from the LSTM cell are current cell state (ct), current 
hidden cell state (ht), and output gate state (ot). 
 
The LSTM cell is defined by Eq. (1-6). 
 
    𝑓𝑓𝑡𝑡 = 𝜎𝜎𝑔𝑔�𝑊𝑊𝑓𝑓 ∗ 𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓 ∗ ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓�          (1) 
    𝑖𝑖𝑡𝑡 = 𝜎𝜎𝑔𝑔(𝑊𝑊𝑖𝑖 ∗ 𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑖𝑖 ∗ ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖)          (2) 
    𝑜𝑜𝑡𝑡 = 𝜎𝜎𝑔𝑔(𝑊𝑊𝑜𝑜 ∗ 𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑜𝑜 ∗ ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜)          (3)
    𝑐́𝑐𝑡𝑡 = 𝜎𝜎𝑔𝑔(𝑊𝑊𝑐𝑐 ∗ 𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐 ∗ ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐)          (4) 
    𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∙ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∙ 𝑐́𝑐𝑡𝑡           (5) 
    ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∙ 𝜎𝜎𝑐𝑐(𝑐𝑐𝑡𝑡)            (6) 
 
where, the constants Wf, Wi, Wo, Wc, Uf, Ui, Uo, and Uc are weight matrices. The constants bf, bi, 
bo, and bc are biases. Both weight matrices and biases are not time-dependant. The σg is a sigmoid 
function defined by Eq. (7), and the σc is tanh hyperbolic tangent function defined by Eq. (8). 
 



 

S.Salleh et al.                                                                                 Menemui Matematik (Discovering Mathematics) 46(3) (2024) 75-85 

79 

 

    𝜎𝜎𝑔𝑔 = (1 + 𝑒𝑒−𝑥𝑥)−1              (7) 
 

𝜎𝜎𝑐𝑐 = 𝑒𝑒2𝑥𝑥−1
𝑒𝑒2𝑥𝑥+1

             (8) 
 
 

 
Figure 1: Visualization of single LSTM cell 

 
The LSTM network architecture utilized for this study is depicted in Figure 2. The hidden 

LSTM 
layer is structured as a sequential single layer, encompassing 125 units of LSTM cells. In the 
training process, the data was divided into sequences of 60 data points, each associated with a 
single expected output. The expected output corresponds to the subsequent data point in the 
training dataset. The structure of the data aligns with the LSTM network for effective training and 
prediction. 
 

 
Figure 2: LSTM network architecture for this study 

 
The LSTM model employed in this study is configured for supervised learning. To impart the 

patterns of the data to the LSTM network, the feature-engineered data, as depicted in Figure 3, is 
partitioned into training and testing sets. Specifically, the training data comprises 80% of the 
dataset, starting from the initial entry, while the testing data consists of the remaining subsequent 
20% of the dataset (Koohfar et al., 2023). From the total 1-minute interval feature engineered BEV 
concurrent active charging data, the training dataset contains 452,304 data points, while the testing 
dataset consists of the remaining 50,256 data points. 
 

The purpose of the training data is to enable the LSTM network to fine-tune its weight 
matrices and biases. Through exposure to the training dataset, the network refines its parameters 
to learn and capture the underlying patterns and relationships within the data. This process 
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enhances the model's ability to make accurate predictions when presented with new, unseen data. 
The testing data is the unseen data in this study. 
 

The performance of the proposed forecasting method is rigorously evaluated using two widely 
recognized error metrics: MAPE, and RMSE. These metrics are chosen to provide a 
comprehensive assessment of the model's accuracy, robustness, and overall predictive capability. 
Using both MAPE and RMSE together provides a robust evaluation of the forecasting model. 
MAPE gives an understanding of the relative error and is beneficial for interpreting the model’s 
performance across different magnitudes of data. RMSE, on the other hand, focuses on absolute 
errors, highlighting the significance of large discrepancies between predicted and actual values. 
 

MAPE is calculated for each forecasted data point and provides a measure of the average 
relative error between the predicted and actual values, expressed as a percentage of the actual value. 
MAPE is defined mathematically as: 
  

MAPE = 1
𝑛𝑛
∑ �𝑦𝑦𝑡𝑡−𝑦𝑦�𝑡𝑡

𝑦𝑦𝑡𝑡
� × 100𝑛𝑛

𝑡𝑡=1     

 (9) 
 
where 𝑦𝑦𝑡𝑡 represents the observed value, 𝑦𝑦�𝑡𝑡 is the forecasted value at time t, and n is the number of 
observations. MAPE expresses the prediction error as a percentage, offering an intuitive measure 
of the model accuracy across different scales of data. It is particularly useful in providing insight 
into the model generalization capability, as it averages the errors over all data points.  
 
