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ABSTRACT 
The problem of MHD mixed convection stagnation-point flow over a permeable shrinking and 
stretching plates with the effects of suction and blowing is studied. The effect of viscous dissipation is 
also being considered. The governing partial differential equations are transformed into an ordinary 
differential equations via similarity transformations. Using the transformed equations, the numerical 
results for different parameters are obtained using bvp4c method in Matlab software.  For verification, 
the results are compared with previous published studies, and a good agreement between them are found. 
In this study, it is observed that the Eckert number increases the skin friction coefficient, however the 
heat transfer at the surface reduced. For assisting and opposing flows, the velocity pofiles increase with 
shrinking/stretching parameter. It is found that two solutions observed when assisting and opposing 
flows are considered, and existing in both shrinking and stretching cases, and also for suction and 
blowing cases.  

 
Keywords: Mixed Convection, Permeable, Stagnation-Point, Two Solutions  

 
 

INTRODUCTION 
 
Mixed convection refers to the combination of natural convection and forced convection, 
occurring when the effects of forced flow in natural convection or buoyant forces in forced 
convection become significant. Mixed convection is important in many industrial and engineering 
applications.  It plays a crucial role in various industrial and engineering applications, including 
paper production, steel extrusion, pipeline transport, atmospheric boundary layer flows, electronic 
power supply, and nuclear reactors. (Yahaya et al., 2023).  Khashi’ie et al. (2019) concluded that 
the fluid velocity increases with magnetic and bouyancy parameters while for the fluid temperature, 
opposite trends occurred. In mixed convection using hybrid nanofluid model proposed by Zainal 
et al. (2020), it was found that the fluid velocity increases with magnetic parameter, while the fluid 
temperature decreases, demonstrating a contradictory behavior. Recently, Mahmood et al. (2024) 
analyzed three hybrid nanofluid models and concluded that the Xue model yielded the highest 
average Nusselt numbers, followed by the Yamada-Ota model, and the lowest is the Hamilton-
Crosser model.  
 

Some published results based on shrinking and/or stretching plate can be found in Ibrahim et 
al. (2013), Makinde et al. (2013), Mansur et al. (2015), Jusoh and Nazar (2018), Zainal et al. (2021), 
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Mahabaleshwar et al. (2022), Maranna et al. (2022) and Ul Haq et al. (2023). Ibrahim et al. (2013) 
analyzed the effect of magnetic field on boundary layer flow and heat transfer of nanofluid over a 
stretching sheet, observing that the thermal conductivity increased even though there is a small 
addition of nanoparticles. Other researchers that been cited earlier, namely, Makinde et al. (2013), 
Mansur et al. (2015), Jusoh and Nazar (2018), Zainal et al. (2021), and Ul Haq et al. (2023) also 
concentrated on nanofluid model by considering both shrinking sheet and stretching sheet. 
Recently, many investigations observed multiple solutions specifically two solutions in their study. 
Two solutions were reported in many research papers, namely in Ali et al. (2014), Mansur et al. 
(2015), Jusoh and Nazar (2018), Junoh et al. (2021), Zainal et al. (2021), Ul Haq et al. (2023) and 
many other papers.  

 
The above-mentioned studies assumed that the Eckert number is neglected due to viscous 

dissipation is small. Not many published papers on Eckert number found in literature. The Eckert 
number phenomenon is investigated experimentally by Gschwendtner (2004). Gschwendtner 
(2004) studied the heat transfer from a heated, vertically rotating cylinder subjected to crossflow. 
Later, Pozzi and Tognaccini (2012) proposed the analytical solution of the laminar incompressible 
thermo-fluid dynamic field arising in an infinite pipe (circular section) with the effect of Eckert 
number. Further, Kejela et al. (2021) solved the problem of magnetohydrodynamic (MHD) 
Hiemenz flow by using optimal homotopy asymptotic method and found that the temperature of 
the fluid increases with the Eckert number, however the velocity of the fluid is not affected by the 
Eckert number.  Ramzan et al. (2021) employed the homotopy analysis method (HAM) and 
observed unique solution.  Ramzan et al. (2021) considered both slip and no-slip conditions, and 
observed that the Nusselt number and skin friction coefficient increased with Eckert number, 
stretching parameter, heat generation parameter and radiation parameter. Later, Dessie (2021) 
applied the scaling group transformation method to convert the partial differential equations into 
a system of nonlinear ordinary differential equations and concluded that the Eckert number leads 
to a decrease in the fluid temperature in the thermal boundary layer region of the Casson fluid flow.   

