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ABSTRACT 
This paper will focus on the direct Adams-Moulton two-step method of order three (DAM2SM3) to 
solve second-order delay differential equations (DDEs) problems directly without transforming the 
equations into a first-order DDEs equation. This method is derived using Lagrange interpolation 
polynomials, followed by comprehensive analysis covering order, zero-stability, convergence, 
consistency and stability region in detail. Implementation is achieved through a C program featuring a 
predictor-corrector (PECE) scheme. Numerical results obtained indicate that the proposed direct method, 
DAM2SM3 is suitable for solving second-order delay differential equations. 

 
Keywords: delay differential equations; direct method; implicit method; numerical simulation 

 
 

INTRODUCTION 
 

Delay differential equations (DDEs) are one of the types of differential equations that incorporate 
delayed information into the model. Nowadays, mathematical models using the concept of DDEs 
are developing rapidly and are useful for various real-life problems, especially in the field of 
science. For example, population dynamics, immunology, physiology, epidemiology and neural 
networks (Rihan et al. (2018)). Based on Kuang (1993), even a small delay can greatly affect the 
solution. Thus, considering delays in the mathematical model when finding a solution is an 
essential approach to obtaining more accurate results. 
 

The general form of second-order DDEs for constant delay type is as follows. 
 
 

𝑦𝑦′′ =  𝑓𝑓�𝑡𝑡, 𝑦𝑦(𝑡𝑡), 𝑦𝑦(𝑡𝑡 −  𝜏𝜏 )�, 𝑎𝑎 ≤  𝑡𝑡 ≤  𝑏𝑏, 𝜏𝜏 >  0, 
𝑦𝑦′(𝑎𝑎) = Ω,                                                                                       (1) 

𝑦𝑦(𝑡𝑡) =  𝜙𝜙(𝑡𝑡), 𝛼𝛼 ≤  𝑡𝑡 ≤  𝑎𝑎, 0 ≤  𝜏𝜏 ≤  |𝑎𝑎 −  𝛼𝛼|, 
 
where 𝜙𝜙(𝑡𝑡) is the initial function and 𝜏𝜏 is the delay term. 
 

https://myjms.mohe.gov.my/index.php/dismath/
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The functions DDEs are a type of differential equations in which the derivative of the 
unknown function at a certain time is given in terms of the values of the function at previous times. 
Therefore, this DDEs is different from ordinary differential equations (ODEs), where in ODEs, 
the solution is only obtained from the current situation without considering the historical 
conditions. 

 
Over the years, researchers have utilized the Adams-Moulton method for solving numerical 

problems due to its capabilities. Majid et al. (2009) proposed a two-point two-step block method 
of variable step size in the simple form of the Adams-Moulton method for directly solving second-
order ODEs, demonstrating its efficiency and stability. Anake (2011) developed a new class of 
one-step continuous implicit hybrid methods for solving initial value problems (IVPs) of general 
second-order ODEs, which offers high accuracy, a low error constant, a large absolute stability 
interval and exhibits zero-stability and convergence. Johari and Majid (2022) proposed a two-step 
Adams-Moulton method directly in predictor-corrector mode to solve second-order ODEs, with 
results indicating comparable error, fewer functions and faster execution than existing methods. 
 

Furthermore, the contribution of studying solutions for second-order DDEs problem was 
started by Nevers and Schmitt (1971). In this paper, the researchers proposed a shooting method 
for boundary value problems, employing Euler’s method to demonstrate problem-solving abilities. 
Radzi et al. (2012) proposed two and three-point one-step block methods to solve the DDEs. This 
work observed that the total number of steps and computational cost for the proposed method is 
reduced compared to the existing method. Hoo et al. (2013) addressed the direct Adams-Moulton 
method to solve second-order DDEs and concluded that the method demonstrates superiority in 
terms of accuracy and requires less computational cost. 

 
Blanco-Cocom et al. (2012) proposed the Adomian decomposition method to approximate 

the solution of DDEs subject to history functions. The result shows that the proposed method 
works efficiently and accurately to DDEs problems. Meanwhile, Jaaffar et al. (2020) proposed a 
direct multistep block method to solve second-order DDEs with boundary conditions directly, 
demonstrating computational effectiveness in solving the second-order DDEs. 
 

This paper aims to propose the direct method of Adams-Moulton of two-step with predictor-
corrector scheme to solve the second-order DDEs directly and provide more accuracy result 
compared to previous method. 
 

