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ABSTRACT
Deep Artificial Neural Network (DANN) is a type of Artificial Neural Network (ANN) with multiple 
hidden layers, making them a 'deep' form of ANN. Since ANN is a type of Deep Neural Network 
(DNN), DANNs fall under the broader DNN category and are widely used in time series forecasting. 
The performance of DANN is highly dependent on the choice of hyperparameters. Random selection of 
the hyperparameters may increase DANN’s forecasting error. Hence, this study aims to optimize the 
performance of DANN in time series forecasting by tuning two important hyperparameters: the number 
of epochs and batch size. In this study, DANN with 1, 10, 20, 50 and 100 epochs, and batch sizes of 32 
and 64 are used to grid search and form different combinations of hyperparameters. The performances 
of each model are evaluated and compared based on the mean square error (MSE) and mean absolute 
error (MAE). In addition, mean absolute percentage error (MAPE) is used to compare the performance of 
the DANN model on high-frequency and low-frequency time series data. Our study use simulated and 
real-life data to reveal the performance of the DANN model. The results show more than one epoch is 
needed to provide good performance. Specifically, analysis of simulated data consistently suggests that 
10 epochs offer optimal results. Similarly, 10 epochs yield optimal results for low-frequency real-life 
data, while high-frequency real-life data prefers 100 epochs. Additionally, the finding indicates that 
batch sizes of 32 and 64 are optimal when used in different combinations. Hence, this study suggests that, 
in starting the learning process, it is crucial to perform hyperparameter tuning. This step ensures the 
selection of appropriate hyperparameter values, which significantly impact the learning outcome of a 
DNN model, leading to improved forecast accuracy results. 
 
Keywords: batch size, Deep Artificial Neural Network, epoch, forecasting, hyperparameter 

 

INTRODUCTION 
 
Time series analysis involves exploring, modelling, and predicting sequential observations collected 
over time. While traditional statistical methods have long been employed for such tasks, they often 
struggle to capture the intricate dependencies and nonlinear patterns present in time series data. In 
recent years, the advent of Deep Neural Networks (DNNs) has offered a promising alternative, 
revolutionising the field with their ability to handle complex temporal relationships. DNNs, 
characterised by their multi-layered architecture, have emerged as powerful tools for time series 
analysis due to their capability to automatically learn and extract hierarchical features from data. 
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Drawing inspiration from the structure and function of the human brain, these networks excel at 
capturing both short-term fluctuations and long-term trends within sequential data, making them 
well-suited for tasks such as forecasting and anomaly detection. Researchers have utilised DNN to 
forecast time series data in areas such as wind power and electric load (Lin et al., 2021; Gasparin et 
al., 2022). Within the realm of DNNs, various architectures such as Artificial Neural Networks 
(ANNs), Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs) offer 
distinct advantages for different types of time series data. ANNs serve as the foundational 
framework for DNNs, while CNNs specialise in extracting spatial and temporal features, and RNNs 
are adept at capturing sequential dependencies. 
 

Despite their effectiveness, the performance of DNNs heavily depends on the careful tuning of 
hyperparameters. Optimising hyperparameters through techniques like grid search or Bayesian 
optimisation is essential to ensure that the DNN achieves its maximum potential. By fine-tuning 
these parameters, researchers can enhance the model's performance and generalisation capabilities, 
thereby improving its ability to make accurate predictions on unseen data. Hyperparameters such as 
the number of epochs, is defined as the number of iterations of the learning algorithm that goes 
through the entire training dataset, and the batch size, referred to as the number of samples needed 
to be processed before updating internal model hyperparameters, play a crucial role in determining 
the model's convergence and predictive accuracy (Ngoc et al., 2021). Epoch plays a crucial role in 
adjusting the network's parameters for improved performance. Increasing the number of epochs 
allows the learning algorithm to minimise model error effectively. However, choosing the 
appropriate number of epochs is a trade-off between computation time and achieving the desired 
accuracy. Studies have shown that training on larger datasets with more epochs can significantly 
improve performance (Radford et al., 2018, Devlin et al., 2019). However, a study suggested that 
one epoch is enough to train on a larger dataset, unlike the current practice. Thus, it comes to an 
interest in knowing the optimal number of epochs that should be used in a DNN model. The batch 
size hyperparameter refers to how a small batch size can introduce noise to gradient computation, 
aiding in escaping sharp local minima and finding more generalised minima for improved 
performance (Smith et al., 2020). However, larger batch sizes offer steady convergence and 
acceptable test performance. Additionally, the importance of selecting batch sizes that maximise 
Graphics Processing Unit (GPU) processing capabilities further emphasises the need for careful 
consideration and experimentation (Kandel and Castelli, 2020). In conclusion, DNNs offer a 
promising avenue for time series analysis, providing a flexible and powerful framework for 
capturing complex temporal patterns. However, achieving optimal performance requires careful 
consideration and optimisation of hyperparameters, highlighting the importance of rigorous 
experimentation and tuning in the development of DNN-based models for time series forecasting 
and analysis. Thus, optimising the hyperparameters, especially the epochs and batch size, is 
essential for achieving the best performance. 

 
This research aims to determine the optimal combination of epochs and batch size for Deep 

Artificial Neural Networks (DANN) and evaluate their performance on high-frequency versus low-
frequency data. By grid searching these hyperparameters and comparing forecasting accuracy, the 
study seeks to enhance DANN predictions, leading to more efficient learning and improved 
forecasting. Furthermore, analysing DANN performance across different data frequencies will 
provide insights into the model's generalisation capabilities and help stakeholders make informed 
decisions based on its effectiveness in various time horizons and application scenarios. This 
research is divided into three parts for clarity and efficiency. First, a simulation study generates 
high-frequency and low-frequency time series data to tune epochs and batch size using grid search, 
with performance assessed through mean squared error (MSE), mean absolute error (MAE), and 
mean absolute percentage error (MAPE). The goal is to identify the optimal hyperparameter values 
and evaluate whether the DANN performs better on high-frequency or low-frequency data. Second, 
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the study applies this methodology to real-life data sets, tuning the DANN model and determining 
optimal hyperparameters based on forecasting performance metrics (MSE, MAE), and comparing 
results using MAPE. Finally, the study compares the DANN's forecasting accuracy and 
effectiveness on real-life data with the simulation results, assessing performance across different 
time horizons to evaluate the model's practical applicability. 
 
 

MATERIALS AND METHODS 
 
Exploratory Data Analysis 
Exploratory data analysis (EDA) is a more systematic and comprehensive approach to analyze data. 
It aims to uncover patterns and relationships such as trends, seasonality and cyclical patterns in the 
data, identify outliers or missing values, and gain insights that can guide subsequent analysis or 
hypothesis generation. 
 
Data Preparation 
Both simulation study and real data analysis involving high-frequency data and low-frequency data 
are conducted in this research. The simulated data are generated using R programming by setting 
the frequency at 12 and 52 to resemble the time series data with seasonal variations collected 
monthly (low-frequency data) and weekly (high-frequency data) for each year. For the real-life data, 
the US airline passenger data taken from an inbuilt dataset of R called AirPassengers are used to 
represent the low-frequency data, while the 208 weekly mean temperature data derived from the 
Delhi Climate dataset, which comprises 1461 daily observations spanning from January 1, 2013, to 
December 31, 2016, sourced from Kaggle, are used as the high-frequency data. Before modelling, 
the time series data is divided into training and testing sets based on the 80% and 20% ratio, 
respectively. The training dataset is used during the neural network training stage to update the 
network weights and biases and determine the gradient to produce a well-generalized network 
model. The testing dataset is not involved in the training stage but to assess the performance of the 
model. 
 