 
Recently, Jabeen et al. (2024) solved numerically the problem involving Williamson 

nanofluid with the presence of viscous dissipation, bioconvection and activation energy.  Further, 
in the problem of mixed convection boundary layer flow over a horizontal circular cylinder in 
hybrid nanofluid, Elfiano et al. (2024) solved numerically the transformed partial differential 
equations using Keller-box method. Elfiano et al. (2024) observed that the Eckert number has 
decreased the temperature distribution with no significant change in the fluid velocity and 
concluded that the viscous dissipation effect was minimal at stagnation region. To date, not much 
research done related to viscous dissipation. Hence, the recent literatures are hard to find.  

  
The problem of MHD stagnation-point flow and heat transfer over a permeable shrinking plate 

and stretching plate investigated by Ali et al. (2014) and observed that the Eckert number reduced 
the heat transfer rate at the surface, and two solutions found to exist for both suction and injection 
cases. Therefore, the aim of this present paper is to extend the research performed by Ali et al. 
(2014) by considering the bouyancy effect on MHD mixed convection boundary layer flow over 
a vertical permeable plate.  We also consider shrinking plate and stretching plate, as well as the 
effect of viscous dissipation. 
 
 

MATHEMATICAL FORMULATION 
 
Consider a steady MHD two-dimensional stagnation-point flow of a viscous, incompressible 
electrically conducting fluids over a vertical permeable flat plate such that the plate is shrinking or 
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stretching in its own plane with the effects of an externally applied magnetic field with constant 
strength, H0  and viscous dissipation.   
 

It is assumed that both the shrinking/stretching velocity, uw(x) and the external velocity, ue(x) 
impinging the stretching plate vary linearly with the distance from the stagnation-point, namely 
uw(x) = mx and ue(x) = px, where p and m are constants with p > 0, and m < 0 for shrinking plate 
and m > 0 for stretching plate. It is also assumed that the velocity of the mass flux is 𝑣𝑣0, where 
𝑣𝑣0 < 0  represents suction and 𝑣𝑣0 > 0  represents blowing.  We also assume that the surface 
temperature varies with the distance from the stagnation-point such that 𝑇𝑇𝑇𝑇𝑤𝑤(𝑥𝑥) = 𝑇𝑇𝑇𝑇∞ +
𝑘𝑘𝑥𝑥2  where 𝑇𝑇𝑇𝑇𝑤𝑤 is surface temperature, 𝑇𝑇𝑇𝑇∞ is the ambient temperature and k is a positive constant 
with k > 0 for a heated surface 𝑇𝑇𝑇𝑇𝑤𝑤(𝑥𝑥) > 𝑇𝑇𝑇𝑇∞ (assisting flow) and k < 0 for a cooled surface 
𝑇𝑇𝑇𝑇𝑤𝑤(𝑥𝑥) < 𝑇𝑇𝑇𝑇∞  (opposing flow).  When the upper half of the plate is heated and the lower half of 
the plate is cooled, the assisting flow occurs. Meanwhile, opposing flow occurs when the upper 
section of the plate is cooled while the lower section is heated.  
 

Therefore, the basic governing equations are 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                    (1) 

𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑢𝑢𝑒𝑒
𝑑𝑑𝑢𝑢𝑒𝑒
𝑑𝑑𝑥𝑥

+ 𝜈𝜈 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

+ 𝜎𝜎𝑒𝑒𝑢𝑢𝑒𝑒2𝐻𝐻02

𝜌𝜌
(𝑢𝑢𝑒𝑒 − 𝑢𝑢) + 𝑔𝑔𝑔𝑔(𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇∞)                         (2) 

𝑢𝑢 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛼𝛼 𝜕𝜕2𝑇𝑇𝑇𝑇
𝜕𝜕𝑦𝑦2

+ 𝜈𝜈
𝐶𝐶𝑠𝑠
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ 𝜎𝜎𝑒𝑒𝜇𝜇𝑒𝑒2𝐻𝐻02

𝜌𝜌𝐶𝐶𝑝𝑝
(𝑢𝑢𝑒𝑒 − 𝑢𝑢)2                       (3) 

where u and v are the velocity components along the x and y axes, respectively. Further, ρ is the 
fluid density, Cs is specific heat capacity at constant pressure, Tr is the fluid temperature, 𝜈𝜈 is the 
kinematic viscosity, 𝜇𝜇𝑒𝑒 is magnetic permeability, g is the gravity acceleration, 𝜎𝜎𝑒𝑒 is the electrical 
conductivity, β is the thermal expansion coefficient and α is the thermal diffusivity. 
 

