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ABSTRACT 
This paper considers quasi-Newton method for sparse matrix factorization (SMF) that incorporates 
Frobenius norm regularization to control overfitting and enhance generalization in data-driven 
applications. Sparse matrix factorization seeks to decompose a matrix into 2 matrices while promoting 
sparsity in one (or both) of the resulting factors, which is particularly useful in applications such as 
recommendation systems, signal processing, and dimensionality reduction. The Frobenius norm 
regularization is employed to penalize large parameter values, ensuring sparser factorization. The 
proposed quasi-Newton method, leveraging approximate second-order information, efficiently 
optimizes the objective function with significantly reduced computational overhead compared to full 
Newton methods. Experimental results on an example demonstrate the efficacy of the method in 
achieving high-quality sparse factorizations under different regularization parameter.  

 
Keywords: Sparse matrix factorization, quasi-Newton method, Frobenius norm regularization, 

BFGS update. 
  

 
 

INTRODUCTION 
 
Matrix factorization techniques have become fundamental tools in numerous fields, including 
machine learning (Sim et al., 2022), data mining (Al-Hakeem et al. (2023), Sun et al. (2023)), 
signal processing, bioinformatics (Woo et al., 2023) and disease modelling (Kon and Labadin, 
2019). By decomposing a large data matrix into smaller, more interpretable components, matrix 
factorization methods provide a compact representation of data, often revealing underlying 
patterns and relationships. However, when working with high-dimensional data, such as in 
recommendation systems, image processing, and text mining, achieving both accuracy and 
interpretability is critical. To this end, Sparse Matrix Factorization (SMF) has emerged as a 
popular technique, where sparsity constraints are introduced to yield factors with a significant 
proportion of zero entries. Sparse factors not only improve interpretability but also reduce 
computational complexity, making SMF particularly valuable for handling large-scale datasets. 
 

Despite its advantages, SMF poses unique challenges in terms of optimization. The 
introduction of sparsity constraints makes the optimization problem more complex, often requiring 
specialized algorithms that balance the need for sparse solutions with accurate matrix 
approximations. Traditional optimization methods, such as gradient descent, can struggle to handle 
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this trade-off efficiently, leading to slow convergence and suboptimal solutions, especially in 
large-scale applications. Consequently, there is a growing interest in developing more 
sophisticated optimization techniques to address these challenges. 
 

In this paper, we propose to employ quasi-Newton method SMF problem to tackle the 
optimization difficulties inherent in sparse factorization problems. Quasi-Newton methods are 
well-known for their ability to approximate second-order derivative information without the 
computational expense of full Newton methods. This makes them particularly well-suited for 
large-scale optimization problems like SMF. 
 

The remainder of this paper is organized as follows: Section 2 details the formulation of our 
sparse matrix factorization model and the quasi-Newton method. Section 3 presents experimental 
results, demonstrating the performance of our method. Finally, Section 4 concludes the paper with 
a discussion of future research directions. 
 
 

SPARSE MATRIX FACTORIZATION AND QUASI-NEWTON METHODS 
 
Sparse matrix factorization aims to decompose a given matrix 𝑋𝑋 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 into the product of two 
matrices 𝑈𝑈 ∈ 𝑅𝑅𝑚𝑚×𝑝𝑝  and 𝑉𝑉 ∈ 𝑅𝑅𝑝𝑝×𝑛𝑛, such that 𝑋𝑋 ≈ 𝑈𝑈𝑈𝑈. A critical goal of this factorization is to 
enforce sparsity in the resulting matrices 𝑈𝑈  and/or 𝑉𝑉 , meaning that many elements of these 
matrices should be zero, making the factorization easier to interpret and reducing the 
computational cost for large-scale data. To achieve this, sparsity constraints are typically 
introduced through regularization techniques. 
 

