

Menemui Matematik (Discovering Mathematics) 46(2) (2024) 73-80

Menemui Matematik

(Discovering Mathematics)

journal homepage: https:/ / myjms.mohe.gov.my/ index.php/ dismath/

Diagonal Newton Method for Solving Large-Scale Linear Systems

Nur Amirah Izzati Mustapa1, Cynthia Mui Lian Kon2, Fong Peng Lim3 and
Wah June Leong4*

1, 3, 4Department of Mathematics and Statistics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor.
2Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak.

1201118@student.upm.edu.my, 2ckon@swinburne.edu.my, 3fongpeng@upm.edu.my, 4leongwj@upm.edu.my

*Corresponding author

Received: 2 July 2024
Accepted: 24 October 2024

ABSTRACT

This paper presents the Diagonal Newton (DN) method, an optimization-based approach for efficiently
solving large-scale linear systems. By approximating the Hessian matrix with its diagonal elements, the
method reduces computational complexity while retaining essential second-order information for
optimization. We integrate the Armijo Line Search to ensure a sufficient decrease in the objective
function during iterations, thus enhancing convergence. The study involves generating large-scale linear
systems, converting them into matrix form, and minimizing the corresponding objective function.
Through numerical tests, the efficiency of the DN method is evaluated by analyzing function values and
final solutions. The results demonstrate the method’s effectiveness in solving large-scale linear systems,
offering a promising alternative for computational optimization.

Keywords: Large-scale linear system, unconstrained optimization, diagonal Newton method,

Armijo line search

INTRODUCTION

Solving large-scale linear systems presents significant challenges, especially in fields like
engineering, science, mathematics and statistics (Sim et al. (2019), Al-Hakeem et al. (2023), Lim
et al. (2023)), and economics (Sim et al. (2018, 2023). These problems are fundamental in
numerical computation and form the basis for many algorithms in scientific computing and
machine learning (Sim et al., 2022). Linear systems can be solved using direct or iterative methods.
Direct methods, such as Cramer’s rule and Gaussian Elimination, provide solutions in a fixed
number of steps and work well for small systems. On the other hand, iterative methods, like
Newton’s method (Waziri et al., 2012), approximate the solution gradually and are more suitable
for large-scale systems.

For small-scale problems, techniques such as LU Decomposition, Eigenvalue Decomposition
(EVD), and Singular Value Decomposition (SVD) are efficient. However, large-scale systems,
particularly in optimization, become more complex and costly to compute. Methods like Gaussian
Elimination may suffer from numerical instability when applied to large systems (Yuan et al.,
2010).

https://myjms.mohe.gov.my/index.php/dismath/

N.A.I. Mustapa et al. Menemui Matematik (Discovering Mathematics) 46(2) (2024) 73-80

74

Newton’s method (Andrei (2019), Eagan et al. (2014), Gordon & Tibshirani (2012)) also
known as the Newton-Raphson method, is an effective iterative technique for finding function
roots or solving optimization problems. It relies on the idea of linearization and uses the gradient
to improve the initial guess iteratively. This method can also be generalized to multivariable
systems. Its key property, quadratic convergence, means that the number of correct digits doubles
with each iteration, provided certain conditions are met.
For twice continuously differentiable objective function 𝑓𝑓:𝑅𝑅𝑛𝑛 → 𝑅𝑅 , Newton method utilizes
quadratic approximation based on the first three terms of Taylor series expansion about 𝑥𝑥𝑘𝑘. In the
context of a n increment vector, ∆𝑥𝑥 = 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘, we have:

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥𝑘𝑘) + [∇𝑓𝑓(𝑥𝑥𝑘𝑘)]𝑇𝑇∆𝑥𝑥 + 1
2
∆𝑥𝑥𝑇𝑇∇2𝑓𝑓(𝑥𝑥𝑘𝑘)∆𝑥𝑥, (1.1)

where ∇𝑓𝑓(𝑥𝑥𝑘𝑘) and ∇2𝑓𝑓(𝑥𝑥𝑘𝑘) denote the gradient and Hessian, respectively.

Hence, the increment vector, ∆𝑥𝑥 is the solution of the following linear equation if 𝑓𝑓(𝑥𝑥) is
minimized.