FORMULATION 
 
Derivation of the Method 
 
The direct Adams-Moulton method is derived through the integration process as much as twice 
over the interval [𝑡𝑡𝑛𝑛, 𝑡𝑡𝑛𝑛+1] and will use the Lagrange interpolation polynomial. In this project, only 
the corrector formula will be derived, while the predictor formula will use the existing formula 
from Majid et al. (2011). The process of derivation begins with the equations of ODEs since 
numerical methods for solving DDEs are commonly can be adapted from ODEs. Taking the 
general second-order ODEs as follows: 
 

𝑦𝑦 ′′ = 𝑓𝑓(𝑡𝑡, 𝑦𝑦, 𝑦𝑦 ′). 
 

Integrating the second-order ODEs once, 
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� 𝑦𝑦′′(𝑡𝑡)𝑑𝑑𝑑𝑑 =
𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
� 𝑓𝑓(𝑡𝑡, 𝑦𝑦, 𝑦𝑦′)𝑑𝑑𝑑𝑑.
𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
 

Therefore, 

𝑦𝑦′(𝑡𝑡𝑛𝑛+1) − 𝑦𝑦′(𝑡𝑡𝑛𝑛) = � 𝑓𝑓(𝑡𝑡, 𝑦𝑦, 𝑦𝑦′)𝑑𝑑𝑑𝑑.                                               (2)
𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
 

 
Integrating the second-order ODEs twice, 

� � 𝑦𝑦′′(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑡𝑡

𝑡𝑡𝑛𝑛

𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
� � 𝑓𝑓(𝑡𝑡, 𝑦𝑦, 𝑦𝑦′)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.

𝑡𝑡

𝑡𝑡𝑛𝑛

𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
 

 
 
Therefore, 

𝑦𝑦(𝑡𝑡𝑛𝑛+1) − 𝑦𝑦(𝑡𝑡𝑛𝑛) − ℎ𝑦𝑦′(𝑡𝑡𝑛𝑛) = � � 𝑓𝑓(𝑡𝑡, 𝑦𝑦, 𝑦𝑦′)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.                                (3)
𝑡𝑡

𝑡𝑡𝑛𝑛

𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
 

Replacing 𝑓𝑓(𝑡𝑡, 𝑦𝑦, 𝑦𝑦′) in equation (2) and (3) with the Lagrange interpolation polynomial by using 
three points, {(𝑡𝑡𝑛𝑛−1, 𝑓𝑓𝑛𝑛−1), (𝑡𝑡𝑛𝑛, 𝑓𝑓𝑛𝑛), (𝑡𝑡𝑛𝑛+1, 𝑓𝑓𝑛𝑛+1)},  since the method proposed is order three. Then, 
we have, 
 

𝑦𝑦′(𝑡𝑡𝑛𝑛+1) − 𝑦𝑦′(𝑡𝑡𝑛𝑛) = � [
(𝑡𝑡 − 𝑡𝑡𝑛𝑛)(𝑡𝑡 − 𝑡𝑡𝑛𝑛+1)

(𝑡𝑡𝑛𝑛−1 − 𝑡𝑡𝑛𝑛)(𝑡𝑡𝑛𝑛−1 − 𝑡𝑡𝑛𝑛+1)
   𝑓𝑓𝑛𝑛−1                                

𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
 

+ 
 (𝑡𝑡 − 𝑡𝑡𝑛𝑛−1)(𝑡𝑡 − 𝑡𝑡𝑛𝑛+1)

(𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛−1)(𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛+1)
   𝑓𝑓𝑚𝑚 +

(𝑡𝑡 − 𝑡𝑡𝑛𝑛−1)(𝑡𝑡 − 𝑡𝑡𝑛𝑛)
(𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛−1)(𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛)

   𝑓𝑓𝑛𝑛+1]𝑑𝑑𝑑𝑑,        (4) 

 

𝑦𝑦(𝑡𝑡𝑛𝑛+1) − 𝑦𝑦(𝑡𝑡𝑛𝑛) − ℎ𝑦𝑦′(𝑡𝑡𝑛𝑛) = � (𝑡𝑡𝑛𝑛+1 − 𝑡𝑡)[
(𝑡𝑡 − 𝑡𝑡𝑛𝑛)(𝑡𝑡 − 𝑡𝑡𝑛𝑛+1)

(𝑡𝑡𝑛𝑛−1 − 𝑡𝑡𝑛𝑛)(𝑡𝑡𝑛𝑛−1 − 𝑡𝑡𝑛𝑛+1)
   𝑓𝑓𝑛𝑛−1          

𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
 

+ 
(𝑡𝑡 − 𝑡𝑡𝑛𝑛−1)(𝑡𝑡 − 𝑡𝑡𝑛𝑛+1)

(𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛−1)(𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛+1)
   𝑓𝑓𝑛𝑛 +

(𝑡𝑡 − 𝑡𝑡𝑛𝑛−1)(𝑡𝑡 − 𝑡𝑡𝑛𝑛)
(𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛−1)(𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛)

   𝑓𝑓𝑛𝑛+1  ]𝑑𝑑𝑑𝑑  .               (5) 

 
Take 𝑠𝑠 = 𝑡𝑡−𝑡𝑡𝑛𝑛+1

ℎ
 and replace 𝑑𝑑𝑑𝑑 = ℎ𝑑𝑑𝑑𝑑. After that evaluating and simplifying (4) and (5) from -1 

to 0 to obtain the formula of point 𝑦𝑦′(𝑡𝑡𝑛𝑛+1) by using MAPLE. Hence, the equation of the corrector 
formula for the direct Adams-Moulton method can be obtained from this derivation is as follows. 
 
Corrector formulae: 

𝑦𝑦′𝑛𝑛+1 = 𝑦𝑦′𝑛𝑛 +
ℎ

12
(5𝑓𝑓𝑛𝑛+1 + 8𝑓𝑓𝑛𝑛 − 𝑓𝑓𝑛𝑛−1) 

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ𝑦𝑦′𝑛𝑛 +
ℎ2

24
(3𝑓𝑓𝑛𝑛+1 + 10𝑓𝑓𝑛𝑛 − 𝑓𝑓𝑛𝑛−1).                                    (6) 

 
The predictor formula equation referred to the existing article from Majid et al. (2011) is as shown 
below.  
 
Predictor formulae: 

𝑦𝑦′𝑛𝑛+1 = 𝑦𝑦′𝑛𝑛 +
ℎ

12
(23𝑓𝑓𝑛𝑛 − 16𝑓𝑓𝑛𝑛−1 + 5𝑓𝑓𝑛𝑛−2) 

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ𝑦𝑦′𝑛𝑛 +
ℎ2

24
(19𝑓𝑓𝑛𝑛 − 10𝑓𝑓𝑛𝑛−1 + 3𝑓𝑓𝑛𝑛−2).                                    (7) 
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Order of the Method 

 
The corrector formula as shown in (6) is written directly in the form of a matrix difference 
equation as follows: 

𝛼𝛼𝑌𝑌𝑁𝑁  =  ℎ𝛽𝛽𝑌𝑌𝑁𝑁′  +  ℎ2𝛾𝛾𝐹𝐹𝑁𝑁  
where 
 

𝑌𝑌𝑁𝑁  = �
𝑦𝑦(𝑡𝑡𝑛𝑛−1)
𝑦𝑦(𝑡𝑡𝑛𝑛)
𝑦𝑦(𝑡𝑡𝑛𝑛+1)

� , 𝑌𝑌′𝑁𝑁  = �
𝑦𝑦′(𝑡𝑡𝑛𝑛−1)
𝑦𝑦′(𝑡𝑡𝑛𝑛)
𝑦𝑦′(𝑡𝑡𝑛𝑛+1)

� , 𝐹𝐹𝑁𝑁  = �
𝑓𝑓𝑛𝑛−1
𝑓𝑓𝑛𝑛
𝑓𝑓𝑛𝑛+1

� . 

 
 

 
Based on the corrector formula (6) that has been obtained, we can rewrite it in a matrix 
difference equation as, 

0 = −𝑦𝑦′𝑛𝑛+1 + 𝑦𝑦′𝑛𝑛 +
ℎ

12
(5𝑓𝑓𝑛𝑛+1 + 8𝑓𝑓𝑛𝑛 − 𝑓𝑓𝑛𝑛−1) 

𝑦𝑦𝑛𝑛+1−𝑦𝑦𝑛𝑛 = ℎ𝑦𝑦′𝑛𝑛 +
ℎ2

24
(3𝑓𝑓𝑛𝑛+1 + 10𝑓𝑓𝑛𝑛 − 𝑓𝑓𝑛𝑛−1).   