Following Ali et al. (2014), the boundary conditions for Eqs. (1) - (3) are 

𝑣𝑣 = 𝑣𝑣𝑤𝑤(𝑥𝑥) =  𝑣𝑣0,   𝑢𝑢 = 𝑢𝑢𝑤𝑤(𝑥𝑥) = 𝑚𝑚𝑚𝑚 ,𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑤𝑤(𝑥𝑥) = 𝑇𝑇𝑇𝑇∞ + 𝑘𝑘𝑥𝑥2  at y = 0       (4) 

            𝑢𝑢 = 𝑢𝑢𝑒𝑒(𝑥𝑥) → 𝑝𝑝𝑝𝑝,   𝑇𝑇𝑇𝑇 → 𝑇𝑇𝑇𝑇∞           as y → ∞.         (5) 
 
The nonlinear partial differential Eq. (1) is satisied, while Eqs. (2) and (3) are transformed into 
nonlinear ordinary differential equations using the following similarity transformation: 

𝜓𝜓 = 𝑥𝑥�𝑝𝑝𝑝𝑝𝑓𝑓(𝜂𝜂),   𝜃𝜃(𝜂𝜂) = 𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇∞
𝑇𝑇𝑇𝑇𝑤𝑤−𝑇𝑇𝑇𝑇∞

,   𝜂𝜂 = �𝑝𝑝
𝜈𝜈
𝑦𝑦                                   (6) 

where 𝜓𝜓 is the stream function, with 𝑢𝑢 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 and 𝑣𝑣 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

.  Thus, using Eq. (6), Eqs. (2) and (3) 

are reduced to the following set of ordinary  differential equations: 

𝑓𝑓′′′ + 𝑓𝑓𝑓𝑓′′ + 1 − 𝑓𝑓′2 + 𝑀𝑀2(1 − 𝑓𝑓′) + 𝜆𝜆𝜆𝜆 = 0            (7) 

1
𝑃𝑃𝑃𝑃
𝜃𝜃′′ + 𝑓𝑓𝜃𝜃′ − 2𝑓𝑓′𝜃𝜃 + 𝐸𝐸𝐸𝐸𝑓𝑓′′2 + 𝐸𝐸𝐸𝐸𝑀𝑀2(1 − 𝑓𝑓′)2 = 0.             (8) 
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By applying the similarity transformation (6) to Eqs. (4) and (5), we obtain a new set of boundary 
conditions as follows:  

𝑓𝑓(0) = 𝑠𝑠,   𝑓𝑓′(0) =  𝐴𝐴,   𝜃𝜃(0) = 1                           (9) 

𝑓𝑓′(𝜂𝜂) → 1 ,𝜃𝜃(𝜂𝜂) → 0  as 𝜂𝜂 → ∞          (10) 

with primes denote differentiation with respect to 𝜂𝜂, 𝑀𝑀 = 𝜇𝜇𝑒𝑒𝐻𝐻0�
𝜎𝜎𝑒𝑒
𝑎𝑎𝑎𝑎

  is the magnetic parameter, 

Pr =  𝜈𝜈
𝛼𝛼
 is the Prandtl number, 𝐸𝐸𝐸𝐸 =  𝑢𝑢𝑒𝑒2(𝑥𝑥)

𝐶𝐶𝑠𝑠[𝑇𝑇𝑇𝑇𝑤𝑤(𝑥𝑥)−𝑇𝑇𝑇𝑇∞]  is the Eckert number, 𝑠𝑠 = − 𝜈𝜈0
√𝑝𝑝𝑝𝑝

  is the mass 

flux parameter, 𝐴𝐴 = 𝑚𝑚
𝑝𝑝

 is the shrinking/stretching parameter and 𝜆𝜆 = 𝐺𝐺𝐺𝐺𝑥𝑥
𝑅𝑅𝑅𝑅𝑥𝑥2

  is the mixed convection 

parameter (also known as bouyancy parameter), where 𝐺𝐺𝐺𝐺𝑥𝑥 = 𝑔𝑔𝑔𝑔(𝑇𝑇𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑇𝑇∞)𝑥𝑥3 𝜈𝜈2 ⁄ is the local 
Grashof number and 𝑅𝑅𝑅𝑅𝑥𝑥 = 𝑢𝑢𝑒𝑒(𝑥𝑥)𝑥𝑥 𝜈𝜈⁄  is the local Reynolds number.  
 

It is good to mention that A < 0 represents a shrinking plate, A > 0 represents a stretching plate 
and for a fixed plate, A = 0. Noticed that λ < 0 corresponds to opposing flow and λ > 0 corresponds 
to an assisting flow. Meanwhile, s < 0 and s > 0 are refer to blowing case and suction case, 
respectively. 

