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ABSTRACT

This paper presents the definitions of n-algebra for 3 <n < 5. It is known that the concept of
linearity is important to gain the definition of algebra or binary algebra. This concept of binary
algebra is used to introduce new definitions of n-algebra. As the implementation of these definitions,
the classification of two dimensional complex n-Lie, n-associative and n-Leibniz algebras for = 3,4
are provided.
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INTRODUCTION

This section gives basic concepts of algebra that are applied in this study. It includes definitions
of algebra and n-algebra where n is element of natural number, and also the classification of Lie,
associative and Leibniz algebras in dimension two over complex field. Subsequently, there are
literature reviews which are related to the study.

Ayupov et al. (2020) presents an algebra A as a vector space V over a field F equipped by a
bilinear binary operation f: V X V — V on it. The vector space V is called the underlying vector
space of A. The definition of algebra can be written as:

Definition 1: A vector space V with bilinear operation f:V xV — V satisfies these two
conditions:

Lo fQAyxg + A2x1",x3) = A1 (x1,x3) + A, f (%1, x2)
2. flr, Aixp + A3x5") = A1 f (%1, x2) + Ao f (x4, x3")
is called 2-algebra or algebra.

Note that 2-algebra or algebra is also called as binary algebra. Any field is an algebra over itself
and over its subfield. The examples of algebra are the fields of rational number Q, real number R
and complex number C. The set of polynomials F[xq, x5, **, X, ] at variables x, x5, **+, x, With
coefficients from a field F is also an algebra over F.
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If the bilinear operation f in Definition 1 satisfies:

1. Jacobi identity, f(f((x,¥),2)+ f(f(y,2),x)+ f(f(z,x),y) =0 and (skew) anti-
symmetric f(x,y) = —f(y, x), Lie algebra will obtained (Husain et al., 2017).

2. Associative identity f(f(x,y),z) = f(x,f(y,z)), an algebra becomes associative
algebra (Rahman et al., 2021).

3. Leibniz identity, f(x, f(y,2)) = f(f(x,¥),2z) — f(f(x,2),y), an algebra will be called
Leibniz algebra (Mohamed et al., 2020).

The classification of two-dimensional Lie, associative and Leibniz algebras over complex field
are shown in Theorems 1, 2 and 3.

Theorem 1: (Ayupov et al., 2020) Two-dimensional Lie algebra is
Li: [ere;] = ey, [eze4] = —e,.
Theorem 2: (Rahman et al., 2021) There are non-isomorphic of two-dimensional associative
algebras
Ask:ieje; = e,; Asiieje, =ey, eje, = e, Asiieje; = ey, e,e; = ey;

4, — — oo 5. — — —
Asy:iejeq = eq, exey; = ey, ASyiejeq = eq, e1e; = ey, e84 = ey,

Theorem 3: (Ayupov et al., 2020) Any two-dimensional Leibniz algebras is isomorphic to one
of the following non-isomorphic Leibniz algebras

Lb;: [ey,e1] = ey; Lb3:[er, €3] = €y, [ez,e1] = —ep; Lb3: [eg,e2] = ey, [e;,€2] = ey
These classes of algebras will be used to find the classification of n-Leibniz, n-associative and
n-Lie algebras for n = 3,4 (see Propositions 1 until 9).

The definition of 3-algebra that involves trilinear operation is shown as follows:

Definition 2: A vector space V with trilinear operation f: V XV X V — V satisfies these three
conditions:

L. f(Aix1 + Ayx1, X0, x3) = A1 f (xq, X2, x3) + Ao f (X1, X3, x3)

2. fxq, Axy + Ayx9,x3) = A f (x4, X5, X3) + Az f (x4, X3, X3)

3. f(x1, %0, Aix3 + Ayx5) = A1 f (x4, X2, X3) + Axf (x4, X2, X3)
is called 3-algebra.

Observe from Definitions 1 and 2, it is clear that for n is natural number, n-algebra can be
defined as in Definition 3 below:
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Definition 3: A vector space V with multilinear map f:V®" — V satisfies the following
conditions:

fQuxg + Aax1, X2, .0, %) = A f (X1, %2, %3) + Aof (X1, %2, ..., Xy)

f(xl,lle + AzXé,...,xn) = /11f(x1, X3, x3) + Azf(xl,Xé,...,xn)

f(xl,xZ, . .,/11xn + Azxrll) = Alf(xl,xZ,.Xé) + Azf(xl, X3, .,x,’l)
is called n-algebra.