The objective function for sparse matrix factorization can be formulated using the Frobenius 
norm, which measures the reconstruction error between the original matrix 𝑋𝑋 and the factorized 
product 𝑈𝑈𝑈𝑈. The associated optimization problem is defined as: 
 

min
𝑈𝑈,𝑉𝑉

‖𝑋𝑋 − 𝑈𝑈𝑈𝑈‖𝐹𝐹2, 
 
where ‖𝐴𝐴‖𝐹𝐹 = �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴𝑇𝑇) denotes the Frobenius norm of a matrix 𝐴𝐴 . This formulation 
minimizes the sum of squared differences between the entries of 𝑋𝑋 and 𝑈𝑈𝑈𝑈, aiming for a close 
approximation of the original matrix. 
 

To promote sparsity in the factor matrices, regularization terms are added to the objective 
function. The most common types of regularization are based on the 𝑙𝑙2 −norm (which is also the 
Frobenius norm in matrix setting), which encourages sparsity by penalizing the sum of squared 
values, controlling for large values in the matrices. The regularized objective function becomes: 
 

min
𝑈𝑈,𝑉𝑉

[𝑓𝑓(𝑈𝑈, 𝑉𝑉) = ‖𝑋𝑋 − 𝑈𝑈𝑈𝑈‖𝐹𝐹2 + 𝛽𝛽1‖𝑈𝑈‖𝐹𝐹2 + 𝛽𝛽2‖𝑉𝑉‖𝐹𝐹2],    (1) 
 
where 𝛽𝛽1 and 𝛽𝛽2  are regularization parameters controlling the level of sparsity for matrices 𝑈𝑈 and 
𝑉𝑉, respectively. 
 
 
 
 
Optimization using the BFGS Method 
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The optimization problem defined in (1) is and difficult to solve efficiently, especially for large-
scale matrices. To address this, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, a 
popular quasi-Newton optimization algorithm is utilized in this paper. BFGS is designed to 
approximate the second-order derivative (Hessian matrix) of the objective function without the 
need for explicit computation of the Hessian, making it computationally efficient for large-scale 
problems. 
 

The BFGS method iteratively updates the factor matrices 𝑈𝑈 and 𝑉𝑉 by solving the following 
optimization problem: 
 

(𝑈𝑈𝑘𝑘+1, 𝑉𝑉𝑘𝑘+1) = (𝑈𝑈𝑘𝑘, 𝑉𝑉𝑘𝑘) − 𝛼𝛼𝑘𝑘𝐻𝐻𝑘𝑘∇𝑓𝑓(𝑈𝑈𝑘𝑘, 𝑉𝑉𝑘𝑘),     (2) 
 

where 𝛼𝛼𝑘𝑘 is the step size, 𝐻𝐻𝑘𝑘 is the approximate inverse Hessian at iteration (𝑈𝑈𝑘𝑘, 𝑉𝑉𝑘𝑘) , and 
∇𝑓𝑓(𝑈𝑈𝑘𝑘, 𝑉𝑉𝑘𝑘), is the gradient of the objective function with respect to 𝑈𝑈 and 𝑉𝑉 at (𝑈𝑈𝑘𝑘, 𝑉𝑉𝑘𝑘). The 
(inverse) BFGS formula (Dennis and Moré, 1977) for iteration (2) is given as below: 

𝐻𝐻𝑘𝑘+1 = �𝐼𝐼 − 𝑠𝑠𝑘𝑘𝑦𝑦𝑘𝑘
𝑇𝑇

𝑦𝑦𝑘𝑘
𝑇𝑇𝑠𝑠𝑘𝑘
�𝐻𝐻𝑘𝑘 �𝐼𝐼 −

𝑦𝑦𝑘𝑘𝑠𝑠𝑘𝑘
𝑇𝑇

𝑦𝑦𝑘𝑘
𝑇𝑇𝑠𝑠𝑘𝑘
� + 𝑠𝑠𝑘𝑘𝑠𝑠𝑘𝑘

𝑇𝑇

𝑦𝑦𝑘𝑘
𝑇𝑇𝑠𝑠𝑘𝑘

 , 𝑘𝑘 ≥ 0, with 𝐻𝐻0 = 𝐼𝐼,  (3) 