 
The physical quantities in this study are the local skin friction coefficient and local Nusselt 

number given by 

𝐶𝐶𝑓𝑓 = 𝜏𝜏𝑤𝑤
𝜌𝜌𝑢𝑢𝑒𝑒2(𝑥𝑥) 

 , 𝑁𝑁𝑢𝑢𝑥𝑥 = 𝑥𝑥𝑞𝑞𝑤𝑤
𝑐𝑐(𝑇𝑇𝑇𝑇𝑤𝑤−𝑇𝑇𝑇𝑇∞)

                        (11) 

where 𝜏𝜏𝑤𝑤 =  𝜇𝜇 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑦𝑦=0

 is the wall shear stress along the surface and 𝑞𝑞𝑤𝑤 = −𝑐𝑐 �𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑦𝑦=0

 is the 

surface heat flux, with μ is the dynamic viscosity and c is the thermal conductivity.  Using Eq. (6), 
Eq. (11) becomes 

𝐶𝐶𝑓𝑓 𝑅𝑅𝑒𝑒𝑥𝑥
1
2 = 𝑓𝑓′′(0),    𝑅𝑅𝑒𝑒𝑥𝑥

−1/2𝑁𝑁𝑢𝑢𝑥𝑥 = −𝜃𝜃′(0).                                                    (12) 
 
 

 
RESULTS AND DISCUSSION 

 
The numerical results obtained by solving the transformed equations (7) and (8) together with the 
new boundary conditions (9) and (10) using bvp4c in Matlab solver. By using bvp4c, we will 
obtain the velocity profiles, temperature profiles, the skin friction coefficient and local Nusselt 
number for various values of parameters, namely, the stretching/shrinking parameter A, magnetic 
parameter M, mass flux parameter s, Prandtl number Pr, Eckert number Ec, and bouyancy 
parameter λ. Following Gschwendtner (2004), maximum heat transfer occurs when the Eckert 
number (Ec) is approximately 0.3. Thus, for this study, we adopt Ec = 0.3. 

To ensure the validity and accuracy of this present method, the numerical results of the 
dimensionless skin friction coefficient f ′′(0) and the local Nusselt number −θ ′(0) obtained are 
being compared with those of Ishak et al. (2010) and Ali et al. (2014), where two solutions are 
produced. Therefore, Table 1 displays the numerical comparison results of the skin friction 
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coefficient f ′′(0) for different values of shrinking/stretching parameter A, when the magnetic 
parameter M, Eckert number Ec, the mass flux parameter s and the bouyancy parameter λ are 
absent. From Table 1, it is found that the results of this present research and previous published 
papers are in very good agreement for skin friction coefficient.  The table also shows the two 
solutions occur when the plate is shrunk and unique solution found for stretching case. 
  

Table 1: Comparison values for skin friction coefficient for stretching and shrinking cases when 
M = 0, Ec = 0, s = 0 and λ = 0.  Results in [ ] refer to the second solution 

             f ′′(0)  
A Ishak et al. (2010) Ali et al. (2014) Current Results 
0 1.232588 1.232588 1.232588 

0.5 0.713295 0.713295 0.713295 
1 0 0 0 

−0.5 1.495670 1.495670 1.495670 
−1 1.328817 1.328817 1.328817 

−1.15 1.082231 
[0.116702] 

1.082231 
[0.116702] 

1.082231 
[0.116702] 

−1.2465 0.554283 
[0.584295] 

0.554283 
[0.584295] 

0.554283 
[0.584295] 

 
Figures 1 and 2 demonstrate the effect of shrinking/stretching parameter on velocity profile 

for assisting and opposing flows, respectively.  Figures 1 and 2 show that the velocity profiles 
increase as A increases in first solution.  For second solution, the velocity profile of Figures 1 and 
2 displays an uncertainty trend with A.  Figure 3 shows the influence of shrinking/stretching 
parameter on temperature profiles. The temperature profiles are not very significant, as can be seen 
for the first solution. 

 
While, Figures 4 and 5 show the impact of bouyancy parameter on the velocity profiles and 

temperature profiles, respectively.  For the first solution, the velocity profiles increase with λ, 
however the second solution shows opposite effect after a certain point. Increasing the values of λ 
has the effect of thinning the boundary layer.  Meanwhile, Figure 5 demonstrates the temperature 
profiles for both assisting and opposing flows. Figures 1-5 depict there exist two velocity profiles 
and temperature profiles.  Thus, two solutions exist for assisting and opposing flows and occurred 
when the plate is stretch and shrunk. It is evident from Figures 1-5 that the boundary layer 
thickness for the first solution is consistently thinner than that of the second solution, with both 
profiles approaching the boundary conditions (8) asymptotically as n → ∞.  