Min-Max Normalisation 
Data normalization is employed to enhance the efficiency of neural network training. Various pre-
processing methods have been developed for this purpose, and one of the most used techniques is 
min-max normalization. This technique normalizes the dataset into a value range between 0 and 1. 
The normalizing process is usually done before the training stage, where the processed data is fed 
into the network. This simplifies the computation and shortens the time for weight updating. Thus, it 
leads to convergence towards the minimum and improves the effectiveness of the training process. 
The formula of min-max normalization is as below, 

 
𝑥𝑥′ = 𝑥𝑥𝑖𝑖−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
        (1) 

 
where 𝑥𝑥′ represents the new value in the range between 0 and 1; 𝑥𝑥𝑖𝑖 represents the original data; 
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 represents the maximum values of the data; and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 represents the minimum values of the 
data (Aslam et al., 2020). 

 
Walk-Forward Validation 
Walk-forward validation is a method in which the model generates a forecast for each observation 
in the testing dataset, one at a time. Subsequently, the actual observation corresponding to each 
forecast is incorporated into the testing dataset, thus updating the dataset available for model 
predictions. The actual observation for a given time step is utilised as part of the input for predicting 



K.P. Li Xiang et al.                                                                                Menemui Matematik (Discovering Mathematics) 46(1) (2024) 47-73 
 

 

50 
 

the subsequent time step. As the walk-forward validation progresses, the observation list is 
expanded by appending the actual values corresponding to each prediction made. This allows for a 
comprehensive comparison between the model’s predictions and the true values from the testing set. 
The rolling of data using the walk-forward validation methodology is as follows (Table 1), 

Table 1: The Rolling of Data in the Walk-Forward Validation Methodology 
History Data Predictions 

[Months] Month1 
[Months + Month1] Month2 
[Months + Month2] Month3 

 
Deep Neural Network  
a) Deep Neural Network Model Architecture 
Deep neural network (DNN) is a highly effective class of machine learning (ML) algorithms that 
involve the stacking layers of neural network layers in both depth and width, creating compact 
architectures (Mahmood et al., 2017). Artificial Neural Network (ANN) which is one of the most 
used DNN models, is described as a flexible computational model which can capture the non-
linearity of the data and does not require any prior assumption in modelling (Zhang, 2023). ANN is 
selected for this research due to its ability to handle and capture non-linear relationships between 
input and output variables (Zupan, 1994). Additionally, ANN has demonstrated reliable 
performance in forecasting both short-term and long-term outcomes (Kotur and Zǎrkovǐc, 2016; 
Ziari et al., 2016). There are different types of ANN architectures, such as Multilayer Perceptron 
(MLP) and Feed-Forward Neural Network (FFNN). MLP was focused on this study as it has a 
structure very similar to DNN, that is consisting of an input layer, one or more hidden layers, and an 
output layer. The architecture of the MLP network that has only one hidden layer is as in Figure 1, 

 

Figure 1: Architecture of Multilayer Perceptron (MLP) 
 

At the input layer phase, the MLP is fitted with the past lagged value of real data, 𝑦𝑦𝑡𝑡−1,⋯ ,𝑦𝑦𝑡𝑡−𝑝𝑝 
as an input vector, resulting in 𝑝𝑝 number of nodes linked to the hidden layer through connection 
weights, 𝑊𝑊𝑖𝑖,𝑗𝑗 for 𝑖𝑖 = 1, 2, ⋯ ,𝑝𝑝 and 𝑗𝑗 = 1, 2,⋯ , 𝑞𝑞. Each connection weight represents the strength 
of the connection between an input node and a hidden layer node. There is also a bias unit, 𝑊𝑊0,𝑗𝑗 for 
𝑗𝑗 = 1, 2,⋯ , 𝑞𝑞 associated with each hidden layer node. The bias unit provides an additional 
adjustable parameter for adjusting the behaviour of the hidden layer. The activation function within 
the hidden layer, 𝑔𝑔 performs a calculation involving the weighted sum of input and biases. This 
introduces the non-linearity to the model. The result of the activation function is then multiplied by 
the connection weights 𝑊𝑊𝑗𝑗 for 𝑗𝑗 = 1, 2,⋯ , 𝑞𝑞 and summed with the bias 𝑊𝑊0. This process is repeated 
𝑞𝑞 times, corresponding to each node in the hidden layer. The output layer uses the outputs from the 
hidden layer to compute the predicted values. Typically, the activation function in the output layer 
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is linear, aiming to produce the desired output without introducing non-linearity. In summary, the 
relationship between the input and output layers can be represented in the following formula,  

𝑦𝑦𝑡𝑡 = 𝑊𝑊0 + ∑ 𝑊𝑊𝑗𝑗
𝑞𝑞
𝑗𝑗=1 · 𝑔𝑔�𝑊𝑊0,𝑗𝑗 + ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗

𝑝𝑝
𝑖𝑖=1 · 𝑦𝑦𝑡𝑡−𝑖𝑖�  + 𝜀𝜀𝑡𝑡     (2) 

 
where εt is the error term, while 𝑊𝑊𝑖𝑖,𝑗𝑗  and 𝑊𝑊𝑗𝑗 for 𝑖𝑖 = 1, 2,⋯ ,𝑝𝑝 and 𝑗𝑗 = 1, 2,⋯ , 𝑞𝑞 are the connection 
weights (Khashei and Hajirahimi, 2019). 

When it comes to DNN, it must consist of more than one hidden layer. Hence, the architecture 
of a DNN model will be as in Figure 2, 

 
Figure 2: Architecture of Deep Neural Network (DNN) 

 

In a DNN with multiple hidden layers, each hidden layer performs its own set of computations, 
including the weighted sum of inputs, the application of an activation function, and the propagation 
of the outputs to the next layer. These computations are performed sequentially across the layers, 
with each layer taking the outputs of the previous layer as inputs. The formulas and calculations in 
each hidden layer are similar to those in a single-layer MLP, involving the weighted sum of inputs, 
biases, and the application of an activation function. However, the outputs of one hidden layer serve 
as inputs to the next hidden layer, and this process is repeated for each hidden layer until reaching 
the output layer. 

 
b) Hyperparameter 
• Optimiser Algorithm 
The Adam algorithm, developed by Kingma and Ba, is a hybrid of the AdaGrad and RMSProp 
algorithms (Kingma and Ba, 2015; Nwankpa, 2020). Unlike traditional Stochastic Gradient Descent 
(SGD) algorithms that use a single learning rate for all weight updates, the Adam algorithm is an 
adaptive optimization algorithm. It calculates individual adaptive learning rates for different 
parameters based on estimated gradients. Adam keeps track of two important quantities, 𝑣𝑣𝑡𝑡, which 
represents an exponentially decaying average of past squared gradients, and 𝑚𝑚𝑡𝑡, which represents an 
exponentially decaying average of past gradients (Nwankpa, 2020). The formulas for these two 
quantities are as below, 
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𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡                        (3) 
 

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2        (4) 
 

where 𝑔𝑔𝑡𝑡 represents the gradient at time step 𝑡𝑡. 𝛽𝛽1 and 𝛽𝛽2 are hyperparameters that control the 
exponential decay rate of these moving averages, typically in the range of [0, 1]. To prevent any 
bias towards zero in 𝑚𝑚𝑡𝑡 and 𝑣𝑣𝑡𝑡, a bias correction mechanism is incorporated, 

 
   𝑚𝑚�𝑡𝑡 = 𝑚𝑚𝑡𝑡

1−𝛽𝛽1
𝑡𝑡         (5) 

   𝑣𝑣�𝑡𝑡 = 𝑣𝑣𝑡𝑡
1−𝛽𝛽2

𝑡𝑡         (6) 

The gradient updates are estimated directly from the running average of this first and second 
moment of a gradient to produce the update rule as 
 

   𝜃𝜃𝑡𝑡 = 𝜃𝜃𝑡𝑡−1 −
𝛼𝛼

�𝑣𝑣�𝑡𝑡+𝜖𝜖
𝑚𝑚�𝑡𝑡         (7) 

where the default values are 𝛼𝛼 = 0.001,𝛽𝛽1 = 0.9,𝛽𝛽2 = 0.999 and 𝜖𝜖 = 10−8. The pseudocode for 
Adam algorithm is as in Figure 3, 