Then, rearrange it become, 
 

�0 0 0
0 −1 1� �

𝑦𝑦(𝑡𝑡𝑛𝑛−1)
𝑦𝑦(𝑡𝑡𝑛𝑛)
𝑦𝑦(𝑡𝑡𝑛𝑛+1)

� = ℎ �0 1 −1
0 1 0 � �

𝑦𝑦′(𝑡𝑡𝑛𝑛−1)
𝑦𝑦′(𝑡𝑡𝑛𝑛)
𝑦𝑦′(𝑡𝑡𝑛𝑛+1)

� + ℎ2 �
−

1
12

8
12

5
12

−
1

24
10
24

3
24

� �
𝑓𝑓𝑛𝑛−1
𝑓𝑓𝑛𝑛
𝑓𝑓𝑛𝑛+1

�.             (8) 

 
Then, the coefficient value from the above matrix (8) will be substituted into the linear difference 
operator and the derivatives are using the Taylor expansion. The coefficient matrix, 𝐶𝐶𝑟𝑟 is obtained 
as follows: 
 
𝐶𝐶0 = 𝛼𝛼0 + 𝛼𝛼1 + 𝛼𝛼2 + ⋯+ 𝑎𝑎𝑘𝑘 
𝐶𝐶1 = 𝛼𝛼1 + 2𝛼𝛼2 + ⋯+ 𝑘𝑘𝛼𝛼𝑘𝑘 − (𝛽𝛽0 + 𝛽𝛽1 + ⋯+ 𝛽𝛽𝑘𝑘) 

𝐶𝐶2 =
1
2!

(𝛼𝛼1 + 22𝛼𝛼2 + ⋯+ 𝑘𝑘2𝛼𝛼𝑘𝑘) − (𝛽𝛽1 + 2𝛽𝛽2 + ⋯+ 𝑘𝑘𝛽𝛽𝑘𝑘) − (𝛾𝛾0 + 𝛾𝛾1 + ⋯+ 𝛾𝛾𝑘𝑘) 
⋯ 

𝐶𝐶𝑟𝑟 = � �
𝑗𝑗𝑟𝑟

𝑟𝑟!
𝛼𝛼𝑗𝑗 −

𝑗𝑗𝑟𝑟−1

(𝑟𝑟 − 1)!
𝛽𝛽𝑗𝑗 −

𝑗𝑗𝑟𝑟−2

(𝑟𝑟 − 2)!
𝛾𝛾𝑗𝑗�

𝑘𝑘

𝑗𝑗=0
 where 𝑟𝑟 = 3,4,5, …. 

 
By substituting the matrix difference equation into the formula above, we have 
 
𝐶𝐶0 = 𝛼𝛼0 + 𝛼𝛼1 + 𝛼𝛼2       = �00� + � 0

−1� + �01� = �00�, 
 
 
𝐶𝐶1 = 𝛼𝛼1 + 2𝛼𝛼2 − (𝛽𝛽0 + 𝛽𝛽1 + 𝛽𝛽2)       = � 0

−1� + 2 �01� − �11� − �−1
0 � = �00�, 
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𝐶𝐶2 =
𝛼𝛼1
2

+ 2𝛼𝛼2 − (𝛽𝛽1 + 2𝛽𝛽2) − (𝛾𝛾0 + 𝛾𝛾1 + 𝛾𝛾2) =
1
2
� 0
−1� + 2 �01� − �−1

1 � − �
1
1
2
� = �00�, 

   

𝐶𝐶3 = 𝛼𝛼1
6

+ 8𝛼𝛼2
6
− �𝛽𝛽1

2
+ 2𝛽𝛽2� − (𝛾𝛾1 + 2𝛾𝛾2) = 1

6
� 0
−1� + 8

6
�01� − �

− 3
2

1
2

� − �
18
12
16
24

�  = �00�,  

 

𝐶𝐶4 =
𝛼𝛼1
24

+
16𝛼𝛼2

24
− �

𝛽𝛽1
6

+
8𝛽𝛽2

6
� − �

𝛾𝛾1
2

+ 2𝛾𝛾2� = �
0

15
24
� − �

−
7
6

1
6

� − �

14
12
11
24

� = �00�,  

 

𝐶𝐶5 =
𝛼𝛼1

120
+

32𝛼𝛼2
120

− �
𝛽𝛽1
24

+
16𝛽𝛽2

24
� − �

𝛾𝛾1
6

+
8𝛾𝛾2

6
� = �

0
31

120
� − �

−
15
24
1

24

� − �

48
72
34

144

� = �
−

1
24

−
7

360

�. 

 
 
Definition 2.1. (Lambert (1973)) The method is said to have an order m if 𝐶𝐶0 = 𝐶𝐶1 = ⋯ = 𝐶𝐶𝑚𝑚 =
𝐶𝐶𝑚𝑚+1 = 0  and 𝐶𝐶𝑚𝑚+2 ≠ 0. The value of 𝐶𝐶𝑚𝑚+2 is become the error constant. 
 