 
The skin friction coefficient f ′′(0) and the heat transfer rate at the surface (also known as the 

local Nusselt number) −θ ′(0) against the stretching/shrinking parameter A with different values of 
the mass flux parameter s, for assisting flow and opposing flow, respectively, are shown in Figures 
6 and 7.  Figures 6 and 7 also discover two solutions for both suction and blowing cases, and 
shrinking and stretching cases.  The effect of A has increased the skin friction coefficient f ′′(0) 
and after reached certain points of parameter A, f ′′(0) decreases. At the same time, the skin friction 
coefficient f ′′(0) for the first solution increases alongside the values of mass flux parameter s. The 
reason is that mass flux parameter creates more resistance to the transport phenomena. Therefore, 
s increases the local Nusselt number.  This can be seen clearly from Figure 7.  The shrinking and 
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stretching parameter also found to increase the heat transfer rate at the surface.  From Figures 6 
and 7, it is found that blowing accelerates the boundary layer separation from the wall.  

 
Meanwhile, Figures 8 and 9 show the influence of mass flux parameter, s and Eckert number, 

Ec on the skin friction coefficient f ′′(0) and the local Nusselt number, −θ ′(0), respectively.  Both 
Figures 8 and 9 show the existence of two solutions for various values of mass flux parameter and 
the Eckert number.  Figures 8 shows the skin friction coefficient increase as the value of Ec and s 
increases, for first solution. For second solution, opposite phenomenon occurs for Ec, however, 
the skin friction coefficient increases with s, then decreases after a certain point.  On the other 
hand, for the local Nusselt number as displayed in Figure 9, opposite effects discover for the first 
and second solutions.  Interesting result from Figure 9 is that the upper branch demonstrates the 
second solution and lower branch demonstrates the first solution. In many cases, the upper branch 
always refers to the first solution and vice versa. This can be validated through a stability analysis.  
However, such analysis is not reported in this study.  

 
Figure 1: Velocity profiles for various values of A when s = 0.3, Ec = 0.2, M = 0.2, Pr = 1 and       

λ = 0.2 
 

 
Figure 2: Velocity profiles for various values of A when s = 0.3, Ec = 0.2, M = 0.2, Pr = 1 and       

λ = −0.2 
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Figure 3: Temperature profiles for various values of A when s = 0.3, Ec = 0.2, M = 0.2, Pr = 1 and 

λ = 0.2, −0.2 
 
 

 
Figure 4: Velocity profiles for various values of λ when s = 0.3, A = −1.3, M = 0.2, Pr = 1 and    

Ec = 0.2 
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Figure 5: Temperature profiles for various values of λ when s = 0.3, A = −1.3, M = 0.2, Pr = 1 and 
Ec = 0.2 

 

          
Figure 6: The skin friction coefficient f ′′(0) with A for various values of s and fixed λ = 1, Pr = 1, 

Ec = 0.2 and M = 0.2 
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Figure 7: The local Nusselt number −θ ′(0) with A for various values of s and fixed λ = 1, Pr = 1, 

Ec = 0.2 and M = 0.2 

 

 

 
Figure 8: The skin friction coefficient f ′′(0) with s for various values of Ec and fixed A = −0.5,   

Pr = 1, λ = 1 and M = 0.2 
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Figure 9: The local Nusselt number −θ ′(0) with s for various values of Ec and fixed A = −0.5,    

Pr = 1, λ = 1 and M = 0.2 
 
 
 

CONCLUSION 
 
In this paper, the problem of MHD mixed convection stagnation-point flow and heat transfer over 
a permeable shrinking/stretching plate is solved numerically using bvp4c method. The current 
results are compared with previous studies, and it gives a favorable agreement. The main findings 
are summarized as follows:  

 The velocity profiles increase with bouyancy parameter in first solution and opposite effect 
found for second solution. 

 The Eckert number increases the skin friction coefficient, however reduced the surface heat 
transfer. 

 Mass transfer parameter increase the skin friction coefficient (for upper branch), as well as 
the local Nusselt number (for upper and lower branches).  

 Multiple solutions (namely two solutions) are observed for  
• assisting and opposing flows,  
• shrinking and stretching cases,  
• suction and blowing cases. 

 Blowing accelerates the boundary layer separation from the wall.  
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