 
Figure 3: Pseudocode of Adam Algorithm 

• The Number of Epochs 
The determination of the optimal number of epochs in hyperparameter tuning for DNN in time 
series forecasting involves several key steps. Initially, the range of epoch values to be explored 
through grid search is defined. It is common to start with a reasonably small number of epochs, such 
as 10 or 20, to get an initial sense of the model’s performance, and then continue with a larger 
number of epochs. However, a study suggested that one epoch is enough to train on a larger dataset, 
unlike the current practice. So, 1, 10, 20, 50 and 100 range is set for the number of epochs in this 
study. 
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• The Batch Size 
A systematic approach is implemented in this study to determine the most suitable batch size. 
Initially, a range of batch sizes is defined for exploration using grid search. While a default batch 
size of 32 is recommended, it is important to consider alternative options such as 64 and 128. It is 
recommended to commence with smaller batch sizes, such as 32 or 64, and gradually increase them 
until desirable outcomes are achieved. Moreover, the number of batch sizes should be a power of 
two to maximize the Graphics Processing Unit (GPU)’s processing capabilities (Kandel and 
Castelli, 2020). Hence, this study examines batch sizes of 32 and 64.   
 
c) Backpropagation Training Methodology 
The backpropagation algorithm is a fundamental component of neural networks and is widely used, 
especially for feedforward neural networks. It is used to train a neural network and update the 
weights and biases by minimising the cost function. The quadratic cost function, 𝐶𝐶 that is used to 
quantify the discrepancy between the predicted and actual outputs can be written as 

   𝐶𝐶 = 1
2𝑛𝑛
∑ �𝑦𝑦𝑗𝑗 − 𝑎𝑎𝑗𝑗𝐿𝐿�

2𝐿𝐿
𝑗𝑗=1         (8) 

where 𝑛𝑛 represents the total number of training samples, 𝐿𝐿 is the number of output nodes in the 
neural network, 𝑦𝑦𝑗𝑗 represents the actual output for the 𝑗𝑗𝑡𝑡ℎ output node and 𝑎𝑎𝑗𝑗𝐿𝐿 represents the 
activation (predicted output) of the 𝑗𝑗𝑡𝑡ℎ neuron in the output layer.  
 
• An equation for the error in the output layer, 

 
   𝛿𝛿𝑗𝑗𝐿𝐿 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑎𝑎𝑗𝑗
𝐿𝐿 𝜎𝜎′�𝑧𝑧𝑗𝑗𝐿𝐿�        (9) 

where 𝜎𝜎 represents the activation function; and 𝑧𝑧𝑗𝑗𝐿𝐿 represents the weighted input to the 𝑗𝑗𝑡𝑡ℎ neuron in 
the 𝐿𝐿𝑡𝑡ℎ level. 
 
• An equation for the error 𝛿𝛿𝑙𝑙 in terms of the error in the next layer, 

 
   𝛿𝛿𝑙𝑙 = ((𝑤𝑤𝑙𝑙+1)𝑇𝑇𝛿𝛿𝑙𝑙+1) ⊙𝜎𝜎′(𝑧𝑧𝑙𝑙)     (10) 

where (𝑤𝑤𝑙𝑙+1)𝑇𝑇 represents the transpose of the weight matrix 𝑤𝑤𝑙𝑙+1for the (𝑙𝑙 + 1)𝑡𝑡ℎ layer; 𝛿𝛿𝑙𝑙+1 
represents the error in the (𝑙𝑙 + 1)𝑡𝑡ℎ layer; 𝜎𝜎 represents the activation function; ⊙ represents the 
Hadamard product; and 𝑧𝑧𝑙𝑙 represents weighted input to the neuron in the 𝑙𝑙𝑡𝑡ℎ layer. 

• An equation for the rate of change of the cost with respect to any bias in the network, 
 

   𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏𝑗𝑗

𝑙𝑙 = 𝛿𝛿𝑗𝑗𝑙𝑙       (11) 

where 𝑏𝑏𝑗𝑗𝑙𝑙 represents the bias vector of 𝑗𝑗𝑡𝑡ℎ neuron in the 𝑙𝑙𝑡𝑡ℎ layer; and 𝛿𝛿𝑗𝑗𝑙𝑙 represents the error of 𝑗𝑗𝑡𝑡ℎ 
neuron in the 𝑙𝑙𝑡𝑡ℎ layer. 

• An equation for the rate of change of the cost concerning any weight in the network, 
 

   𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

𝑙𝑙 = 𝑎𝑎𝑘𝑘𝑙𝑙−1𝛿𝛿𝑗𝑗𝑙𝑙       (12) 

where 𝑤𝑤𝑗𝑗𝑗𝑗𝑙𝑙  represents the weight of 𝑗𝑗𝑡𝑡ℎ row and 𝑘𝑘𝑡𝑡ℎ column of neuron in the 𝑙𝑙𝑡𝑡ℎ layer; 𝑎𝑎𝑘𝑘𝑙𝑙−1 
represents the activation of the 𝑘𝑘𝑡𝑡ℎ neuron in the (𝑙𝑙 − 1)𝑡𝑡ℎ layer; and 𝛿𝛿𝑗𝑗𝑙𝑙 represents the error of 𝑗𝑗𝑡𝑡ℎ 
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neuron in the 𝑙𝑙𝑡𝑡ℎ layer (Nielson, 2015). While traditional optimization techniques like gradient 
descent are commonly employed, this study deviates from that approach. Instead of gradient 
descent, the Adam optimizer is utilized due to its computational efficiency and effectiveness in 
handling complex optimization problems (Kingma and Ba, 2015). The Adam optimizer is 
elaborated on in the previous section. 
 
Forecasting Accuracy Measures 
The testing dataset is used to evaluate forecasting accuracy after the model has been trained on the 
training dataset. Once the model is trained and able to generate predictions, the testing dataset helps 
assess how well these predictions match actual values that the model has not seen before. To 
evaluate the accuracy of the forecasts obtained from the fitted models, three commonly used metrics 
are computed: Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean Absolute 
Percentage Error (MAPE). These measures provide insights into the model's performance and its 
ability to make accurate predictions. MSE is a measure of the variability of errors in the forecasted 
values. It quantifies the average squared difference between the predicted values and the actual 
values. A smaller MSE indicates better prediction performance. The formula for MSE is as below, 

   𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡)2𝑛𝑛
𝑡𝑡=1 ,     (13) 

where 𝑦𝑦�𝑡𝑡 represents the predicted values.  
 

However, the MSE penalizes extreme errors and is sensitive to data transformations and 
changes in scale (Golingay, 2020). In contrast, MAE does not penalize extreme errors. It measures 
the average absolute deviation of the forecasted values from the original values. Similar to MSE, the 
smallest MAE indicates better prediction performance. The formula for MAE is as below, 
 

   𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡|𝑛𝑛
𝑡𝑡=1      (14) 

MAPE is a measure of the accuracy of a forecasting method in predicting values. It is preferred 
due to its advantages of scale-independency and interpretability (Kim and Kim, 2016). MAPE 
indicates how much error in predicting compared with the real value. The formula of MAPE is as 
below, 

   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑦𝑦𝑡𝑡−𝑦𝑦�𝑡𝑡|

𝑦𝑦𝑡𝑡
𝑛𝑛
𝑡𝑡=1 x 100% where 𝑦𝑦𝑡𝑡 > 0   (15) 

By calculating and analysing these accuracy measures, researchers can assess the 
performance of models in forecasting time series data and compare the effectiveness of 
different models or parameter configurations.  