Thus, the proposed method is on order three with the error constant �− 1
24

− 7
360�

𝑇𝑇
and the method 

is known as Direct Adams-Moulton two-step method of order three (DAM2SM3). 
 
 
Zero Stability of the Method 
 
To show zero stability of the method, we have the following definition.  
 
Definition 2.2. (Lambert (1973)) If there is no root of the first characteristic polynomial 𝜌𝜌(𝑅𝑅) has 
a modulus larger than one, and all roots with modulus one are simple roots, the approach is said to 
have zero-stability. 
 
This method is zero-stable when the root state 𝑅𝑅𝑗𝑗  of the first characteristic polynomial 𝜌𝜌(𝑅𝑅)is 
defined as  

𝜌𝜌(𝑅𝑅) = det �� 𝐴𝐴(𝑗𝑗)

𝑘𝑘

𝑗𝑗=0
𝑅𝑅𝑘𝑘−𝑗𝑗� = det[𝐴𝐴0𝑅𝑅 − 𝐴𝐴1]  =  0, 

which satisfies |𝑅𝑅𝑗𝑗 |  ≤  1. 

Based on the corrector formula equation (6), 𝐴𝐴0 = �1 0
0 1� and 𝐴𝐴1 = �1 0

0 1�. Then 

𝜌𝜌(𝑁𝑁) = det �𝑅𝑅 − 1 0
0 𝑅𝑅 − 1� = 0, 

 
(𝑅𝑅 − 1)2 = 0, 𝑅𝑅 = 1,1. 

 
Since |𝑅𝑅𝑗𝑗 |  ≤  1, the method is said to be zero-stable. 
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Consistency and Convergence 
 
Definition 2.3. (Lambert (1973)) The method is said to be consistent if it passes the condition 
where the order of the method, 𝑚𝑚 ≥  1. 
 
From definition 2.3, the method is consistent since the proposed method (DAM2SM3) is in order 
three. 
 
Definition 2.4. (Lambert (1973)) The linear multistep method is convergent when it is zerostable 
and consistent. 
 
Therefore, based on definition 2.4, the DAM2SM3 is said to be convergent since it is zero-stable, 
|𝑅𝑅𝑅𝑅 |  ≤  1 and consistent because the method has order three with error constant 

𝐶𝐶5  = �−
1

24
−

7
360

�
𝑇𝑇

. 

 
Stability Region  
 
The stability region will be obtained by substitute the test equation 
 

𝑦𝑦′′ = 𝑓𝑓 = 𝜆𝜆𝜆𝜆(𝑡𝑡) + 𝜇𝜇𝜇𝜇(𝑡𝑡 − 𝜏𝜏) 
 
into the proposed method (6). We obtain as follows, 
 

𝑦𝑦′𝑛𝑛+1 = 𝑦𝑦′𝑛𝑛 +
5

12
ℎ𝜆𝜆𝑦𝑦′𝑛𝑛+1 +

5
12

ℎ𝛽𝛽𝑦𝑦𝑛𝑛+1 +
2
3
ℎ𝜆𝜆𝑦𝑦′𝑛𝑛 +

2
3
ℎ𝛽𝛽𝑦𝑦𝑛𝑛 −

1
12

ℎ𝜆𝜆𝑦𝑦′𝑛𝑛−1 −
1

12
ℎ𝛽𝛽𝑦𝑦𝑛𝑛−1. 

 

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ𝑦𝑦′𝑛𝑛 +
1
8
ℎ2𝜆𝜆𝑦𝑦′𝑛𝑛+1 +

1
8
ℎ2𝛽𝛽𝑦𝑦𝑛𝑛+1 +

5
12

ℎ2𝜆𝜆𝑦𝑦′𝑛𝑛 +
5

12
ℎ2𝛽𝛽𝑦𝑦𝑛𝑛 −

1
24

ℎ2𝜆𝜆𝑦𝑦′𝑛𝑛−1

−
1

24
ℎ2𝛽𝛽𝑦𝑦𝑛𝑛−1. 