∇𝑓𝑓(𝑥𝑥𝑘𝑘) + ∇2𝑓𝑓(𝑥𝑥𝑘𝑘)∆𝑥𝑥 = 0, (1.2)

which corresponding to

∆𝑥𝑥 = −∇2𝑓𝑓(𝑥𝑥𝑘𝑘)−1 ∙ ∇𝑓𝑓(𝑥𝑥𝑘𝑘).

Thus, the Newton iterate can be given by

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝛼𝛼𝑘𝑘∇2𝑓𝑓(𝑥𝑥𝑘𝑘)−1∇𝑓𝑓(𝑥𝑥𝑘𝑘), (1.3)

where 𝛼𝛼𝑘𝑘 is the step length or step size and always equal to 1 (Leong et al., 2021).

A key disadvantage of the Newton method for large-scale optimization problems is its high
computational cost, particularly due to the need to compute and invert the Hessian matrix, where
the Hessian matrix can be extremely large and dense, making both its computation and inversion
expensive in terms of time and memory.

To address this, the Diagonal Newton (DN) method is developed as a modification of the
standard Newton method. This approach simplifies computation, reducing costs while maintaining
accuracy in solving large-scale systems. We can then combine the DN method with Armijo Line
Search to improve convergence toward the minimum of the objective function, even when the
standard Newton method fails (Yagishita & Nakayama, 2024).

DIAGONAL NEWTON METHOD FOR SOLVING LARGE-SCALE LINEAR SYSTEMS

Consider a linear system,

𝐴𝐴𝐴𝐴 = 𝑏𝑏 (2.1)

Where 𝐴𝐴 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 is the coefficient matrix, 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 is the vector of variables and 𝑏𝑏 ∈ 𝑅𝑅𝑛𝑛 be the
vector of right-hand side constants. Linear systems can be solved by reformulating them as

N.A.I. Mustapa et al. Menemui Matematik (Discovering Mathematics) 46(2) (2024) 73-80

75

optimization problems, where the goal is to minimize a corresponding objective function, such as
the squared error between the left- and right- hand sides of the equations:

min
𝑥𝑥

1
2
�|𝐴𝐴𝐴𝐴 − 𝑏𝑏|�

2
2

 (2.2)

where ‖∙‖2 denotes the Euclidean norm.

Solving linear systems through optimization approaches, such as least-squares minimization
(2.2), can be more efficient for large-scale or complex systems, leveraging iterative methods that
converge to a solution without requiring direct inversion of matrices. Moreover, by converting
linear systems into optimization problems, one can apply gradient descent or quasi-Newton
methods, which offer alternatives to traditional direct solvers, especially when dealing with large
matrices or non-square systems.

Note that the least squares problem (2.2) is a convex quadratic optimization problem, as the
objective function, which minimizes the sum of squared residuals, is quadratic in nature and has a
convex shape:

𝑓𝑓(𝑥𝑥) = 1
2
�|𝐴𝐴𝐴𝐴 − 𝑏𝑏|�

2
2

= 1
2
𝑥𝑥𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 − 𝑏𝑏𝑇𝑇𝐴𝐴𝐴𝐴 + 𝑏𝑏𝑇𝑇𝑏𝑏, (2.3)

where the gradient vector, ∇𝑓𝑓(𝑥𝑥) = 𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 − 𝑏𝑏𝑇𝑇𝐴𝐴, and the Hessian matrix, ∇2𝑓𝑓(𝑥𝑥) = 𝐴𝐴𝑇𝑇𝐴𝐴, which
is positive (semi-) definite, ensuring that the Hessian is non-negative, and the function has a single
global minimum.

In the Diagonal Newton Method, the search direction is similar to that of Newton method,
except that the search direction at 𝑘𝑘 −iteration is computed as:

𝑑𝑑𝑘𝑘 = −𝐷𝐷𝑘𝑘−1∇𝑓𝑓(𝑥𝑥𝑘𝑘), (2.4)

where 𝐷𝐷 is the diagonal of the Hessian matrix. By using only the diagonal elements of the Hessian,
the method reduces the computational burden while still capturing important second-order
information. With the search direction (2.4), the DN method iterates through updates of the form:

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝛼𝛼𝑘𝑘𝐷𝐷𝑘𝑘−1∇𝑓𝑓(𝑥𝑥𝑘𝑘),

where 𝛼𝛼𝑘𝑘 is the step size, which may be chosen using line search techniques such as the Armijo or
backtracking line search to ensure sufficient decrease in the objective function.