 
 

RESULTS AND DISCUSSION 
 
Simulation Study 
Both low-frequency and high-frequency time series data are simulated using three SARIMA models 
with different coefficients and sample sizes with replication of 500 times using R programming. 
The frequency is set at 12 and 52, so the simulated data resembles the time series data with seasonal 
variations collected monthly and weekly for each year. Hence, the sample sizes need to be a 
multiple of 12 and 52. Since all data are simulated by specifying their coefficients and models in R 
programming, white noise is assumed to exist in the data, and the data is assumed to be stationary 
after detrended and deseason, so that the stationary condition is fulfilled (Gikungu et at., 2015). 
After detrended and deseason, the data is split into an 80:20 ratio before being trained and tested 
using the DANN model. 
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a) Deep Artificial Neural Network Modelling 
A deep neural network is an extension of a simple neural network which consists of one input layer, 
one output layer, and at least two hidden layers. Two hidden layers of neural networks are used to 
improve performance (Thomas et al., 2016; Thomas et al., 2017; Guliyev and Ismailov, 2018). So, 
two hidden layers are used to investigate the simulated data. The simulated data are considered as 
univariate time series data, so one input node and one output node are used in the DANN model. 
The number of nodes selected is 100 and the activation function used is ReLU with the hope that the 
neuron network fulfilled the Universal Approximation Theorem, which states that a neural network 
with at least one hidden layer of a sufficient number of neurons with non-linear activation functions 
can approximate any continuous function to an arbitrary level of accuracy (Cybenko, 1989; Hornik 
et al., 1989; Sonoda and Murata, 2017). For the hyperparameters of interest, the number of epochs 
to be investigated is 1, 10, 20, 50 and 100 in this study as there was a suggestion that one epoch is 
enough to train on a large dataset, but a common way is to start with a reasonably small number of 
epochs, such as 10 or 20, and then continue with a larger number of epochs. Batch sizes 32 and 64 
are used in this study as the batch size should be at least one but not greater than the number of 
samples in the training set (Table 2). Moreover, the MSE loss function and Adam optimisation are 
also applied in this study. The grid search values for DANN model for simulated data is as Table 2. 

Table 2: Grid Search Values for DANN model for Simulated Data 
No Hyperparameters Values 
1 Input Node 1 
2 Hidden Layers 2 
3 Hidden Nodes 100 
4 Output Node 1 
5 Activation Functions ReLU 
6 Epochs 1, 10, 20, 50, 100 
7 Batch Size 32, 64 

 
Before running the datasets through the DANN model, data transformation is carried out to 

enhance the learning process of the models. Min-max normalisation is conducted to ensure the data 
ranges from 0 to 1. The average MSE and MAE are then computed for the 500 replicates for each 
sample size. This process ensures the consistency of the results besides dealing with the stochastic 
nature of the neural network algorithm. 

 
b) Best Hyperparameters of Interest 
The results below show the bar plot of MSE and MAE values for both high-frequency and low-
frequency data sorted in ascending sample size form (Figure 4), 

 
                                          (a)                                                           (b)  
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                                          (c)                                                           (d)  

 
                                            (e)                                                           (f)  

 
                                           (g)                                                          (h)  

 
                                           (i)                                                           (j)  

 
                                           (k)                                                            (l)  
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Figure 4: MSE and MAE for Both Low-Frequency and High-Frequency Simulated Data,  

(a) MSE for SARIMA(0,0,1)(0,1,1)12 with sample size 𝑛𝑛 = 240,  

(b) MSE for SARIMA(1,1,0)(0,1,0)52 with sample size 𝑛𝑛 = 260,  

(c) MSE for SARIMA(0,1,1)(0,1,1)12 with sample size 𝑛𝑛 = 480,  

(d) MSE for SARIMA(0,0,1)(1,1,0)52 with sample size 𝑛𝑛 = 520,  

(e) MSE for SARIMA(1,1,0)(1,1,0)12 with sample size 𝑛𝑛 = 600,  

(f) MSE for SARIMA(1,0,0)(0,1,0)52 with sample size 𝑛𝑛 = 624,  

(g) MAE for SARIMA(0,0,1)(0,1,1)12 with sample size 𝑛𝑛 = 240,  

(h) MAE for SARIMA(1,1,0)(0,1,0)52 with sample size 𝑛𝑛 = 260,  

(i) MAE for SARIMA(0,1,1)(0,1,1)12 with sample size 𝑛𝑛 = 480,  

(j) MAE for SARIMA(0,0,1)(1,1,0)52 with sample size 𝑛𝑛 = 520,  

(k) MAE for SARIMA(1,1,0)(1,1,0)12 with sample size 𝑛𝑛 = 600,  

(l) MAE for SARIMA(1,0,0)(0,1,0)52 with sample size 𝑛𝑛 = 624 

 

Table 3: MSE Low-Frequency and High-Frequency Simulated Data 
Sample 

Size Batch Size Epoch 
1 10 20 50 100 

240 32 1.3111 1.2764 1.2779 1.2835 1.2873 
64 1.3693 1.2725 1.2752 1.2779 1.2847 

260 32 2.2526 2.2065 2.2089 2.234 2.2406 
64 2.2858 2.2007 2.2105 2.2266 2.2318 

480 32 1.1593 1.1469 1.1459 1.1461 1.1451 
64 1.1608 1.145 1.1463 1.1457 1.1498 

520 32 2.8091 2.8059 2.8089 2.818 2.827 
64 2.802 2.8014 2.8061 2.8124 2.8252 

600 32 1.3768 1.1112 1.1 1.0949 1.0999 
64 2.0474 1.108 1.0946 1.1071 1.0864 

624 32 1.0848 1.0339 1.0306 1.034 1.0325 
64 1.21 1.02 1.0222 1.0212 1.0214 

 

Table 4: MAE Low-Frequency and High-Frequency Simulated Data 
Sample 

Size Batch Size Epoch 
1 10 20 50 100 

240 32 0.9134 0.9021 0.902 0.9038 0.9044 
64 0.9341 0.9001 0.9009 0.9018 0.9037 

260 32 1.1995 1.1865 1.1872 1.1929 1.1947 
64 1.2095 1.1877 1.1885 1.1919 1.1946 

480 32 0.8613 0.8567 0.8565 0.8567 0.8562 
64 0.8618 0.856 0.8567 0.8566 0.858 

520 32 1.3364 1.3349 1.3357 1.3375 1.3397 
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64 1.33415* 1.33413* 1.335 1.3361 1.3394 
600 32 0.9308 0.8399 0.8349 0.8316 0.834 

64 1.0868 0.8373 0.8328 0.8378 0.8292 
624 32 0.8311 0.8111 0.8098 0.8107 0.8104 

64 0.8709 0.8052 0.8061 0.8058 0.806 
 

Tables 3 and 4 above show the summary of MSE and MAE values for both low-frequency and 
high-frequency simulated data. From the results shown, almost all MSE and MAE values for those 
using one epoch (except for sample size n = 520) have the largest values compared to the MSE and 
MAE values of other epochs. Although the MSE and MAE values for those using one epoch in 
sample size n = 520 are of smaller values, they are not the lowest MSE and MAE values. The values 
marked with asterisk are of 5 decimal places so that their actual values are pictured, as they are too 
close to each other. Thus, by comparing the overall performance of one epoch and other epochs, it is 
suggested that one epoch is insufficient to have a good performance to forecast the time series data 
with seasonal variations. The results of the MSE and MAE values across the epochs from 1 epoch to 
100 epochs differ as the simulated models and coefficients used are different. The MSE values are 
decreasing from 1 epoch to 10 epochs then increasing from 10 epochs to 100 epochs (batch sizes of 
32 and 64 for n = 240, batch sizes of 32 and 64 for n = 260, batch size of 32 and 64 for n = 520), 
while the MSE values are decreasing from 1 epoch to 20 epochs then increasing from 20 epochs to 
50 epochs and finally decreasing from 50 epochs to 100 epochs (batch size of 32 for n = 480, batch 
size of 64 for n = 600, batch size of 32 for n = 624).  