 
 
Then rearrange equations above in matrix form 
 

�
1 −

5
12

ℎ𝜆𝜆

0 1 −
1
8
ℎ2𝜆𝜆

� �𝑦𝑦′𝑛𝑛+1𝑦𝑦𝑛𝑛+1
� = �1 0

0 1� �
𝑦𝑦′𝑛𝑛
𝑦𝑦𝑛𝑛
� + ℎ �0

5
12

𝜇𝜇 +
2
3
𝜆𝜆

1 0
� �𝑦𝑦′𝑛𝑛𝑦𝑦𝑛𝑛

� 

                                         +ℎ �0
2
3
𝜇𝜇 − 1

12
𝜆𝜆

0 0
� �𝑦𝑦′𝑛𝑛−1𝑦𝑦𝑛𝑛−1

� + ℎ �0 − 1
12
𝜇𝜇

0 0
� �𝑦𝑦′𝑛𝑛−2𝑦𝑦𝑛𝑛−2

� 

+ℎ2 �
0 0

0
1
8
𝜇𝜇 +

5
12

𝜆𝜆� �
𝑦𝑦′𝑛𝑛
𝑦𝑦𝑛𝑛
� + ℎ2 �

0 0

0
5

12
𝜇𝜇 −

1
24

𝜆𝜆� �
𝑦𝑦′𝑛𝑛−1
𝑦𝑦𝑛𝑛−1

� + ℎ2 �
0 0

0 −
1

24
𝜇𝜇� �

𝑦𝑦′𝑛𝑛−2
𝑦𝑦𝑛𝑛−2

�. 

 
From above matrix, we have 
 

𝐴𝐴0 = �
1 − 5

12
ℎ𝜆𝜆

0 1 − 1
8
ℎ2𝜆𝜆

�,  𝐴𝐴1 = �1 0
0 1�, 
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𝐵𝐵1 = �0
5

12
𝜇𝜇 +

2
3
𝜆𝜆

1 0
� , 𝐵𝐵2 = �0

2
3
𝜇𝜇 −

1
12

𝜆𝜆

0 0
� , 𝐵𝐵3 =  �0 −

1
12

𝜇𝜇

0 0
�, 

 

𝐶𝐶1 = ℎ2 �
0 0

0
1
8
𝜇𝜇 +

5
12

𝜆𝜆� , 𝐶𝐶2 = �
0 0

0
5

12
𝜇𝜇 −

1
24

𝜆𝜆� , 𝐶𝐶3 =  �
0 0

0 −
1

24
𝜇𝜇�. 

 
 
 
General equation of stability is as follows, 

�𝐴𝐴𝑘𝑘𝑌𝑌𝑚𝑚−𝑘𝑘 + ℎ�𝐵𝐵𝑘𝑘𝑌𝑌𝑚𝑚−𝑘𝑘 + ℎ2�𝐶𝐶𝑘𝑘𝑌𝑌𝑚𝑚−𝑘𝑘 = 0.
𝑟𝑟+1

𝑘𝑘=0

𝑟𝑟+1

𝑘𝑘=0

𝑟𝑟

𝑘𝑘=0

 

 
 
By substituting the value r = 1, we have 
 

�𝐴𝐴𝑘𝑘𝑌𝑌𝑚𝑚−𝑘𝑘 + ℎ�𝐵𝐵𝑘𝑘𝑌𝑌𝑚𝑚−𝑘𝑘 + ℎ2�𝐶𝐶𝑘𝑘𝑌𝑌𝑚𝑚−𝑘𝑘 = 0.
2

𝑘𝑘=0

2

𝑘𝑘=0

1

𝑘𝑘=0

 

 
 
Solving the determinant of 

𝑣𝑣2(𝐴𝐴0 − ℎ𝐵𝐵0 − ℎ2𝐶𝐶0) − 𝑣𝑣(𝐴𝐴1 + ℎ𝐵𝐵1 + ℎ2𝐶𝐶1) − (ℎ𝐵𝐵2 + ℎ2𝐶𝐶2) = 0 
 
By substitute 𝑌𝑌 = ℎ2𝜆𝜆 and 𝑋𝑋 = ℎ2𝜇𝜇 , the stability polynomial is obtained 
 

24𝑣𝑣6 − 3𝑌𝑌𝑣𝑣6 − 3𝑋𝑋𝑣𝑣5 − 17𝑌𝑌𝑣𝑣5 − 48𝑣𝑣5 − 17𝑋𝑋𝑣𝑣4 − 5𝑌𝑌𝑣𝑣4+24𝑣𝑣4 − 5𝑋𝑋𝑣𝑣3 + 𝑌𝑌𝑣𝑣3 + 𝑋𝑋𝑣𝑣2

24
= 0.    (9) 

 
The stability region is depicted in the (𝑋𝑋 − 𝑌𝑌 ) plane using the boundary locus technique, by 

substituting 𝑣𝑣 =  0, −1 , and 𝑣𝑣 =  𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 +  𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 , with 0 ≤  𝜃𝜃 ≤  2𝜋𝜋,  into the stability 
polynomial (9). By separating and solving the real and imaginary parts of 𝑣𝑣 =  𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 +  𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 
simultaneously, we determine the points within the region. As all roots of the stability polynomial 
(9) satisfy |𝑣𝑣|  ≤  1 and fall within the boundary of the region, the stability region is deemed stable. 
The shaded area in Figure 1 represents the stability region for DAM2SM3 for solving DDEs 
problem. 
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Figure 1: Stability region for DAM2SM3 

 
  

IMPLEMENTATION 
 
The implementation of DAM2SM3 method to solve second-order DDEs are in the form of 
predictor-corrector (PECE) scheme. Before applying DAM2SM3 method, the set of previous 
values are required first since the proposed method is a multistep method. 
 