Moreover, by using only the diagonal elements of the Hessian, the Diagonal Newton Method
simplifies matrix inversion and reduces memory requirements, making it well-suited for large-
scale optimization problems.

To link 𝐷𝐷 with the Hessian matrix, the following result can be stated;

Theorem 1: Least Change Diagonal Form of the Hessian Matrix.
Let 𝐷𝐷 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �𝜕𝜕

2𝑓𝑓
𝜕𝜕𝑥𝑥𝑖𝑖2

� , where 𝑖𝑖 = 1,2, … ,𝑛𝑛 . Then 𝐷𝐷 is the unique solution of the following
minimization problem:

N.A.I. Mustapa et al. Menemui Matematik (Discovering Mathematics) 46(2) (2024) 73-80

76

min
𝐷𝐷

 ‖∇2𝑓𝑓 − 𝐷𝐷‖𝐹𝐹2 ,
 where ‖∙‖𝐹𝐹2 is Frobenius norm.

Proof:

For an 𝑛𝑛 × 𝑛𝑛 Hessian matrix:

∇2𝑓𝑓 = �

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝑎𝑎𝑛𝑛𝑛𝑛

�

and a diagonal matrix 𝐷𝐷 with diagonal elements 𝑑𝑑11,𝑑𝑑22, … ,𝑑𝑑𝑛𝑛𝑛𝑛;

𝐷𝐷 = �

𝑑𝑑11 0 ⋯ 0
0 𝑑𝑑22 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛

�.

The Frobenius norm of the difference is given by

𝐹𝐹(𝐷𝐷) = ‖∇2𝑓𝑓 − 𝐷𝐷‖𝐹𝐹2 = ∑ ∑ (𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 , (2.5)

where 𝑑𝑑𝑖𝑖𝑖𝑖 = 0 for 𝑖𝑖 ≠ 𝑗𝑗. Therefore, it can be simplified to:

‖∇2𝑓𝑓 − 𝐷𝐷‖𝐹𝐹2 = ∑ (𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑖𝑖𝑖𝑖)2𝑛𝑛

𝑖𝑖=1 + ∑ 𝑎𝑎𝑖𝑖𝑖𝑖2 𝑖𝑖≠𝑗𝑗 .

To obtain the optamility condition, we differentiate with respect to 𝑑𝑑𝑖𝑖𝑖𝑖 and set the derivatives to
zero:

𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑𝑖𝑖𝑖𝑖

= 2(𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑖𝑖𝑖𝑖) = 0 ⟹ 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖.

Thus, the diagonal matrix 𝐷𝐷 that minimizes the Frobenius norm of the difference is:

𝐷𝐷 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� 𝑎𝑎11,𝑎𝑎22, … ,𝑎𝑎𝑛𝑛𝑛𝑛� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �𝜕𝜕
2𝑓𝑓

𝜕𝜕𝑥𝑥𝑖𝑖2
, … , 𝜕𝜕

2𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛2

�. (2.6)
 □

To ensure convergence of the DN method, the step size 𝑎𝑎𝑘𝑘 is obtained by using the Armijo line
search:
Find the largest 0 < 𝑎𝑎𝑘𝑘 < 1, such that the following inequality holds.

𝑓𝑓(𝑥𝑥𝑘𝑘 − 𝑎𝑎𝑘𝑘𝐷𝐷𝑘𝑘−1∇𝑓𝑓𝑘𝑘) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝜃𝜃𝛼𝛼𝑘𝑘∇𝑓𝑓(𝑥𝑥𝑘𝑘)𝑇𝑇𝐷𝐷𝑘𝑘−1∇𝑓𝑓(𝑥𝑥𝑘𝑘), (2.7)

for a chosen constant 𝜃𝜃 𝜖𝜖 (0,1).