The MSE values are decreasing from 1 epoch to 10 epochs, then increasing from 10 to 20 
epochs, followed by a decreasing trend from 20 epochs to 50 epochs and finally increasing from 50 
epochs to 100 epochs (batch size of 64 for n = 480, batch size 64 for n = 624). For sample size n = 
600, the MSE values for those using batch size of 32 are decreasing from 1 epoch to 50 epochs then 
increasing from 50 epochs to 100 epochs. The MAE values are decreasing from 1 epoch to 10 
epochs then increasing from 10 epochs to 100 epochs (batch size of 64 for n = 240 and batch sizes 
of 32 and 64 for n = 260, batch sizes of 32 and 64 for n = 520), while the MAE values are 
decreasing from 1 epoch to 20 epochs then increasing from 20 epochs to 100 epochs (batch size of 
32 in n = 240). The MAE values are decreasing from 1 epoch to 20 epochs then increasing from 20 
epochs to 50 epochs, and finally decreasing from 50 epochs to 100 epochs (batch size of 32 in n = 
480, batch size of 64 in n = 600, batch size of 32 in n = 624), while the MAE values are decreasing 
from 1 epoch to 10 epochs, then increasing from 10 to 20 epochs and decreasing from 20 epochs to 
50 epochs, at last increasing from 50 epochs to 100 epochs (batch size of 64 in n = 480, batch size 
of 64 in n = 624). For sample size n = 600, the MAE values for those using batch size of 32 are 
decreasing from 1 epoch to 50 epochs then increasing from 50 epochs to 100 epochs. Thus, it 
concludes that the trend of several epochs is unpredictable for time series data with seasonal 
variation. 

In terms of MSE values, for all the batch sizes in the six-sample size, 8 out of 12 suggested that 
10 epochs are the optimal number of epochs that gave the lowest MSE values, while 20 epochs and 
50 epochs each have only 1 out of 12 prove that they are the optimal number of epochs. 2 out of 12 
suggested that 100 epochs are the optimal number of epochs that gave lowest MSE values. In terms 
of MAE values, for all the batch sizes in the six-sample size, 7 out of 12 suggested that 10 epochs 
are the optimal number of epochs that gave the lowest MAE values. There are 2 out of 12 MAE 
values suggesting that 20 epochs are the optimal number of epochs, same does 100 epochs, while 1 
out of 12 suggested that 50 epochs are the optimal number of epochs. Thus, in general, the analysis 
of simulated data consistently suggests that 10 epochs offer optimal results. However, the best 
number of epochs are inconsistent as the results have also suggested other epochs as the optimal 
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number of epochs besides 10 epochs. For the batch size, the results show that it is inconsistent since 
32 and 64 both can be the best number of batch sizes in different configurations by assessing the 
MSE and MAE values. When the batch size and number of epochs are constant, the MSE and MAE 
values no longer show a decreasing trend when the sample size increases. In fact, they fluctuate up 
and down probably due to different models and coefficients used. In conclusion, the optimal values 
of batch size and the number of epochs for time series data with seasonal variations are inconsistent 
by determining through MSE and MAE values, as it depends on the patterns of the time series data. 
Different models of SARIMA and different coefficients implemented will certainly make the time 
series data vary in seasonal variations and complexity, making the optimal values of batch size and 
the number of epochs keep changing to get a better result.  

 
c) Comparison between Low-Frequency and High-Frequency Data 
The results below are the MAPE values for low-frequency and high-frequency data (Figure 5), 

 
(a)                                                                  (b) 

 
(c)                                                                    (d) 

 

 
(e)                                                                      (f) 

Figure 5: MAPE for Low-Frequency and High-Frequency Simulated Data,  
(a) MAPE for SARIMA(0,0,1)(0,1,1)12 with sample size 𝑛𝑛 = 240,  
(b) MAPE for SARIMA(0,1,1)(0,1,1)12 with sample size 𝑛𝑛 = 480,  
(c) MAPE for SARIMA(1,1,0)(1,1,0)12 with sample size 𝑛𝑛 = 600,  
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(d) MAPE for SARIMA(1,1,0)(0,1,0)52 with sample size 𝑛𝑛 = 260,  
(e) MAPE for SARIMA(0,0,1)(1,1,0)52 with sample size 𝑛𝑛 = 520,   
(f) MAPE for SARIMA(1,0,0)(0,1,0)52 with sample size 𝑛𝑛 = 624 
 

The MAPE values for both low-frequency and high-frequency data are grouped into the Tables 
5 and 6 below to ease the interpretation. The sample size n = 240 has higher MAPE values than 
other low-frequency data, so as the sample size n = 520 for high frequency data. However, in 
overall, DANN performs better on low-frequency data, as its MAPE values, if treated as a whole, 
are lower than high-frequency data. 

Table 5: MAPE for Low-Frequency Simulated Data 
Sample 

Size Batch Size Epoch 
1 10 20 50 100 

240 32 4.7124 2.6009 2.7789 2.3875 3.2296 
64 4.2718 2.7963 2.6907 2.7413 2.8581 

480 32 0.7997 0.8003 0.7976 0.8002 0.8002 
64 0.8048 0.7984 0.7995 0.8017 0.7983 

600 32 0.359 0.2994 0.333 0.3011 0.3137 
64 0.3447 0.3272 0.306 0.3251 0.3361 

 

 

 

Table 6: MAPE for High-Frequency Simulated Data 
Sample 

Size Batch Size Epoch 
1 10 20 50 100 

260 32 2.814 2.7646 2.6717 2.7271 2.6711 
64 2.7911 2.711 2.6979 2.7561 2.7695 

520 32 4.5171 4.3331 4.1755 4.2238 4.2363 
64 4.3073 4.3568 4.2804 4.2289 4.2584 

624 32 1.2476 1.3305 1.3915 1.2753 1.3208 
64 1.5752 1.323 1.3802 1.3295 1.2648 

 

Real Data Analysis 
a) Exploratory Data Analysis 
• Low-Frequency Real-life Data 
The US airline passenger data represents low-frequency real-life data in this study. From the EDA 
results, there are no missing values in the US airline passenger data from the years 1949 to 1961, so 
as outliers. The box plot of US airline passenger data is as below (Figure 6), 
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Figure 6: Box Plot of the US Airline Passenger Data 

 

Table 7: Summary Statistics of the US Airline Passenger Data 
Minimum 104.0 

First Quartile 180.0 
Median 265.5 

 Mean 280.3 
Third Quartile 360.5 

Maximum 622.0 
 

From the box plot, the US airline passenger data from 1949 to 1961, categorized by month, 
exhibit right-skewness. This is supported by the summary statistics in Table 7, where the mean is 
higher than the median, indicating that the distribution has a longer tail on the right side, with a 
concentration of values towards the lower end and fewer higher values pulling the mean upwards. 
The summary of the US airline passenger data also shows that the minimum number of airline 
passengers is 104 thousand while the maximum number of airline passengers is 622 thousand. The 
decomposition plot of the US airline passenger data is as below (Figure 7), 

 
Figure 7: Decomposition Plot of the US Airline Passenger Data 
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From the decomposition results, the US airline passenger data has an obvious upward trend and 
seasonal pattern. Also, from the ACF plot, the ACF dies down slowly over a multiple of 12 lags 
suggesting a seasonality of 12, which indicates that the data exhibits monthly seasonality. The ACF 
and PACF plots are as below (Figure 8), 

 
Figure 8: ACF and PACF Plots of the US Airline Passenger Data 

The data is not stationary in terms of variance as there is a noticeable variation in the range of 
values at different points in time. However, a deep neural network (DNN) should be able to deal 
with the non-seasonality of the data (Musbah et al., 2023). Thus, Box-Cox transformation is not 
required in this study. 