where: 
• 𝑠𝑠𝑘𝑘 = (𝑈𝑈𝑘𝑘+1, 𝑉𝑉𝑘𝑘+1) − (𝑈𝑈𝑘𝑘, 𝑉𝑉𝑘𝑘)  is the step in the variable space, 
• 𝑦𝑦𝑘𝑘 = ∇𝑓𝑓(𝑈𝑈𝑘𝑘+1, 𝑉𝑉𝑘𝑘+1) − ∇𝑓𝑓(𝑈𝑈𝑘𝑘, 𝑉𝑉𝑘𝑘) is the difference in the gradients, 
• 𝐻𝐻𝑘𝑘  is the current approximation of the inverse Hessian matrix, 
• 𝐼𝐼 is the identity matrix. 

 
Note that (3) is updated iteratively using gradient information, avoiding the need for explicit 

computation of second derivatives, which is particularly beneficial for large matrices. The BFGS 
method enjoys rapid convergence properties due to its use of second-order information, making it 
a suitable choice for sparse matrix factorization, where the optimization landscape is typically 
complex and involves non-convexities. In addition to its computational efficiency, the BFGS 
method can handle regularization terms naturally, allowing it to incorporate the sparsity-inducing 
regularization penalties, such as the Frobenius norm regularization in the factorization process. 

Global Convergence with Armijo Line Search 

The BFGS quasi-Newton method, when paired with the Armijo line search (also called a 
backtracking line search), has convergence guarantees under certain assumptions. The Armijo 
condition for a step size 𝛼𝛼𝑘𝑘, given as follow  

𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑝𝑝𝑘𝑘) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝑐𝑐1𝛼𝛼𝑘𝑘∇𝑓𝑓(𝑥𝑥𝑘𝑘)𝑇𝑇𝑝𝑝𝑘𝑘,      (4) 
where 0 < 𝑐𝑐1 < 1  is a constant (often chosen as 𝑐𝑐1 = 10−4 ), and 𝑝𝑝𝑘𝑘  is the search direction, 
ensures sufficient descent in the objective function, which helps control the step size during 
optimization. 
 

For global convergence to a stationary point (i.e., a point where ∇ 𝑓𝑓(𝑥𝑥∗)  =  0), the BFGS 
method combined with an Armijo line search (4) has been shown to work under the following 
conditions (Nocedal and Wright (2001), Sim et al. (2018, 2019, 2022, 2023)): 
 
Assumption 1. 

i. The objective function 𝑓𝑓(𝑥𝑥) is twice continuously differentiable, 
ii. The Hessian of the objective function, ∇2𝑓𝑓(𝑥𝑥) , is Lipschitz continuous near the 

solution, meaning there exists a positive constant 𝑀𝑀 such that: 
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‖∇2𝑓𝑓(𝑥𝑥) − ∇2𝑓𝑓(𝑦𝑦)‖ ≤  𝑀𝑀 ‖𝑥𝑥 − 𝑦𝑦‖, ∀ 𝑥𝑥, 𝑦𝑦. 
iii. The initial point 𝑥𝑥0 is sufficiently close to the local minimizer 𝑥𝑥∗ , and the inverse 

Hessian approximation is sufficiently accurate. 
 
Theorem 1 (Yuan and Sun (1991)). 
Under Assumption 1, if the Armijo condition (4) is satisfied at each iteration, the sequence of 
iterates {𝑥𝑥𝑘𝑘} generated by the BFGS algorithm obeys  

lim
k→∞

‖∇𝑓𝑓(𝑥𝑥𝑘𝑘)‖ = 0.       □ 
 
 

NUMERICAL EXPERIMENTS AND COMPARISONS 
 

In this section, we report results of some numerical experiments with BFGS method for SMF. For 
the purpose of illustration, we consider the case where sparsity is required only for 𝑈𝑈, namely  

min
𝑈𝑈,𝑉𝑉

[𝑓𝑓(𝑈𝑈, 𝑉𝑉) = ‖𝑋𝑋 − 𝑈𝑈𝑈𝑈‖𝐹𝐹2 + 𝛽𝛽‖𝑈𝑈‖𝐹𝐹2]. 