N.A.I. Mustapa et al. Menemui Matematik (Discovering Mathematics) 46(2) (2024) 73-80

77

We can now state the detailed algorithm of DN method:

DN Algorithm:

• STEP 1: Set 𝑘𝑘 = 0. Choose an initial guess 𝑥𝑥0.
• STEP 2: Compute 𝐷𝐷 by (2.6).
• STEP 3: Compute 𝑓𝑓(𝑥𝑥𝑘𝑘),∇𝑓𝑓(𝑥𝑥𝑘𝑘), and ‖∇𝑓𝑓(𝑥𝑥𝑘𝑘)‖.
• STEP 4: Determine appropriate step size, 𝑎𝑎𝑘𝑘 using conditions that satisfy Armijo Line

Search (2.7).
• STEP 5: Calculate 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝑎𝑎𝑘𝑘𝐷𝐷−1∇𝑓𝑓(𝑥𝑥𝑘𝑘).
• STEP 6: Check if |𝑓𝑓(𝑥𝑥𝑘𝑘+1)| > 0.0001 or 𝑘𝑘 < 50.
• STEP 7: If yes, then update𝑘𝑘 ≔ 𝑘𝑘 + 1 and repeat STEP 4. Else, terminate the iteration.

Theorem 2. Let the objective function, 𝑓𝑓 be defined as (2.3). The DN algorithm, combined with
Armijo Line Search, converges to a minimizer, 𝑥𝑥∗ of (2.3), i.e.

lim
𝑘𝑘→∞

‖∇𝑓𝑓(𝑥𝑥𝑘𝑘)‖2 = 0.

Proof. Firstly, note that (2.3) is a convex quadratic function with a unique minimizer 𝑥𝑥∗. Since
(2.3) is bounded below, we have

lim
𝑘𝑘→∞

𝑓𝑓�𝑥𝑥𝑘𝑘 − 𝛼𝛼𝑘𝑘𝐷𝐷𝑘𝑘−1∇𝑓𝑓𝑘𝑘� − 𝑓𝑓(𝑥𝑥𝑘𝑘) ≤ 𝜃𝜃 lim
𝑘𝑘→∞

∇𝑓𝑓(𝑥𝑥𝑘𝑘)𝑇𝑇 𝐷𝐷𝑘𝑘−1∇𝑓𝑓(𝑥𝑥𝑘𝑘)

For some constant 𝜃𝜃 𝜖𝜖 (0,1) and 𝛼𝛼𝑘𝑘 ≤ 1. Given 𝐷𝐷𝑘𝑘 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐴𝐴𝑇𝑇𝐴𝐴). Then, the boundedness of 𝑓𝑓
implies that

0 = lim
𝑘𝑘→∞

𝑓𝑓�𝑥𝑥𝑘𝑘 − 𝛼𝛼𝑘𝑘𝐷𝐷𝑘𝑘−1∇𝑓𝑓𝑘𝑘� − 𝑓𝑓(𝑥𝑥𝑘𝑘) ≤ 𝜃𝜃 [𝑇𝑇𝑇𝑇(𝐴𝐴𝑇𝑇𝐴𝐴)]−1 lim
𝑘𝑘→∞

‖∇𝑓𝑓(𝑥𝑥𝑘𝑘)‖2,

which also gives

lim
𝑘𝑘→∞

‖∇𝑓𝑓(𝑥𝑥𝑘𝑘)‖2 = 0.

RESULTS AND DISCUSSION

Conditions for Numerical Experiment

In our numerical experiments, we utilized a HP Laptop modelled 15s-eq0xxx with 4.00 GB
installed Random Access Memory (RAM) which able to manage in using multiple software
operations at the same time. Moreover, it also has processor of AMD Ryzen 5 3500U with Radeon
Vega Mobile Gfx that has ability to compute numerical results achieved from MATLAB R2024a
software.