 
• High-Frequency Real-life Data 
The Delhi temperature data represents high-frequency real-life data in this study. From the EDA 
results, there are no missing values in the Delhi temperature data from the years 2013 to 2016, so as 
outliers. The box plot of Delhi temperature data is as below (Figure 9), 

 
Figure 9: Box Plot of the Delhi Temperature Data 
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Table 8: Summary Statistics of the Delhi Temperature Data 
Minimum 7.605 

First Quartile 18.730 
Median 28.396 

 Mean 25.540 
Third Quartile 31.209 

Maximum 37.293 
 

From the box plot, the Delhi temperature data from 2013 to 2016, when categorized by week, 
shows variability in skewness, with some periods exhibiting right skewness and others showing left 
skewness. However, the summary statistics in Table 8 suggest that the data is generally left-skewed, 
as the median is higher than the mean. The summary of the Delhi temperature data shows that the 
minimum average weekly temperature is 7.605 °C while the maximum average weekly temperature 
is 37.293 °C. The time series plot of the Delhi temperature data is as below (Figure 10), 

 
Figure 10: Time Series Plot of the Delhi Temperature Data 

From the time series plot of the Delhi temperature data, the seasonal patterns that repeat on a 
yearly basis can be observed. The data is stationary in terms of variance since the spread of values 
in the time series remains relatively constant over time. Additive seasonal components are identified 
since the amplitude of the seasonal pattern remains constant over time and is consistently added to 
the overall trend of the time series. The ACF and PACF plots of Delhi temperature data is as below 
(Figure 11), 

 

Figure 11: ACF and PACF Plots of the Delhi Temperature Data 



K.P. Li Xiang et al.                                                                                Menemui Matematik (Discovering Mathematics) 46(1) (2024) 47-73 
 

 

64 
 

From the ACF plot, the ACF dies down slowly over a multiple of 52 lags, suggesting a 
seasonality of 52, which indicates that the data exhibits weekly seasonality. 

 
b) Data Preparation 
• Data Detrending and Deseasonalisation 
Neural networks may fail to capture the seasonal or trend variations within the unpreprocessed raw 
time series data. Thus, time series data need to be deseason and detrended, if required, before being 
trained and tested in a neural network, so that the forecast results can be more accurate (Nelson et 
al., 1999; Zhang and Qi, 2005). The US airline passenger data possess an upward trend and seasonal 
variation. Hence, it is detrended using the moving average detrending method and deseason using 
the differencing method. The time series plot after detrending is as below (Figure 12), 

 
Figure 12: Time Series Plot of the US Airline Passenger Data After Detrending 

After detrending using the moving average method, some of the data are removed due to the 
window size used in the moving average calculation. A commonly used rule of thumb for choosing 
window size is to use 10% to 25% from the time series data. Thus, in this study, the window size is 
fixed to 20 to remove the trend effects in the time series data (Azzeh, 2017). Then, seasonal 
differencing is performed under the grid search method. For the Delhi temperature data, only 
seasonal differencing under the grid search method is performed since the data do not possess an 
obvious trend. 

• Data Splitting 
Data splitting is the action of partitioning the data into two parts for cross-validatory (Picard and 
Berk, 1990). In this research, each data sets were split into training and testing sets in 80:20 ratio 
after detrending and deseason to evaluate the performance of deep artificial neural network (DANN) 
model on both high-frequency and low-frequency real-life data. Training data set is applied for 
DANN model development and training, while the testing data set is used to assess the established 
model. The real-life data are split into the following Table 9, 
 

Table 9: Sample Compositions in Two Real-life Data Sets 
Real-life Data Original 

Sample Size 
Sample Size After 

Detrend (if required) 
and Deseason 

 
Training 

Sets 

Testing 
Sets 

The US Airline 
Passenger 

144 125 100 25 

The Delhi 
Temperature 

208 208 167 41 
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c) Deep Artificial Neural Network Modelling 
DNN is an extension of a simple neural network which consists of one input layer, one output layer, 
and at least two hidden layers. Two hidden layers of neural networks are used so that the 
performance is better (Thomas et al., 2016; Thomas et al., 2017; Guliyev and Ismailov, 2018). So, 
two hidden layers are used to investigate the real-life data. The US airline passenger data and the 
Delhi temperature data are considered univariate time series data, so one input node and one output 
node are used in the DANN model. The number of nodes selected is 100 and the activation function 
used is ReLU with the hope that the neuron network fulfilled the Universal Approximation 
Theorem, which states that a neural network with at least one hidden layer of a sufficient number of 
neurons with non-linear activation functions can approximate any continuous function to an 
arbitrary level of accuracy (Cybenko, 1989; Hornik et al., 1989; Sonoda and Murata, 2017). For the 
hyperparameters of interest, the number of epochs to be investigated is 1, 10, 20, 50 and 100 in this 
study as there was suggestion that one epoch is enough to train on a large dataset, but a common 
way is to start with a reasonably small number of epochs, such as 10 or 20, and then continue with a 
larger number of epochs. Batch sizes of 32 and 64 are used in this study as the batch size should be 
at least one but not greater than the number of samples in the training set (Table 10). Moreover, 
MSE loss function and Adam optimisation are also applied in this study.  

Table 10: Grid Search Values for DANN model for Real-life Data 
No Hyperparameters Values 
1 Input Node 1 
2 Hidden Layers 2 
3 Hidden Nodes 100 
4 Output Node 1 
5 Activation Functions ReLU 
6 Epochs 1, 10, 20, 50, 100 
7 Batch Size 32, 64 

 

Before running the datasets through the DANN model, data transformation is carried out to 
enhance the learning process of the models. Min-max normalisation is conducted to ensure that 
the data ranges from 0 to 1. Other than that, the DANN for each combination of hyperparameters 
is run 10 times to ensure consistency as used in Kouassi and Moodley (2020). The average MSE and 
MAE are then computed. This process is carried out to deal with the stochastic nature of the 
neural network algorithm. While 10 runs offer a good balance between computational efficiency 
and reliability, increasing the number of runs could provide a more accurate assessment of 
performance. However, due to computational and memory constraints, the number of repetitions 
is limited to 10 to manage resources effectively. 

 
d) Low-Frequency and High-Frequency Real-life Data 

 
Table 11: MSE and MAE for the US Airline Passenger Data 

Batch Size Epoch MSE MAE 
32 1 364.4928 16.6212 

10 282.7164 13.2247 
20 285.4635 13.3866 
50 286.6904 13.4292 
100 290.1145 13.522 
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64 1 423.5157 18.0942 
10 288.3093 13.1795 
20 285.9265 13.275 
50 286.2365 13.3997 
100 295.4707 13.6162 

 

Based on the US airline passenger results as in Table 11, for batch size of 32, the MSE and MAE 
values are decreasing from 1 epoch to 10 epochs, then increasing from 10 epochs to 100 epochs, 
while for batch size 64, the MSE values are decreasing from 1 epoch to 20 epochs, then increasing 
from 20 epochs to 100 epochs. The MAE values for batch size of 64 decrease from 1 epoch to 10 
epochs, then increase from 10 epochs to 100 epochs. The MSE values increase with the increase of 
batch size for all epochs except 50 epochs which decreases as the batch size increases. 1 and 100 
epochs have their MAE values increase when the batch size increases, while others have their MAE 
values decrease when the batch size increases. Overall, for the US airline passenger data, the DANN 
model with a batch size of 32 and 10 epochs has the lowest MSE values, while the DANN model 
with a batch size of 64 and 10 epochs have the lowest MAE value. The forecast comparison results 
are shown in Figure 13 and Figure 14, 

 

 
Figure 13. Forecasting Comparison for the Lowest MSE Configuration of the US Airline Passenger 

Data 

 

 
Figure 14. Forecasting Comparison for the Lowest MAE Configuration of the US Airline Passenger 

Data 
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Table 12. MSE and MAE for the Delhi Temperature Data 
Batch Size Epoch MSE MAE 

32 1 5.4951 1.9366 
10 5.2891 1.8621 
20 5.1819 1.8409 
50 5.1897 1.8495 
100 5.1667 1.8506 

64 1 6.2976 2.0877 
10 5.1842 1.8438 
20 5.1650 1.8380 
50 5.1853 1.8440 
100 5.1328 1.8374 

 

Based on the grid search results for the Delhi temperature data as in Table 12, the MSE values 
for batch size of 32 are decreasing from 1 epoch to 20 epochs, then increasing from 20 epochs to 50 
epochs and finally decreasing from 50 epochs to 100 epochs. The MAE values for batch size of 32 
are decreasing from 1 epoch to 20 epochs, then gradually increasing from 20 epochs to 100 epochs. 
For batch size 64, the MSE and MAE values are decreasing from 1 epoch to 20 epochs, then 
increasing from 20 epochs to 50 epochs, and finally decreasing from 50 epochs to 100 epochs. The 
MSE and MAE values decrease with the increase of batch size for all epochs except 1 epoch which 
increases as the batch size increases. Overall, for the Delhi temperature data, the DANN model with 
batch size of 64 and 100 epochs has the lowest MSE and MAE values. The forecast comparison 
results are as follows (Figure 15), 