One of the oldest branches of modern algebra is the theory of finite dimensional algebras.
The work of Hamilton is the first who introduced the famous algebra of quaternion and matrix
theory by Cayley. Besides that, B. Peirce, C.S. Peirce, Clifford, Weierstrass, Dedekind, Jordan
and Frobenius are introduced finite dimensional algebras (Drozd and Kirichenko, 1991). In 1985,
Filippov introduced the concept of n-Lie algebras and classified the (n + 1)-dimensional n-Lie
algebras over an algebraically closed field and characteristic zero. The structure of n-Lie
algebras is very different from that of Lie algebras due to n-ary multilinear operation involved.
The description of simultaneous classical dynamics of three particles is first appeared in
Nambu’s work by Bai et al. (2010). They give a complete isomorphism class n-Lie algebras over
an algebraically closed field of characteristic zero in dimension (n + 1) and (n + 2) (Bai et al.,
2011). A vector space equipped with an n-ary operation which has the property of being a
derivation for itself is called a Leibniz n-algebra. The notion of Leibniz algebra is n = 2. Casas
et al. (2002) described the free Leibniz (n + 1)-algebra in the terms of the n-magma, that is the
set of n-ary planar trees. Leibniz (n + 1)-algebra into a Leibniz algebra is shown that the n-
tensor power factor. This paper deals with n-algebra arising from algebra. We start by
introducing n-algebra arising from algebra for n = 3,4, 5. As implementation, the classifications
of n-Lie, n-associative and n-Leibniz algebras for n = 3, 4 in dimension two are provided.

DEFINITIONS OF n-ALGEBRA ARISING FROM ALGEBRA
In this section, the definitions of n-algebra arising from binary algebra for 3 <n <5 are

presented.

Consider V is a vector space over a field F. Given bilinear operation u: VXV — V, then by
Definition 1, an algebra, (V, 1) is obtained.

Now, to find the definition of 3-algebra that arising from algebra, we create triple operation
f:V XV xV -V defines by

f(x1,x2,x3) = y(xl,u(xz,xg)) and f(x1, X2, x3) = u(u(xy, x3), x3).

From Definition 2 and equation f (xy, X, x3) = (1, u(x5, x3)), we can show that 3-algebra is
arising from algebra as follows:
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fQAyxg + Azx1, %2, x3) = H(Alx1 + lzx{,u(xz,x3))
= 31.‘1(951’#(952: x3)) + Azu(x{,,u(xz,xg,))
Ay f (g, %3, %3) + Ao f (x1, X2, X3),

fCer, Ay + Apxh, x3) = (g, w(Ag 2, + Ax3, x3))
= /11Il(x1'll(x2;x3)) + Azu(xl,u(xé,xg))
A1 f (%1, 22, %3) + Ao f (x4, X3, X3),

fQxy,x2, A1x3 + A,x3) = #(xl'll(xz'lﬂ% + Azxé))
= /11Il(x1'll(x2;x3)) + Azu(xl,u(xz,xé))
= Aif(xq, %2, %3) + Ao f (%1, X2, x3).

Since f(xq, %2, x3) = p(xy, t(xz, x3)) satisfies the linearity then (V, f) is 3-algebra.

Similar method will be apply for equation f(xy, x5, x3) = u(u(xy1, x2), x3) to obtain 3-algebra
which can be expressed from binary algebra shows as:

f(A1xg + Axxy, x5, x3) = u(u(Arxq + Axx1, x3), X3)
= Au(u(xy, x2), x3) + Apu(u(xy, x2), x3)
= A1 f (x1, %2, x3) + Ao f (X1, X2, X3),
f(x1, A5 + Ax5,x3) = u(u(xy, ;x5 + A%3), x3)
= ALU(M(XL xz); x3) + Az#(#(xb xé): xs)
= A f (%1, X2, x3) + A5 f (x4, X3, X3),
f(xq, %, Aix3 + Axx3) = p(u(xq, x2), A1x3 + A3x3)
= ALU(M(XL xz); x3) + Az#(#(xb xz): xé)
= A1f (x1,x2,x3) + Ao f (x1, X3, x3).
Therefore (V, f) is 3-algebra since f(xy, x5, x3) = u(u(xy, x,), x3) satisfies the linearity.