Numerical Examples

Two examples with randomly generated 𝐴𝐴 and 𝑏𝑏 are given as follow:

N.A.I. Mustapa et al. Menemui Matematik (Discovering Mathematics) 46(2) (2024) 73-80

78

Example 1: The matrix 𝐴𝐴 is generated by using the command 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(10,30,30) and matrix 𝐵𝐵 is
created by using the command 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(10,30,1) in the MATLAB software. The 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(10,30,30)
will generate a 30 by 30 sized matrix 𝐴𝐴 with random integers between 1 and 10 while
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(10,30,1) will generate 30 by 1 sized matrix 𝐵𝐵 with random integers between 1 and 10:

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
5 1 2 2 1 ⋯ 5 5 1 2 1
8 5 5 10 1 ⋯ 2 10 5 4 2
1 10 7 5 1 ⋯ 10 4 10 3 5
4 6 5 6 3 ⋯ 9 10 4 9 2
2 7 1 5 9 ⋯ 5 7 8 9 7
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
9 1 9 8 2 ⋯ 2 10 9 8 4
1 6 5 8 3 ⋯ 4 3 2 6 8
1 2 10 10 8 ⋯ 2 7 5 10 6
2 6 7 8 6 ⋯ 5 7 5 1 9
9 7 7 2 1 ⋯ 3 3 5 10 4⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

30×30

,𝐵𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

3
10
1

10
6
⋮
5
9
6
5
3 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

30×1

Example 2: The matrix 𝐴𝐴 is generated by using the command 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟([−10,10], 30) and matrix 𝐵𝐵
is created by using the command 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟([−10,10], 30,1) in the MATLAB software. The
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟([−10,10], 30) will generate a 30 by 30 sized matrix 𝐴𝐴 with random integers between −10
and 10 while 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟([−10,10], 30,1) will generate a 30 by 1 sized matrix 𝐵𝐵 with random
integers between −10 and 10. After that, we save the current state of the random number generator
of matrix 𝐴𝐴 and 𝐵𝐵 using the command 𝑟𝑟𝑟𝑟𝑟𝑟(0) in the MATLAB software. This command tends to
set the random seed for reproducibility.

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

7 4 5 −9 −8 ⋯ −1 4 5 −8 −9
9 −10 −5 −9 10 ⋯ −8 1 −6 6 −10
−8 −5 0 1 −10 ⋯ 10 −2 5 −4 −2
9 −10 4 6 6 ⋯ −4 −9 10 2 3
3 −8 8 9 7 ⋯ −4 6 8 10 5
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
5 0 −4 7 −9 ⋯ 1 3 −6 −4 4
5 10 5 1 −5 ⋯ 5 −4 1 6 1
−2 −3 5 10 −8 ⋯ 4 3 −9 4 −4
3 2 −3 −9 −7 ⋯ 6 5 −2 −8 −7
−7 −6 1 −1 −5 ⋯ −4 2 −8 −8 3 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

30×30

,𝐵𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

10
−7
−5
−2
−9
⋮
−3
1
5
−2
−1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

30×1

Initial guess, 𝑥𝑥0 = 0 is used for both examples.

Table 1: Example 1: 50 Iterations

Iteration, 𝒌𝒌 Step size, 𝒂𝒂𝒌𝒌 Function value,
𝒇𝒇(𝒙𝒙𝒌𝒌)

Gradient norm,
‖𝛁𝛁𝒇𝒇(𝒙𝒙𝒌𝒌)‖

0 0.0625 1173.000000 10207.737262
10 0.0625 195.871750 793.726477
20 0.1250 152.703764 343.164587
30 0.1250 128.140530 296.161242
40 0.1250 112.766115 273.830764
50 0.0625 102.475818 309.212148

N.A.I. Mustapa et al. Menemui Matematik (Discovering Mathematics) 46(2) (2024) 73-80

79

Table 2: Example 2: 50 Iterations

Iteration, 𝒌𝒌 Step size, 𝒂𝒂𝒌𝒌 Function value,
𝒇𝒇(𝒙𝒙𝒌𝒌)

Gradient norm,
‖𝛁𝛁𝒇𝒇(𝒙𝒙𝒌𝒌)‖

0 1.00 748.000000 1243.300446
10 0.50 255.942120 365.385963
20 1.00 188.134151 180.055280
30 0.50 153.867710 245.021479
40 0.50 126.482128 129.039203
50 1.00 108.422822 106.089494

The results from the test problem, shown in the two tables, highlight the performance of the

Diagonal Approximate Newton method applied to solve large-scale linear systems. In Tables 1
and 2, the method iterates 50 times for each optimization problem. The step size alternates between
0.0625 and 0.1250 in the Table 1, and between 1.00 and 0.50 in Table 2. This alternating step size
pattern, determined by the Armijo line search, helps balance larger and smaller steps, ensuring
stable convergence.