We give the following example where 𝑋𝑋  is given as below with 3 different values of 𝛽𝛽 are 
considered, i.e. 𝛽𝛽 = 0.2, 0.6, 1.0, 

 𝑋𝑋 =

⎣
⎢
⎢
⎢
⎡
0.8507 0.8154 0.6126 0.2278 0.7386
0.5606 0.8790 0.9900 0.4981 0.5860
0.9296
0.6967
0.5828

0.9889
0.0005
0.8654

0.5277
0.4795
0.8013

0.9009
0.5747
0.8452

0.2467
0.6664
0.0835⎦

⎥
⎥
⎥
⎤
 . 

Dimension of 𝑈𝑈 and 𝑉𝑉 is set as 5 × 5. The algorithm was coded in MATLAB. We stopped the 
iteration when the condition ‖∇𝑓𝑓(𝑈𝑈𝑘𝑘, 𝑉𝑉𝑘𝑘)‖𝐹𝐹 ≤ 10−4. 

 
Table 1: BFGS for SMF 

  ‖∇𝑓𝑓(𝑈𝑈𝑘𝑘, 𝑉𝑉𝑘𝑘)‖𝐹𝐹  
k 𝛽𝛽 = 0.2 𝛽𝛽 = 0.6 𝛽𝛽 = 1.0 
    
1 0.42000000 1.39000000 1.07000000 
5 0.09360000 0.36100000 0.48100000 
10 0.00804000 0.02940000 0.03920000 
15 0.00198000 0.00664000 0.00886000 
20 0.00064300 0.00223000 0.00297000 
25 0.00007250 0.00016000 0.00021000 
    

 
Table 2: Sparsity of  𝑈𝑈 

  No.nonzero 
component 

 

 𝛽𝛽 = 0.2 𝛽𝛽 = 0.6 𝛽𝛽 = 1.0 
    
 17 15 11 
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Figure 1: Value of 𝑓𝑓: 𝛽𝛽 = 0.2 

 
 

 
Figure 2: Value of 𝑓𝑓: 𝛽𝛽 = 0.6 

 
 

 
Figure 3: Value of 𝑓𝑓: 𝛽𝛽 = 1.0 
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The numerical results obtained from our experiments provide evidence that increasing the 
regularization parameter significantly enhances the sparsity of the resulting matrix factors in sparse 
SMF. Specifically, as we varied the regularization parameter, a clear trend emerged: larger values 
of the parameter consistently led to sparser factor matrices. This behavior aligns with our 
theoretical expectations regarding Frobenius norm regularization, which penalizes larger 
parameter values and thus encourages the model to favor solutions with reduced complexity. In 
practical terms, higher sparsity not only reduces the memory footprint of the factor matrices but 
also enhances the computational efficiency during inference, making the system more scalable. 

Furthermore, the results indicate that the BFGS method is an efficient optimization tool in 
achieving these sparse factorizations. The BFGS method's use of approximate second-order 
information allows it to converge more rapidly than first-order methods while maintaining a 
manageable computational overhead.  

 
CONCLUSION 

 
In conclusion, this paper presents a quasi-Newton method for SMF that effectively integrates 
Frobenius norm regularization to mitigate overfitting and improve generalization in data-driven 
contexts. By focusing on decomposing matrices while promoting sparsity in the factors, the 
method addresses key challenges in applications such as recommendation systems, signal 
processing, and dimensionality reduction. The incorporation of Frobenius norm regularization not 
only ensures sparser factorization but also stabilizes the optimization process by penalizing 
excessive parameter values. The proposed approach, which utilizes approximate second-order 
information, demonstrates a significant reduction in computational costs compared to traditional 
full Newton methods, making it more feasible for large-scale applications. Experimental results 
validate the method's effectiveness, showcasing its ability to produce high-quality sparse 
factorizations across varying penalty parameters. 
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