From the arguments above, 3-algebra that arises from algebra shows in Definition 4.

Definition 4: Suppose V is a vector space. Let (V,u) be an algebra where y:V XV - V is
bilinear. Let trilinear operation f:V X V X V — V satisfies one of the following

f(x1,%,%3) = ll(x1’li(x2’x3)): (1)

f(xq, %2, x3) = p(pxy, x2), x3), 2)
then (V, f) is called 3-algebra.
Now, use the similar method to introduce 4-algebra that arising from algebra. First, Let

operations : VXV =V and f: VXV XV XV = V. Since u is bilinear, from Definition 1,
(V, 1) becomes an algebra. The operation f can be define as:

f (1, %2, %3, %4) = u(y(xl,xz),u(x3,x4)),
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f(x1, %2, x3,%4) = u(uu(xy, x2), X3), X4),
fx1, %0, %3,%4) = (xl,u(xz,u(x3,x4))),
f(xlfo'x3lx4-) = ,u(u(xl, M(XZ,X3)),X4),

f (1, %2, %3, %4) = u(xl,y(,u(xz,x3),x4)).

Clear that Definition 3 for n = 4 and equation f(xq, x5, X3,X4) = u(u (x1,%5), u(xs, x4)) gives:

fQuxy + Ayx1, x5, %3, %4) = p(pds Xy + A1, x5, u(x3, %))
= #(/11#(351; X2) + Apu(xy, x3), u(xs, x4))
= /1111(.“(351; x2), h(x3, x4)) + Azﬂ(#(xi; x2), h(xs, x4))
= A1 f (X1, X2, X3, x4) + Ao f (X1, X2, X3, X4),

[, A1y + %5, X3, X4) = #(H(xl'/hxz + lzxé),u(x3,x4))
= .U(ALU(?CL x2) + Apu(xy, x3), 1(xs, x4))
= /1111(.“(351; x2), h(x3, x4)) + Azﬂ(#(xp x3), h(xs, x4))
= M f (x1, X2, X3, %4) + Ao f (X1, X3, X3, X4),

f (1, %2, X3 + Axx3,X4) = Il(ﬂ(xl'xz)'ll(/11x3 + AZX§,x4))
= H(H(xp X2), A (X3, x4) + Appu(xs, x4))
= Au(p(xy, x5), (23, %4)) + Appt (g, 22), (3, x4))
= A1 f (X1, X2, X3, x4) + Ao f (X1, X2, X3, X4),

fQey, %2, %3, A1x4 + Ax) = (g, x2), u(xs, Ayxg + A5x4))
= M(M(xpxz)xhli(xs: X4) + Apu(xs, xz’;))
= /1111(.“(351; x2), h(x3, x4)) + Azﬂ(#(xp x2), h(xs, x:l))
= M f (x1, X2, X3, %4) + Ao f (X1, X3, X3, X4).

Hence, f(xq, x5, X3,Xx4) = y(u(xl, X2), u(x3, x4)) satisfies the linearity then (V, f) is 4-algebra.

Similar method is applied for equations f(xq, x5, X3,X,) = u(xl, u(u(xy, x3), x4)),

fQr,x2,x3,x4) = p(uu(xg, x2), x3), X4), fQx1,x2,x3,%4) = (xl,u(xz,u(x3,x4))), and
£, %2, %3, %4) = p(og, u(u(xz,%3),%4)) . It shows that the above equations also satisfy
linearity. From the observation, 4-algebra arises from algebra can be define as follows:

Definition 5: Suppose V is a vector space. Let (V/,u) be an algebra where u: VXV -V is
bilinear. If the operation f: V X V XV X V — V is linearity and satisfies one of the following

f(xl,xz,x3,x4) = .u(ﬂ(xlixZ)' ,LL(X3,X4)), (3)
[y, x2, %3, 24) = p(p(p(xg, x2), x3), X4), “4)
f(xlfo'x3lx4-) =u (xll :u(xZ' H(X3,X4))), (5)
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f(xlfo'x3lx4-) = ,u(u(xl, :u(x21x3))'x4)l (6)
f(x1,%2,x3,%4) = u(xl,u(u(xz,x3),x4)), (7)
then, (V, f) is called 4-algebra.