RMSE is another critical metric that measures the absolute magnitude of prediction errors, 
penalizing larger errors more heavily. It is computed as: 
 

RMSE = �1
𝑛𝑛
∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡)2𝑛𝑛
t=1          (10) 

 
RMSE is valuable for understanding the overall accuracy of the model in the same units as the 
data, making it easier to grasp the practical impact of the forecast errors. By squaring the errors 
before averaging them, RMSE emphasizes larger deviations, which is particularly important in 
applications where minimizing significant errors is crucial. 
 
 

RESULTS AND DISCUSSIONS 
 
The dataset utilized in this study is secondary data sourced from the EA Technology program (My 
Electric Avenue). The relevant data consists of discrete records capturing the start and stop times 
of BEV charging sessions, with timestamps recorded at minute intervals. To facilitate time-series 
analysis, the discrete start and stop timestamps were transformed into a continuous time series. 
This transformation was achieved through a custom feature engineering process, which involved 
aggregating the data to represent the number of concurrent active charging events at each minute. 
The result is a continuous time series that tracks the dynamic patterns of EV charging activities 
over time. 

The transformed dataset, hereafter referred to as the observed data, is illustrated in Figure 3. 
This dataset forms the foundation for the subsequent analysis, facilitating the investigation of the 
BEV charging patterns and the assessment of the forecasting model's performance. Upon visual 
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inspection, the observed data reveals a clear daily seasonality in BEV charging patterns. 
Specifically, charging activity begins to increase around 6:00 PM, reaching a peak at 
approximately 8:00 PM. This patterns is highlighted in the snippet window of Figure 3, which 
provides a closer view of the daily fluctuations. Additionally, the main plot in Figure 3 indicates 
the presence of another concurrent seasonal patterns, suggesting that multiple layers of seasonality 
may be influencing the charging patterns. These preliminary observations underline the 
complexity of the dataset and underscore the importance of capturing these seasonal effects in the 
forecasting model. 

 
Figure 3: Concurrent active charging count by minutes 

 
To facilitate the development and evaluation of the forecasting model, the observed data was 

systematically partitioned into two distinct subsets: a training set and a testing set. The training set, 
comprising 80% of the total dataset, was used to train the model, enabling it to learn the underlying 
patterns and relationships within the data. The remaining 20% of the data was reserved as the 
testing set, which was used to evaluate the model's predictive performance on unseen data. This 
methodical splitting of the dataset is critical for validating the model's accuracy in forecasting the 
BEV charging patterns.  
 

In Figure 4, the training set is represented by the first 80% of the data, capturing the early and 
mid-range periods of the observed dataset. This portion of the data includes various patterns of 
daily and potential longer-term seasonal patterns, which the model utilizes to learn the dynamics 
of EV charging activities. The testing set, comprising the final 20% of the data, is shown as the 
latter segment of the observed data. This partition is crucial for evaluating the model's predictive 
performance, as it contains data that the model has not encountered during the training process. 
The visual distinction between the training and testing sets in Figure 4 highlights the continuity of 
the charging events and ensures that the structure of the data is preserved. This continuity is 
essential for maintaining the integrity of the time-series data, allowing for a more accurate 
assessment of the model's ability to forecast future charging patterns. 
 

To ensure the consistency and robustness of the results, the modeling and forecasting 
processes were executed on two distinct CPU configurations. The first computational environment 
utilized an AMD Ryzen 7 5800HS processor with 16GB of memory, referred to as CPU_A. In 
parallel, a second environment employed an Intel i7-8700T processor with 8GB of memory, 
designated as CPU_L. This dual-CPU approach was implemented to evaluate whether hardware 
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differences could influence the model's performance and the reproducibility of the results. The 
LSTM model was iteratively trained and evaluated at epoch intervals of 10, 20, 30, 40, and 50. For 
each configuration (CPU_A and CPU_L), the models were trained independently at these epoch 
intervals to assess the impact of training duration on the model’s accuracy. After each iteration, 
the forecasted values generated by the model were validated against the testing dataset. The 
performance of each model was quantitatively assessed using two key metrics: RMSE and MAPE. 
 

 
Figure 4: Training and testing set partitioned into 80:20 ratio 

 
Figure 5(a) illustrates the relationship between MAPE and the number of epochs for models 

developed using both CPU_A and CPU_L. The figure provides a comparative visualization of how 
the model's accuracy evolved as the number of training epochs increased. This comparison reveals 
the model's sensitivity to different hardware configurations and training durations, offering 
insights into the optimal conditions for achieving accurate forecasts. A key observation from 
Figure 5(a) is that the LSTM model consistently reached its minimum MAPE at epoch 20, 
regardless of the CPU used. This finding suggests that, for this particular dataset and model 
configuration, 20 epochs represent the optimal balance between underfitting and overfitting, 
leading to the best generalization performance on the testing data. The convergence of results 
across both CPUs further reinforces the reliability of this epoch selection, indicating that the 
model's performance is robust to variations in computational resources. 
 