 
Figure 15. Forecasting Comparison for the Lowest MSE and MAE Configuration of the Delhi 

Temperature Data 

The best MSE and MAE model configurations for real-life low-frequency and high-frequency 
data are different. Thus, the best combination of the batch size and the number of epochs cannot be 
determined. It is suggested that large batch sizes offer steady convergence and acceptable test 
performance while small batch sizes perform better in terms of stability and generalisation (Lin, 
2022). Moreover, it is known that increasing the number of epochs allows the learning algorithm to 
minimise model error effectively, while there was study stated that minimising the number of 
epochs can achieve the aim of obtaining a minimal root mean square error (RMSE), which results in 
minimal mean square error (MSE) (Hastomo et al., 2021). 
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e) Comparison between Low-Frequency and High-Frequency Real-life Data 
 

Table 13. MAPE for Both Low-Frequency and High-Frequency Real-life Data 
Batch Size Epoch MAPE 

Low-Frequency 
Data 

High-Frequency 
Data 

32 1 0.8705 0.0687 
10 0.6025 0.0652 
20 0.6561 0.0643 
50 0.6826 0.0647 
100 0.6982 0.0648 

64 1 0.9531 0.0749 
10 0.6548 0.0645 
20 0.6422 0.0642 
50 0.6753 0.0645 
100 0.6942 0.0643 

 

From the results above (Table 13), high-frequency real-life data have lower MAPE values 
compared to low-frequency real-life data no matter what batch size and epoch are being used. The 
MAPE values for 1 epoch and 10 epochs for the US airline passenger data increase as the batch size 
increases, while others decrease as the batch size increases. For the Delhi temperature data, MAPE 
values decrease with the increase of batch size for all epochs except 1 epoch which increases as the 
batch size increases. However, the configurations with the lowest MAPE value within them are 
different. For low-frequency real-life data (the US airline passenger data), the lowest MAPE value 
is 0.6025, produced by batch size of 32 and 10 epochs, while for high-frequency real-life data (the 
Delhi temperature data), the lowest MAPE value is 0.0643, produced by batch size of 64 and 100 
epochs. The forecasting results are shown in Figure 16 and Figure 17, 

  

Figure 16. Forecasting Comparison for the Lowest MAPE Configuration of the US Airline 
Passenger Data 
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Figure 17. Forecasting Comparison for the Lowest MAPE Configuration of the Delhi Temperature 

Data 

 
 

CONCLUSION 
 
This study presents experimental studies on the deep artificial neural network (DANN) application 
for low-frequency and high-frequency time series data with seasonal variations. Both data are 
detrended and deseason to avoid instability of the DANN model in directly forecasting seasonal 
data as proposed by Faraway and Chatfield (1998). The results show that the sample size has 
limited effects on the DANN’s performance. Grid search is used in tuning the DANN model’s 
hyperparameters to optimise the neural network’s performance. The main hyperparameter tuned in 
the study is the number of epochs, where the number of epochs used are 1, 10, 20, 50 and 100. From 
both simulation study and real data analysis, it is suggested that one epoch is insufficient to provide 
good performance as it gives large mean squared error (MSE) and mean absolute error (MAE) 
values. Thus, the results support the conventional research that one epoch is insufficient to update 
the weights and give the results that are not so satisfactory. Specifically, analysis of simulated data 
consistently suggests that 10 epochs offer optimal results, as most of the MSE and MAE results 
show that 10 epochs have better performance on the DANN model. However, the best number of 
epochs cannot be determined as some results suggest other epochs as the best number of epochs. 
The US airline passenger data, which represents low-frequency data, shows that 10 epochs are the 
optimal number of epochs, while the Delhi temperature data, which represents high-frequency data, 
prefers 100 epochs. Overall, most of the MSE and MAE results fall to small epochs such as 10 or 
20, and this seems to support the research that highlighted the aim of obtaining a minimal root mean 
squared error (RMSE) value while minimising the number of epochs as MSE is directly 
proportional to RMSE (Hastomo et al., 2021). Besides, it proves that lower epochs can give higher 
accuracy besides speeding up the program execution. Therefore, by considering all perspectives, 
including computing time, resources and accuracy, 10 epochs are highly recommended from the 
result of this study. 
 

Another hyperparameter of interest is the batch size, where the range being investigated in 
this study consists of batch sizes of 32 and 64. The range is determined as the batch size should be 
not smaller than one and not greater than the number of samples in the training dataset. Also, the 
batch size should be a power of two to maximise GPU processing capabilities, and it is suggested to 
start exploring the best batch size starting from 32 (Kantel and Castelli, 2020). The smallest training 
dataset is 100 in the US airline passenger data. Thus, the range to be investigated in this study is 
batch sizes of 32 and 64. The optimal batch size cannot be determined as distinct batch sizes are 
suggested for different sample sizes using the MSE and MAE results. For example, in the real data 
analysis, by using MSE as the metric to measure the accuracy of the forecast, the US airline 
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passenger data suggest the optimal batch size of 32. However, by using MAE to measure the 
accuracy of the forecasting results, a batch size of 64 is selected. For Delhi temperature data, both 
MSE and MAPE suggest that a batch size of 64 is the best. The results from this study have the 
same outcomes as the time series prediction of voice disorder detection using audio data and the 
Indian stock market, which found optimal batch sizes of 32 and 64 respectively (Vuppalapati et al., 
2019; Yadav, 2020). Both batch sizes of 32 and 64 are optimal in different conditions, where large 
batch sizes offer steady convergence and acceptable test performance while small batch sizes 
perform better in stability and generalisation (Lin, 2022). 

 
Furthermore, the accuracy of the DANN model in forecasting the low-frequency time series 

data with seasonal variations is compared to that of high-frequency time series data with seasonal 
variations. The results show that low-frequency data gives better simulation results while high-
frequency data gives better results for real data applications. This suggests a close relationship 
between optimal frequency range and seasonal data characteristics needs to be customized in 
DANN across diverse time series landscapes. In conclusion, the optimal values of batch size and the 
number of epochs is inconsistent for time series data with seasonal variations by determining 
through MSE and MAE values, as it depends on the patterns of the seasonal variations in the time 
series data. Different models of SARIMA and different coefficients implemented will make the time 
series data vary in seasonal variations and complexity, making the optimal values of batch size and 
the number of epochs keep changing to get a better result. Thus, it is crucial to perform 
hyperparameter tuning at the beginning of the learning process to ensure the selection of appropriate 
hyperparameter values, which significantly impact the learning outcome of a DNN model, leading 
to improved forecast accuracy results. The range of work that can be conducted with neural 
networks is limitless. Other hyperparameters can be considered in the future. For example, in this 
research, a DANN, which can be considered as two hidden layers of Multilayer Perceptron (MLP), 
is studied. The study can be extended by increasing the number of layers of MLP. Moreover, the 
study can also be extended by exploring other activation functions rather than ReLU, or more 
neurons in each layer. Learning rate and optimiser algorithm can be a new direction of study in the 
future too. Besides, other well-known neural networks such as RNN, LSTM and BiLSTM can be 
explored in future studies. Moreover, there are also some hybrid models, such as ARIMA-ANN, 
that can be included in the future study to investigate their performance on time series data with 
seasonal variation. 
 
 

ACKNOWLEDGEMENTS 

The authors are grateful to Universiti Putra Malaysia for supporting this project. 
 

REFERENCES 
 
Aslam, Z., Javaid, N., Aidil, M., Ijaz, M. T., ur Rahman, A., & Ahmed, M. (2020). An enhanced 

convolutional neural network model based on weather parameters for short-term electricity 
supply and demand. In L. Barolli, F. Amato, F. Moscato, T.  Enokido & M. Takizawa (Eds.), 
Advanced Information Networking and Applications: Proceedings of the 34th International 
Conference on Advanced Information Networking and Applications (AINA-2020), (pp. 22-
35). Springer. 