By using the similar method for : VXV XV XV XV — V , 5-algebra which is arising from
binary algebra, (V, i) shown in the following definition.

Definition 6. Suppose V is a vector space. Let (V,u) be an algebra where u: VXV -V is
bilinear. If the operation f:V XV XV XV XV =V is linearity and satisfies one of the
following

f ey, %o, %3, X4, x5) = p(uu(u(xe, x2), X3), X4, X5), ®)
f (1, %2, %3, %4, %5) = p(pu(p(xy, u(xz, x3)), x4), x5), 9)
f e, Xa, 3, %4, X5) = p(p (o1, (2, X3), %4) ), X5), (10)
f Ger, Xa, 23, %4, X5) = 11, (R Cxz, X3), %4), X5)), (11)
f 1, 2,3, 00, x5) = o (1 (300, 10 (3, 30)) ) X5, (12)
£ (1,22, 3, 00, 5) = o (200, w( (o2 13, 20, 35) ) (13)
£ Ger, 2, %, 24, %5) = o (200, (g (G2, %), %5))), (14)
£y, % X3 a0 X5) = (xl, neyes u(x4,x5)))), (15)
f(en %, %3, %0, %5) = p(u(pxy, x2), 1 (x3, x4)), X5), (16)
f Ger, Xa, X3, %4, X5) = p((x1, %3), (U x3, X4), x5)), (17)
fGer 2, %, 24, %5) = (10, 000, 03)), 12, %) ), (18)
£ Ger 2, %, 24, x5) = o (00, (g, %), 1, %)) ), (19)
f Gen, Xa, X3, %4, X5) = p(p(ure, X2), x3), k(x4 X5)), (20)
f a0, X3, %0, %5) = 1 (100, %2, 1 (3, b (x4, %5)) ). 1)

then, (V, f) is called 5-algebra.
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Next section gives the classification of 3-algebras and 4-algebras which are arising from algebra
by applying the classes of Lie, associative and Leibniz algebras into Definitions 4 and 5.

CLASSIFICATION TWO DIMENSIONAL OF n-ALGEBRAS

This section provides the classification of two dimensional n-Lie, n-associative and n-Leibniz
algebras for n = 3, 4 that arising from Lie, associative and Leibniz algebras over complex field.

The classification of two dimensional complex 3-Lie, 3-associative and 3-Leibniz algebras
by using the equation (1) are presented in Propositions 1, 2 and 3, respectively. The provings are
similar and the details of the proving are provided in Proposition 3.

Let {e4, e,} be a basis for two-dimensional algebra. The equations (1) and (2) can be rewrite in
term of eq, e, as follows:

leiejex] = [eilejex]], (1*)

[eie]-ek] = [[el-ej]ek], (2%)
fori,j,k=1,2.

Proposition 1: For any vector space V. Let u: VXV = Vand f: V XV XV = V be bilinear and
trilinear operations, respectively. Then two dimensional complex 3-Lie algebra that arising from
Lie algebra satisfies f(xq, x5, x3) = u(xq, u(x2,x3)) is

Ly: [erere;] = ey, [ere2e1] = —ey.
Proof:
The class of two-dimensional Lie algebra is L}: [e;e,] = e,, [e,e1] = —e, (refer Theorem 1).
By substituting [e;e,] = e,, [e;e1] = —e, into (1¥), the triple multiplications become
[ereiei] = [ereze;] = [ese1e1] = [eze16,] = [eze261] = [e2€52] = 0,
and [ejeze;] = —ey, [e1e1€;] = 5.
Hence, 3-Lie algebra L1: [eje e,] = ey, [e;e,e,] = —e, is obtained.

Proposition 2: For any vector space V. Suppose wi: VXV =V and f:V XV XV -V are
bilinear and trilinear operations, respectively. Then two dimensional complex 3-associative
algebras that arising from associative algebras satisfies f(x1, x5, x3) = u(xy, p(x5, x3)) is
As}: Abelian; As?:ejeje; = ej,ejeje, = ey; Asiiejeje; = e, e,e.e1 = ey;
As3iejeje; = e, eye,e, = ey;

5. — — — —
As3:eje1e1 = €1,616165 = €,,616,61 = €,,6,6,61 = €.