Therefore, three previous values including the initial value provided which are 𝑦𝑦0, 𝑦𝑦1, 𝑦𝑦2 are 
needed and can be obtained by using the one-step method approach such as exact solution before 
proceeding to the proposed method. Once the previous values are calculated, DAM2SM3 method 
will be implemented as the corrector and the equation from Majid et al. (2011) will act as predictor. 

  
For the constant delay type of problem, consequently for (𝑡𝑡 −  𝜏𝜏 )  ≤  𝑎𝑎, the delay term is 

calculated using the initial function, 𝜙𝜙(𝑡𝑡) to calculate 𝑦𝑦(𝑡𝑡 −  𝜏𝜏 ) and 𝑦𝑦′(𝑡𝑡 −  𝜏𝜏 ). Otherwise, for 
(𝑡𝑡 − 𝜏𝜏 )  ≥  𝑎𝑎, the delay term are depend on the location of (𝑡𝑡 − 𝜏𝜏 ). From this location we are able 
to recall the values 𝑦𝑦(𝑡𝑡 − 𝜏𝜏 ) and 𝑦𝑦′(𝑡𝑡 − 𝜏𝜏) which we had stored earlier since the implementation 
in fixed step size i.e., 𝜏𝜏 =  𝑚𝑚ℎ for 𝑚𝑚 =  1, 2, 3, . . .. In this project, the algorithm of the proposed 
method DAM2SM3 were developed in C language with the selection of step size is pre-
determined. 
 
Algorithm of DAM2SM3 Method 
 
Step 1: Set starting value 𝑘𝑘 , ending value 𝑙𝑙 , step size ℎ, given initial value and given initial                  

function 𝜙𝜙(𝑡𝑡). 
Step 2:  For 𝑛𝑛 =  0, 1, set 𝑡𝑡𝑛𝑛+1  =  𝑘𝑘 +  𝑛𝑛ℎ, compute function 𝑓𝑓𝑛𝑛 and delay term 𝑑𝑑𝑛𝑛.  Evaluate  

𝑦𝑦𝑛𝑛+1 using exact solution.               
Step 3:  For 𝑛𝑛 ≥  2, while 𝑡𝑡𝑛𝑛  <  𝑙𝑙, do Steps 4 and 5. 
Step 4:  Set 𝑡𝑡𝑛𝑛+1  =  𝑡𝑡𝑛𝑛  +  ℎ, compute function 𝑓𝑓𝑛𝑛 and delay term 𝑑𝑑𝑛𝑛. Calculate the approximate 

values of 𝑦𝑦′ 𝑛𝑛+1 and 𝑦𝑦𝑛𝑛+1 using the predictor formula. 
 



 

A.S. Azmi et al.                Menemui Matematik (Discovering Mathematics) 46(2) (2024) 1-12 
 

9 

 

Step 5: Calculate the approximate values of 𝑦𝑦′ 𝑛𝑛+1 and 𝑦𝑦𝑛𝑛+1 using the corrector formula. 
 
Step 6: End. 
 
Numerical Results 
 
Three second-order DDEs problems with constant delay type were examined to assess the 
efficiency of the proposed DAM2SM3 method. These problems were tested using various step 
size, ℎ, ranging from ℎ =  0.1 to ℎ =  0.001. The solutions obtained from the tested problems 
were compared between the DAM2SM3 method and an existing method, such as the direct Adams-
Bashforth method of order three (DAB3). The following abbreviations are used in the tables which 
summarize the numerical results. 
 
ℎ                      Step size 
FCN                Total function calls 
MAXE            Maximum error 
TIME              Timing in second 
DAM2SM3    Direct Adams-Moulton two-step method of order three 
DAB3             Direct Adams-Bashforth of order three 
 
 
 
Problem 1. 