Throughout each epoch run, the value of the loss function was meticulously recorded to 
monitor the model's performance during training. Achieving the lowest possible value of the loss 
function is crucial, as it indicates that the model is making predictions on training data that closely 
align with the actual data. In the context of neural networks, the goal is to reach the global 
minimum of the loss function. This global minimum represents the point where the model's 
predictions are most accurate across the training dataset. However, in practice, the model may only 
approach this minimum, depending on various factors such as the complexity of the model, the 
learning rate, and the number of epochs. 
 

Figure 5(b) illustrates the recorded loss function values across the epochs during the training 
process. As observed, the LSTM model's loss function consistently decreased as the number of 
epochs increased, indicating that the model was progressively improving its fit to the training data. 
Notably, the model had significant learning occurred within the first few epochs as shown by 
drastic drop in the loss function for both CPU_A and CPU_L. Subsequent to epoch 10, the learning 
rate which indicated by reduction in the loss function reduces slightly at every epoch. 
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   (a)       (b) 
 
Figure 5: (a) MAPE values over number of epochs run, (b) Loss function values over number of 
epochs run 
 
Table 1: Forecast evaluation and loss function using LSTM 

 CPU_A CPU_L 

Epoch RMSE MAPE (%) Loss Function RMSE MAPE (%) Loss Function 

1 0.58 2.02 9.3675x10-5 0.58 1.97 9.0025x10-5 

10 0.52 1.57 3.8275x10-5 0.51 1.50 3.8266x10-5 

20 0.51 1.38 3.7209x10-5 0.51 1.19 3.7259x10-5 

30 0.52 1.48 3.6928x10-5 0.51 1.36 3.6870x10-5 

40 0.53 1.75 3.6713x10-5 0.52 1.64 3.6734x10-5 

50 0.53 1.79 3.6650x10-5 0.55 2.09 3.6594x10-5 

 
Table 1 provides a comprehensive summary of the relationship between the number of epochs 

and the corresponding values of RMSE, MAPE, and the loss function for both CPU_A and CPU_L. 
This table serves as a key reference for understanding how the model's performance metrics 
evolved with additional training. It reveals that the LSTM model's error metrics, such as RMSE 
and MAPE, were closely aligned with the patterns of the loss function, with the most significant 
improvements occurring between epochs 10 and 20. For both CPU_A and CPU_L, the results 
consistently show that the model achieved its lowest RMSE and MAPE values at epoch 20, which 
corresponds to the point where the loss function was minimized. This correlation between the loss 
function and error metrics underscores the importance of selecting an appropriate number of 
training epochs. Training beyond epoch 20 showed diminishing returns, with minimal 
improvements in the loss function and error metrics, suggesting that this is an optimal stopping 
point for this specific dataset and model configuration. 
 

CONCLUSIONS 
 
The LSTM model developed in this study has achieved successful one-step-ahead forecasts with 
the lowest MAPE recorded as 1.19% on CPU_L at epoch 20 and 1.38% on CPU_A at a comparable 
epoch (epoch 20). The corresponding loss function values for the lowest MAPE on CPU_A and 
CPU_L are 3.7209x10-5 and 3.7259x10-5, respectively. 
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The use of two different CPUs highlights considerations for computational efficiency. While 
CPU_A, with its higher memory capacity, may offer faster processing times and potentially allow 
for larger batch sizes or more complex model architectures, the comparable performance achieved 
with CPU_L indicates that similar results can be obtained even with less powerful hardware. This 
insight is valuable for practitioners who may need to balance model performance with available 
computational resources, particularly in real-world applications where hardware constraints are a 
common consideration. By systematically analyzing the model's performance across different 
epochs and CPU configurations, this study not only identifies the optimal training parameters for 
the LSTM model but also demonstrates the importance of considering hardware environments in 
the evaluation process. The consistent results across CPUs validate the robustness of the 
forecasting approach, ensuring that the findings are both reliable and reproducible across different 
computational setups. 
 

The analysis of the loss function across epochs provides valuable insights into the 
optimization process of the LSTM model. By understanding how the loss function evolves during 
training, practitioners can make informed decisions about the appropriate number of epochs 
needed to achieve optimal model performance without unnecessary computational expense. The 
findings suggest that early stopping could have been employed around epoch 20. This detailed 
examination of the loss function, coupled with the analysis of RMSE and MAPE, highlights the 
critical role of epoch selection in neural network training. It emphasizes the importance of 
monitoring the loss function as a key indicator of the model's progress and provides a practical 
framework for determining when to stop training to achieve the best possible outcomes. 
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