Proof:
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Referring to Theorem 2, we have five classes of two dimensional associative algebras. By using
the similar calculation as in 3-Lie case, we get:

From As3, all triple multiplications are zero. It implies an abelian 3-associative algebra..

As? gives eje e, = eje e, = e,e18, = e,6,e1 = e,e,e, =0, ejeje; =e;and  ejeje, = e.
Then As3: e e e, = eq, eje;e, = e, is 3-associative algebra.

Associative algebra As3 gives the triple multiplications as e;e;e; = e;, e,e;e; = e, and
€1616y = 16,61 = €166, = €161 = exe16, = €661 = epxe,e, = 0.

Therefore As3: e;e,e; = ey, e,e,e; = e, is obtained.

For As; , we get 3-associative algebra as As3:ejeje; = e;, e e,e, = e, which is the triple
multiplications are e;eje; = €1, €161€3 = €1€,61 = 616,65 = €,6161 = €,e1€, = €,6,e; =0
and 626262 = 62.

The last  Asy  gives ejeje; = e, e1e;e; = eye1e; = eye,e; = €66, =0 and
ee1e; = e1e,eq1 = epxeq e = e;.

Hence AS;: 616161 = 61, 616162 = 62, 616261 = 62, 626161 = 62.

Proposition 3: Suppose V is a vector space. Let :V XV -V and f:V XV XV —>V be a
bilinear and a trilinear map, respectively. Then two dimensional complex 3-Leibniz algebras
arising from Leibniz algebras satisfies f(xq, X3, x3) = y(xl, u(x,, x3)) is

Lb3: Abelian; Lb%:[ey, e;,e;] = ey, [y, e5,€1] = —e,.

Proof:
From Theorem 3, we have Lb3, Lb? and Lb3.

By applying Lb} into the equation (1*), we have the following expressions:

[e1, €1, €1] = [e1, [e1, €1]] = [e4,€2] = 0, since [e, 1] = e, and [eq, €;] = O,

le1, e, /] = [eq, [ei, €j]] = [e1,0] = 0, since [e;,e;] = 0, fori,j = 1,2,and i # J,
[e1, €2, €2] = [eq, [e2, €;]] = [€1,0] = 0, sipce [e2,e2] =0,

[e2, €1, e1] = [e, [e1,€1]] = [e2,€,] = 0, since [eq, €,] = e, and [e,, e,] = 0,

[e2, e, €] = [ez [e, €j]] = [e2,0] = 0, since [e;, ;] =0, fori,j =1,2,and i # j,
[e2, €2, 2] = [e2, [€2, €2]] = [e2, 0] = 0, since [ey, ;] = 0.

Thus, we obtain Lb3 as an abelian 3-Leibniz algebra.

For LbZ, we get

[e1, e1,e1] = [eq, [e1, e1]] = [e4,0] = 0, since [e,e,] = 0,

[e1, e1,€2] = [e1, [eq, €2]] = [e1, €2] = ey, since [ey, ;] = ey,

[e1, ez,el] [e1, [e2, e1]] = [e1, —ez2] = —[eq, ;] = —ey, since [e,, e1] = —e, and

[e1, e2] = ey,

[e1, 92;92] = [ey, [e2, e2]] = [e1,0] = 0, since [e;, e;] = 0,

[e2,e1,e1] = [ez, [€1, €1]] = [e2,0] = 0, since [e1,e;] = 0,

[e2, €1, e2] = [e2, [e1, €2]] = [e2,€2] = 0, since [ey, e;] = e, and [e,, e,] = 0,

[e2, €2, e1] = [e2, [e2, e1]] = [e2, —e2] = —[e, e,] = 0, since [e,, e1] = —e, and [ey, e,] = 0,
[e2, €2, €3] = [ez’ [ez’ez]]]

[e;, 0] = 0, since [e5, e;] = 0.
ey, [e1, e2,e1] = —e, is obtained.

Repeat the same calculation for Lb3. The abelian 3-Leibniz algebra is appeared where all
triple multiplications are zero (similar as in Lb3).
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Therefore, 3-Leibniz algebras is Lbi: abelian and Lb3: [eq, eq, €,] = e, [e1,€32,€1] = —e5.

Next, by using equation (2), the classification of two dimensional complex 3-Lie, 3-associative
and 3-Leibniz algebras that arising from Theorems 1, 2 and 3 are show in the following
propositions.