 
Azzeh, M. (2017). Online reputation model using moving window. International Journal of 

Advanced Computer Science and Applications., 8(4): 508-512. 
 



K.P. Li Xiang et al.                                                                                Menemui Matematik (Discovering Mathematics) 46(1) (2024) 47-73 
 

 

71 
 

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of 
Control, Signals and Systems., 2(4): 303-314. 

 
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional 

transformers for language understanding. Proceedings of the 2019 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language 
Technologies., 1: 4171–4186.  

 
Faraway, J. & Chatfield, C. (1998). Time series forecasting with neural networks: a comparative 

study using the air line data. Journal of the Royal Statistical Society Series C: Applied 
Statistics., 47(2): 231-250. 

 
Gasparin, A., Lukovic, S., & Alippi, C. (2022). Deep learning for time series forecasting: The 

electric load case. CAAI Transactions on Intelligence Technology., 7(1): 1-25. 
 
Gikungu, S. W., Waititu, A., & Kihoro, J. (2015). Modeling inflation in Kenya: Comparison of 

SARIMA and generalized least squares models. Mathematical Theory and Modeling., 5(12): 
67-73. 

 
Golingay, S. M. D. (2020). Out-of-sample forecasting of the Region XII, Philippines’ non-metallics 

production volume using different modeling techniques. International Journal of Scientific 
and Research Publications., 10(8): 541-553. 

 
Guliyev, N. J., & Ismailov, V. E. (2018). On the approximation by single hidden layer feedforward 

neural networks with fixed weights. Neural Networks., 98:296-304. 
 
Hastomo, W., Karno, A. S. B., Kalbuana, N., Meiriki, A. & Sutarno (2021). Characteristic 

parameters of epoch deep learning to predict Covid-19 data in Indonesia. Journal of Physics: 
Conference Series., 1933(1): Article 12050. 

 
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal 

approximators. Neural Networks., 2(5): 359-366. 
 
Kandel, I., & Castelli, M. (2020). The effect of batch size on the generalizability of the 

convolutional neural networks on a histopathology dataset. ICT Express., 6(4): 312-315. 
 
Khashei, M., & Hajirahimi, Z. (2019). A comparative study of series arima/mlp hybrid models for 

stock price forecasting. Communications in Statistics-Simulation and Computation., 48(9): 
2625-2640. 

 
Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand 

forecasts, International Journal of Forecasting., 32(3): 669-679. 
 
Kingma, D. P., & Ba, J. (2015). ADAM: A method for stochastic optimization. In K. Simonyan & 

A. Zisserman (Eds.), 3rd International Conference on Learning Representations (ICLR 
2015), (pp. 1–15). International Conference on Learning Representations. 

 
Kotur, D., & Zǎrkovǐc, M. (2016). Neural network models for electricity prices and loads short and 

long-term prediction. In A. Nikolic, K. Busawon, A. Maheri & G. Jankes (Eds.), 2016 4th 
International Symposium on Environmental Friendly Energies and Applications (EFEA), 
(pp. 1-5). IEEE. 



K.P. Li Xiang et al.                                                                                Menemui Matematik (Discovering Mathematics) 46(1) (2024) 47-73 
 

 

72 
 

 
Kouassi, K.H., & Moodley, D. (2020). An Analysis of Deep Neural Networks for Predicting Trends 

in Time Series Data. In A. Gerber (Ed.), Artificial Intelligence Research. SACAIR 2021: 
Communications in Computer and Information Science, 1342 (pp.119-140). Springer. 

 
Lin, R. (2022). Analysis on the selection of the appropriate batch size in CNN neural network. 2022 

International Conference on Machine Learning and Knowledge Engineering (MLKE), 106-
109. 

 
Lin, W. H., Wang, P., Chao, K. M., Lin, H. C., Yang, Z. Y., & Lai, Y. H. (2021). Wind power 

forecasting with deep learning networks: Time-series forecasting. Applied Sciences., 11(21): 
10335. 

 
Mahmood, A., Bennamoun, M., An, S., Sohel, F., Boussaid, F., Hovey, R., Kendrick, G., & Fisher, 

R. B. (2017). Deep learning for coral classification. In P. Samui, S. S. Roy, V. E. Balas 
(Eds.), Handbook of Neural Computation, (pp. 383-401). Elsevier. 

 
Musbah, H., Aly, H. H., & Little, T. A. (2023). A proposed novel adaptive DC technique for non-

stationary data removal, Heliyon, 9(3), Article e13903. 
 
Nelson, M., Hill, T., Remus, W., & O’Connor, M. (1999). Time series forecasting using neural 

networks: Should the data be deseason first? Journal of Forecasting, 18(5), 359-367. 
 
Ngoc, T. T., Dai, L. V., & Phuc, D. T. (2021). Grid search of multilayer perceptron based on the 

walk-forward validation methodology. International Journal of Electrical and Computer 
Engineering, 11(2), 1742-1751. 

 
Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press. 
Nwankpa, C. E. (2020). Advances in optimisation algorithms and techniques for deep learning. 

Advances in Science, Technology and Engineering Systems Journal, 5(5), 563-577. 
 
Picard, R. R., & Berk, K. N. (1990). Data splitting. American Statistician, 44(2), 140–147. 
 
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language 

understanding by generative pre-training. 
 
Sonoda, S., & Murata, N. (2017). Neural network with unbounded activation functions is universal 

approximator. Applied and Computational Harmonic Analysis, 43(2), 233-268. 
 
Smith, S. L., Elsen, E., & De, S. (2020). On the generalization benefit of noise in stochastic gradient 

descent. In H. Daumé III & A. Singh (Eds.), ICML’20: Proceedings of the 37th International 
Conference on Machine Learning, (pp. 9058-9067). Journal of Machine Learning Research.  

 
Thomas, A., Walters, S., Gheytassi, M. M., Morgan, R., & Petridis, M. (2016). On the optimal node 

ratio between hidden layers: a probabilistic study. International Journal of Machine 
Learning and Computing, 6(5), 241-247. 

 
Thomas, A. J., Petridis, M., Walters, S. D., Gheytassi, S. M., & Morgan, R. E. (2017). Two hidden 

layers are usually better than one. In G. Boracchi, L.  Iliadis, C. Jayne & A. Likas (Eds.), 
Engineering Applications of Neural Networks: 18th International Conference, EANN 2017, 
Athens, Greece, August 25–27, 2017, Proceedings (pp. 279-290). Springer. 

https://link.springer.com/book/10.1007/978-3-319-65172-9#author-1-1


K.P. Li Xiang et al.                                                                                Menemui Matematik (Discovering Mathematics) 46(1) (2024) 47-73 
 

 

73 
 

 
Vuppalapati, J. S., Kedari, S., Kedari, S., Ilapakurti, A., & Vuppalapati, C. (2019). Artificial 

intelligent (AI) clinical edge for voice disorder detection. In Bi, Y., Bhatia, R., Kapoor, S. 
(Eds.), Intelligent Systems and Applications: Proceedings of the 2019 Intelligent Systems 
Conference (IntelliSys), 1038, Springer. 

 
Yadav, A., Jha, C., Sharan, A. (2020). Optimizing LSTM for time series prediction in Indian stock 

market. Procedia Computer Science, 167, 2091-2100. 
 
Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. 

Neurocomputing, 50, 159-175. 
 
Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. 

European Journal of Operational Research, 160(2), 501-514. 
 
Ziari, H., Sobhani, J., Ayoubinejad, J., and Hartmann, T. (2016). Prediction of IRI in short and long 

terms for flexible pavements: ANN and GMHD methods. International Journal of Pavement 
Engineering, 17(9), 776–788. 

 
Zupan, J. (1994). Introduction to Artificial Neural Network (ANN) Methods: What They Are and 

How to Use Them. Acta Chimica Slovenica, 41(3), 327–352. 
 


	INTRODUCTION
	MATERIALS AND METHODS
	By calculating and analysing these accuracy measures, researchers can assess the performance of models in forecasting time series data and compare the effectiveness of different models or parameter configurations.
	CONCLUSION
	REFERENCES