Furthermore, the gradient norm starts at very high values and decreases steadily in Table 1
and 2. These indicates that the method’s effectiveness in reducing the steepness of the objective
function 𝑓𝑓. Besides, the gradient norm continues continues to reduce through the iterations, shows
that the approach’s ability in reducing the gradient and approach a stationary point. Thus, the
decreases in the function value align with the gradient norm reductions, proving the approach in
showing effective minimization of the objective function 𝑓𝑓.

CONCLUSION

In conclusion, the DN method proves to be an efficient and practical approach for solving large-
scale linear systems. By approximating the Hessian matrix using only its diagonal elements, the
method significantly reduces computational complexity, making it well-suited for large-scale
problems where direct computation of the full Hessian would be impractical. The use of Armijo
line search to determine an appropriate step size ensures stable convergence by balancing step
length, allowing the method to maintain sufficient descent in each iteration. The method has
demonstrated its capability to minimize the objective function effectively, with consistent
convergence toward the optimal solution. The results highlight that the DN method can achieve
reliable performance in scenarios where traditional methods might struggle due to high
computational costs or instability. Overall, this method offers a valuable tool for large-scale
optimization problems, providing both efficiency and accuracy in solving linear systems.

REFERENCES

Andrei, N. (2019). A diagonal quasi-Newton updating method for unconstrained optimization.

Numerical Algorithms, 81(2): 575-590.

Al-Hakeem, H. A., Arasan, J., Mustafa, M. S. B., and Peng, L. F. (2023), Parameter Estimation

for the Generalized Exponential Distribution in the Presence of Interval Censored Data and
Covariate. Int. J. Nonlinear Anal. Appl., 14(1): 739–751.

N.A.I. Mustapa et al. Menemui Matematik (Discovering Mathematics) 46(2) (2024) 73-80

80

Eagan, N., Hauser, G., & Flaherty, T. (2014). Newton’s Method on a System of Nonlinear
Equations. Pittsburgh: Carnegie Mellon University.

Gordon, G., & Tibshirani, R. (2012). Gradient descent revisited. Optimization, 10: 1-31.

Leong, W. J., Enshaei, S. & Kek, S. L. (2021). Diagonal quasi-Newton methods via least change

updating principle with weighted Frobenius norm. Numer Algor, 86: 1225-1241.

Lim, F. P., Wong, L. L., Yap, H. K., and Yow, K. S. (2023), Identifying Outlier Subjects in

Bioavailability Trials Using Generalized Studentized Residuals. Sains Malays., 52(5):
1581–1593.

Sim, H. S., Leong, W. J., Chen, C. Y., & Ibrahim, S. N. I. (2018). Multi-step spectral gradient

methods with modified weak secant relation for large scale unconstrained optimization.
Numerical Algebra, Control and Optimization, 8(3): 377-387.

Sim, H. S., Leong, W. J., & Chen, C. Y. (2019). Gradient method with multiple damping for large-

scale unconstrained optimization. Optimization Letters, 13(1): 617-632.

Sim, H. S., Chen, C. Y., Leong, W. J., & Li, J. (2022). Nonmonotone spectral gradient method

based on memoryless symmetric rank-one update for large-scale unconstrained
optimization. Journal of Industrial & Management Optimization, 18(6): 3975-3988.

Sim, H. S., Ling, W. S. Y., Leong, W. J., & Chen, C. Y. (2023). Proximal linearized method for

sparse equity portfolio optimization with minimum transaction cost. Journal of Inequalities
and Applications, 2023(1): 152.

Waziri, M. Y., Leong, W. J., & Hassan, M. A. (2012). Diagonal Broyden-like method for large-

scale systems of nonlinear equations. Malaysian Journal of Mathematical Sciences, 6(1):
59-73.

Yuan, G., Lu, S., & Wei, Z. (2010). A line search algorithm for unconstrained optimization.

Journal of Software Engineering and Applications, 3(05): 503.

Yagishita, S., & Nakayama, S. (2024). An acceleration of proximal diagonal Newton method.

JSIAM Letters, 16: 5-8.