Proposition 4: For any vector space V. Suppose u: VXV = Vand f:V X V — V are bilinear
and trilinear operations, respectively. Then two dimensional complex 3-Lie algebra arising from
Lie algebra satisfies f(x1, x5, x3) = u(u(xq,x;), x3) is an abelian.

Proof:
Theorem1 shows Li: [e;e,] = e,, [e,e;] = —e,. By substituting it into equation (2*) then an
abelian 3-Lie algebra is obtained, where all triple multiplications is zero.

Proposition 5: For any vector space. Let u: V XV = Vand f:V XV XV — V be bilinear and
trilinear maps, respectively. Then two dimensional complex 3-associative algebra arising from
associative algebra satisfies f(xq, x5, x3) = u(u(xy, x3), x3) is

1. - 2, — — o 3. — — o
As3: Abelian; As3:ejejeq = eq,e1616; = ey; As3:e e.e1 = e1,e,e161 = €y;
4, — - o
As3:ejejeq = eq,exe,e, = €y;
5. — — — —
AS3:ejeje1 = €1,61616, = €5,616,81 = €,,6,6161 = €5.

Proof:

From the list of two dimensional associative algebras in Theorem 2, we applied equation (2*) to
get the 3-associative algebras as follows:

From As}, we have e;eje,, = 0 for all i,j,k = 1,2. Thus, the 3-associative algebra As} is an
abelian.

As? gives eje,eq = e1e,e, = e,e18, = e,e,e1 = eyeze, = 0, ejeje; = ey, eje e, = e,. Then
3-associative algebra is As?: e;e;e; = e;,e,e.e, = €.

As; obtains e e e, = eje,e; = eje,e, = e,e1e; = eye,e1 = e,e,e, =0, ejeje; =e; and
eye e, = e,. It implies As3: e;eje; = ey, e,e1e; = e, as 3-associative algebra.

Asy gives 3-associative algebra Ass: ejeje; = e;, e,e,e, = e, where eje;e; = e;, e eje; =
€16,61 = e1e; = e,e1e1 = €66, = e,6,e1 =0, and e,e,e, = €.

Next from As5, we have e;e,e, = eye,e, = eye,e; = eye,e, =0, ejeje; = ey and ejeje, =
e1e,61 = e,e.e, = e,.

Therefore As3: ejeje; = e1,e,e1e, = €,,e,6,8; = €,, e,e,e; = e, is obtained.

Proposition 6: For any vector space V. Let u: VXV = Vand f: V XV XV = V be bilinear and
trilinear operations, respectively. Then two dimensional complex 3-Leibniz algebra arising from
Leibniz algebra satisfies f(xy, x5, x3) = u(u(xy, x5),x3) is

Lbl: Abelian,; Lb%:[ey, e5e1] = —ey,[e5,e1,€1] = ey;

ng [el, ez, eZ] = elp [eZI eZl eZ] = el'

Proof:
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From Theorem3 and equation (2*), we have Lb] gives [e;, ej,ex] = 0foralli,j,k=1,2. This
implies algebra Lb] as an abelian. LbZ gives [e;, €5, 1] = —e,, [e2, €1,e,] = e, and other triple
multiplications are zero. Thus Lb3: [e;, e,,e,] = —ey, [e2,€1,€1] = e, is obtained. Lastly, Lb3
gives the algebra Lb3: [e, €5, e,] = ey, [€2, €2, €5] = €.

Propositions 7, 8 and 9 show the classification of two dimensional 4-Lie, 4-associative and 4-
Leibniz algebras which are arising from the classification of two dimensional Leibniz,
associative and Lie algebras by using equations (3), (4) and (5), respectively. Since {e;,e,} is a
basis for two dimensional algebra, these equations can be express as

[e;ejere ] = [[eiej][ekel]]' (3%
[eiejerer] = [[[eiejlex]ed] (4%)
leiejever] = [elej[exel]]], (5%)

fori,j,k,l=1,2.