𝑦𝑦′′𝑡𝑡)  +  𝑦𝑦(𝑡𝑡)  =  𝑦𝑦(𝑡𝑡 −  1), 𝑡𝑡 ∈  [0, 1], 
𝑦𝑦(𝑡𝑡)  =  𝑡𝑡2  +  3𝑡𝑡 +  2, −1 ≤  𝑡𝑡 ≤  0, 

𝑦𝑦′(0)  =  0. 
The exact solution: 

𝑦𝑦(𝑡𝑡) =  4𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)  −  𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  +  𝑡𝑡2  +  𝑡𝑡 −  2. 
Source: Martin and Garcia (2002). 
 
 

Table 1: Solution of DAM2SM3 and DAB3 for Problem 1 
 

h METHOD MAXE FCN TIME (s) 
0.1 DAB3 2.48094290e-004 13 0.004251 

DAM2SM3 3.22901862e-005 21 0.006746 
0.01 DAB3 3.69316455e-007 103 0.007393 

DAM2SM3 4.16524555e-008 201 0.016494 
0.001 DAB3 3.82209819e-010 1003 0.136830 

DAM2SM3 4.25290914e-011 2001 0.152671 
 

 
Problem 2. 

𝑦𝑦′′(𝑡𝑡) =  −
1
2
𝑦𝑦(𝑡𝑡) +

1
2
𝑦𝑦(𝑡𝑡 −  𝜋𝜋), 𝑡𝑡 ∈  [0, 1], 

𝑦𝑦(𝑡𝑡)  =  1 −  𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡), −𝜋𝜋 ≤  𝑡𝑡 ≤  0. 
The exact solution: 

𝑦𝑦(𝑡𝑡) =  1 −  𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡). 
Source: Rasdi et al. (2013). 

Table 2: Solution of DAM2SM3 and DAB3 for Problem 2 
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h METHOD MAXE FCN TIME (s) 

0.1 DAB3 1.01903807e-004 13 0.002005 
DAM2SM3 1.15489391e-005 21 0.005061 

0.01 DAB3 1.58114680e-007 103 0.023840 
DAM2SM3 1.75833060e-008 201 0.033712 

0.001 DAB3 1.64265962e-010 1003 0.078353 
DAM2SM3 1.82533155e-011 2001 0.088725 

 
  
Problem 3. 

𝑦𝑦′′(𝑡𝑡) =  𝑦𝑦(𝑡𝑡 −  𝜋𝜋), 𝑡𝑡 ∈  [0, 1], 
𝑦𝑦(𝑡𝑡)  =  𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡),−𝜋𝜋 ≤  𝑡𝑡 ≤  0. 

 
The exact solution: 

𝑦𝑦(𝑡𝑡) =  𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡). 
Source: Rasdi et al. (2013). 
 
 

Table 3: Solution of DAM2SM3 and DAB3 for Problem 3 
 

h METHOD MAXE FCN TIME (s) 
0.1 DAB3 1.04577206e-004 13 0.003890 

DAM2SM3 1.18034197e-005 21 0.004925 
0.01 DAB3 1.64908750e-007 103 0.009505 

DAM2SM3 1.83415937e-008 201 0.016934 
0.001 DAB3 1.71632264e-010 1003 0.095217 

DAM2SM3 1.90724103e-011 2001 0.121201 
 

The performance of the proposed method, the direct Adams-Moulton two-step of order three 
(DAM2SM3), is discussed in detail with references to Tables 1 - 3 for each problem respectively. 
The results are compared with the DAB3 method in terms of maximum error, total function calls 
and execution time. 

 
Based on Tables 1 - 3, we observed that the proposed DAM2SM3 method consistently shows 

good performance than DAB3 method as the step size decreases. Regarding the maximum error, 
DAM2SM3 method produces less error for each problem than DAB3. However, for the number 
of function calls and execution time, the DAM2SM3 method is slightly defeated by the DAB3 
method. The results is reasonable since the DAB3 method only depends on the predictor scheme 
while DAM2SM3 uses the predictor-corrector scheme method. Therefore, the number of function 
calls and execution time for DAB3 is lower than the DAM2SM3. Overall, it has been proven that 
the DAM2SM3 method is comparable to existing methods and is effective in solving second-order 
DDE problems. 

 
 

CONCLUSION 
 
In this paper, the direct Adams-Moulton two-step method of order three (DAM2SM3) have been 
proposed to solve second-order delay differential equations (DDEs) problems. The proposed 
method has shown good performance and produces better results than the existing method DAB3 
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in terms of maximum error when solving the problems. Less in the maximum error, indicating that 
the results obtained are more accurate and closer to the exact solution. In conclusion, this proposed 
DAM2SM3 method is proven to be able to solve the second-order DDEs problems efficiently. 
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