Proposition 7: For any vector space V. Suppose f:V XV XV XV -V is defined by
f(x1,%x2,x3,%,) = u(u(xl,xz),u(x3,x4)), where y: V X V = V. Then the isomorphism classes
of two dimensional complex

1. 4-Lie algebra arising from Leibniz algebra is an abelian 4-Lie algebra.
2. 4-associative algebra arising from associative algebra is
As}: Abelian; As?:ejejeje; = ej,ejejee, = ey;
As}:ejejeje; = e, e,ee1e; = ey; Asiiejejeje; = eq,e,e,e,8; = €y;
As3:ejeje1e) = eq,e1611€; = €;,8181,81 = €,,0,€,818; = €,,€,e18,€; = €,.
3. 4-Leibniz algebra arising from Lie algebra is an abelian 4-Leibniz algebra.
Proof:

1. From Theorem 1, there is only one class of Lie algebras in dimension two which is

LY: [e1e;] = e,. By substituting it into equation (3*) we will find an abelian 4-Lie algebras

since all multiplications are zero.

2. Theorem 2 gives five classes of associative algebras denoted as Asj, AsZ, As3, As3 and
As3. The following shows the substituting these classes into equation (3%):
Associative algebra AsJ gives an abelian 4-associative algebra where e;ejee; = 0 for all
i,j,k1=1,2.
For As?, we have eye,e,e; = eye,e,e, = ejejeje; =e;, ejeje;e; =e, and other
multiplications equal to zero. Hence, 4-associative algebra is AsZ:e,eje;e; =
€1,€2€2€2€1 = €1,€5€2€,€5 = €1,€1616,65 = €.
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Now for As3, we obtain e;eje e; = e, e,e,e,e; = e, and other multiplications equal to
zero. Thus, 4-associative algebra is As}: ejejeje; = eq, e,e1e,e, = e;.

Next we get 4-associative algebra is As;: ejejeje; = e, e e,e,e, = e, where e;e,e;e; =
e1, e,e,e,e, = e, and other multiplications equal to zero are the results of As;.

Finally As3 gives €161€161 = €1,€1€616163 = €,,€1616,81 = €,, €16,6,61 = €5,
e,e,e;e; = e, and other multiplications equal to zero. Therefore, As}:ejejeje; =
€1,61616167 = €3,€1€1€,61 = €,,01€,6161 = €5, 6,111 = e, is obtained.

Theorem 3 shows three classes of Leibniz algebras in dimension two, which are Lb3, Lb2
and Lb3. By substituting them one by one into equation (3*), give [e;, ej, ek, ;] = 0 for all
i,j,k,l =1,2. Thus, we get an abelian 4-Leibniz algebra.

Proposition 8: For any vector space V. Suppose f:V XV XV XV -V is defined by

f(x1,%9,%3,%4) = U (xl, u(xz,u(x3,x4))), where u: V X V — V. Then the isomorphism classes

of two dimensional complex

1. 4-Lie algebra arising from Lie algebra is L}: [e;e,e,e,] = e,.
2. 4-associative algebra arising from associative algebra is
Asl: Abelian; Asi:ejejeje; = ej,ejejeje; = ey;
As}:ejejeje; = e, e,eje1e; = ey; Asiiejejeje; = eq,e,e,6,8, = €y;
Asy:ejejeie; = eq,e1e1616, = €,,0101€,81 = €,,81,8181 = €, 82216181 = €,.
3. 4-Leibniz algebra arising from Leibniz algebra is

1. . 2. — —
Lb;: Abelian; Lbj:[ei, e, e1,62] = ey, [€1,€1,€2,€1] = —es.

Proof:

1.

The class of Lie algebra (in Theorem 1) is L}. Substitute it into equation (4*) and we find 4-
Lie algebras is L}: [e;e;e,e,] = e,, [e1e1e5e1] = —e, since all multiplications equal zero
eXCGpt [61616162] = 62 and [61616261] S —62.

By substituting five classes of associative algebra from Theorem 2 into equation (4%*), the
classes of 4-associative algebras obtained as follows:
From As3, e;ejepe; = 0 forall i, j, k, I = 1,2. Then, Asy is an abelian.
For As?, ejeje e, = e1,e,e,e,e, = e, and other multiplications equal to zero, implies
As?:ejejeje; = ej, e e e e, = e, is 4-associatice algebra.
Consider As3, eje e e; = eq,e,e,e,e; = e, and other multiplications equal to zero. It is
obtained Asj}:ejejeje; = ej, e,eee; = e,.
Asy shows that e e;e;e; = e;, e,e,e,e, = e, and other multiplications equal to zero,
therefore 4-associative algebra is Asy: e;e,e,e; = ey, e,e,e,e, = e,.
Since As; gives eje;e;e; = ey, €161616; = e1e1€,61 = e1e,e161 = e,eie1e; = e, and
other multiplication equal to zero, it implies
5. _ _ — — —
As;:ejeje161 = €1,6161€1€; = €5,€1€16,81 = €,,616,6161 = €,,6,6161€1 = €5.
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From Theorem 3, we have Lbl, Lb? and Lb3. By substituting them into equation (4*), we
find Leibniz 4-algebras as:

For Lbj and Lb3, [e;, ej, ey, e;] = 0 for all i,j,k,| = 1,2 are obtained. Therefore, Lb; is an
abelian. As for Lb3 , [e;,e1,e1,€,] = ey, [e1,e1,e2,e1] = e, and other multiplications
equal to zero gives Lb3: [e1,eq, €1, e,] = ey, [e1,e1,€5,€,] = —e,.

Proposition 9: For any vector space V. Suppose f:V XV XV XV -V is defined by
f(x1,%x2,x3,%,) = u(u(xl,u(xz,x3)),x4), where y: V X V = V. Then the isomorphism classes
of two dimensional complex

1. 4-Lie algebra arising from Lie algebra is an abelian.
2. 4-associative algebra arising from associative algebra is
Asl: Abelian; As?:ejejeje; = e, eje;e,e;, = ey;
As3:ejejeje; = eq,eejee = ey; Asiiejejeje) = e, e,e,e,e, = ey;
AS2:ejejeje; = e, eje1e18, = e1e,6,8; = e1e,e18; = e,e,e,e; = e.
3. 4-Leibniz algebra arising from Leibniz algebras is

1. e Th2 — — —
Lb;: Abelian; Lb; = [eq,e1,€3,61] = —ey, [e1,€2,€1,e1] = e5.

Proof:

1.

The class of Lie algebra from Theorem 1 is L}. Substitute it into equation (5*) gives
[e;ejexe;] = 0 for all i,j,k,l = 1,2. Therefore, 4-Lie algebra in dimension two, LY is an
abelian.

By substituting five classes of associative algebra from Theorem 2 into equation (5%), 4-
associative algebras is obtained as follows:
Since As; gives e;ejexe; = 0 forall i,j,k, I = 1,2, then Asj is abelian.
Given e,e,e;e; = e;,e e ee, = e, and other multiplications are zero from AsZ, then
Asi:ejejeje; = ej,ejejee, = e,.
As3 gives ejejeje; = ej,e,eiee; =e, and other multiplications are zero, then
As3:ejejeje; = eq,e,ejee; = e, is obtained.
Next, we have e;e,e;e; = e;, e,e,e,e, = e, and other multiplications are zero from Asy.
Thus 4-associative algebra is Asz: e;e;e;e; = e, e,e,6,6, = e,.
Now consider As3, €1€1€161 = €1, €16161€1 = €1, €16161€; = €, €1616,61 = €y,
e,e,e,6, = e,, e;eje1e; = e, and other multiplications are zero implies 4-associative
algebras as

AS2:ejeje1e] = e1,8101€185 = €5,81€128] = €5,81€,€18] = €5,8,81€18] = €.

Theorem 3 has three classes, Lb, LbZ%, Lb3. Substitute them into equation (5*) will obtain
Leibniz 4-algebras as follows:

From Lbj and Lb3, [e;, e;, ey, €;] = 0 forall i, j, k,I = 1, 2, then Lby: Abelian.

30



S.K.S. Husain et al. Menemui Matematik (Discovering Mathematics) 46(2) (2024) 19-31

For Lb%, we find [e5,e,, e, e;] = —ey, [e1, €2, €1,e1] = e, and other multiplications are
zero, therefore Lb: = [ey,eq, €5, 1] = —ey, [e1, €2, €1, €1] = €.
CONCLUSION

This work investigates the relation between n-algebra and binary algebra or algebra. Forn =
3,4,5, Definitions 4 until 6 show that n-algebra can be arising from binary algebra. The
classification of n-algebra for n = 3,4, in cases of n-Lie, n-associative and n-Leibniz algebras
are shown in Propositions 1 until 9.
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