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ABSTRACT 
Multivariate cumulative sum (MCUSUM) control charts are one of the popular tools for monitoring multivariate 

statistical process control aside from the Hotelling 
2T  and the multivariate exponentially weighted moving average 

(MEWMA) control chart. However, these charts are easily affected by outliers or shifts in the dataset. To overcome 

the problem, this study will integrate several robust approaches to the classical MCUSUM control chart. These 

approaches used robust location and scale estimator to substitute the usual mean and covariance matrix, respectively 

into the classical MCUSUM. The two robust location estimators used are the modified one-step M estimator (MOM) 

and Hodges Lehmann estimator (HL). Then, a scale estimator named Madn was introduced and functioned accordingly 

to the robust location estimators. Altogether, two robust MCUSUM control charts were proposed. The performance 

of each control chart was monitored based on their probability in detecting mean shifts. Various conditions were 

created to investigate the performance of proposed and classical control chart, namely the subgroup size ( ),m  number 

of quality characteristics ( ),p  and the level mean shifts 
1( ).  The simulation results show that all the proposed charts 

are able to outperform the classical chart in term of their probability of detecting mean shift. This shows that the 

proposed robust MCUSUM charts can be used as an alternative if outliers or shifts happen to present in the dataset.  

.  
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INTRODUCTION 

 

The statistical process control (SPC) is an important tool that is widely used to detect assignable 

cause in a process. According to Montgomery (2009) the control chart is very likely the most 

advanced and popular among researchers and industries apart from other tools like histogram, 

stem-and-leaf plot, check sheet or scatter diagram. The purpose of control chart is to detect the 

presence of assignable cause of process shifts quickly. Shewhart control chart is very effective in 

detecting large shifts but is shows some drawback in detecting small shifts in a process. Hence, 

the cumulative sum (CUSUM) control chart and exponentially weighted moving average 

(EWMA) control chart are used by practitioner as alternatives to the Shewhart control chart. 

Usually, there are more than one quality characteristics that need to be monitored and most 

of the quality characteristics in a process are highly correlated. Zhang and Chang (2008) stated 

that by using the univariate control chart separately, the out-of-control condition cannot be 

detected because it ignores the correlation between the variables. To overcome this limitation, it 

is suggested to use the multivariate control chart as this chart can monitor the interactions of 

several process variable simultaneously (Yang and Trewn, 2004). 

There are three multivariate control chart that are well received by researchers. They are 

the Hotelling 2T  control chart, multivariate exponentially weighted moving average (MEWMA) 

control chart and multivariate cumulative sum (MCUSUM) control chart. The Hotelling 2T  

control chart is the direct counterpart of Shewhart x  control chart for univariate case 

(Montgomery, 2009). Therefore, it is less effective to detect small and moderate shift in the mean 

vector (Yang and Trewn, 2004; Montgomery, 2009). The MEWMA and MCUSUM are the 

alternatives to the Hotelling 2T when small or the moderate shift of the process mean is in interest. 

It is important to mention here that what differ the EWMA and CUSUM control charts is how we 

obtain the information from the observations in the historical data set. All observations in the 
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CUSUM procedure are weighted equally while in EWMA we assign less and less weight to the 

past observations than the current observation.  

According to Vargas (2003), the classical multivariate control chart is simply based on the 

sample mean vector, x  that represents the centre of quality characteristics and the sample 

variance-covariance matrix, 𝑆  that represent the dispersion of data from the .x  These two 

parameters are known to be sensitive to outliers and/or shifts and will be greatly influence by their 

presence. Due to this problem, a modification on the classical control chart based on robust 

statistics are done by many researchers and they showed better performance as predicted. 

Alloway and Raghavachari (1990) proposed a robust Hotelling 2T control chart based on 

trimmed mean and trimmed covariance matrix for bivariate case. They tested the proposed robust 

method on symmetrical distribution and it is proved that the method is robust and resistant to the 

contamination observations. Later, Abu-Shawiesh and Abdullah (2001) developed a new robust 

Hotelling 2T  for bivariate data using Hodges-Lehmann estimator as location estimator and 

Shamos-Bickel-Lehmann estimator as scale estimator. Jamaluddin et al. (2018) developed a new 

robust MEWMA control chart based on modified one-step M (MOM) estimator and Winsorized 

modified one-step M(WM) estimator as the location estimator. They also use the Madn to replace 

the classical variance in the covariance matrix, .S Their performance is then compared to the 

classical MEWMA control chart for bivariate data of normal distribution under different 

conditions that include proportion of outliers and process mean shifts. The performance of each 

control chart is monitored through their false alarm rates. Other study about the modified one-step 

M(MOM) estimator can be found in Wilcox (2003) and Melik et al. (2018). The studies from 

previous researchers have encourage us to do some modification on the classical MCUSUM 

control chart using several robust estimators. In this paper, we will use two robust location 

estimators namely the modified one-step M (MOM) estimator and Hodges-Lehmann (HL) 

estimator with the median absolute deviation (Madn) as the robust scale estimator. 

 

 

CLASSICAL MULTIVARIATE CUSUM CONTROL CHART 

 

Let 1( ,..., ),  1,...,j j ijx x x j p= =  be a sample from multivariate normal distribution with mean zero 

and identity covariance matrix ,pI  where p  is the number of quality characteristics. The 

multivariate CUSUM statistic is as follows: 

                           2 1 ,T

i i ic D D−=    where  
1
( )

m

i ii
D x 

=
= −            (1) 

However, since the value of   and  is unknown, the parameters have to be estimated by using 

x  vector and S covariance matrix, respectively as follows: 

                                     
2 1T
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formula: 
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A.S. Razalee, N. M. Ali, N. Ali and N. A. A. Rahmin 

Menemui Matematik Vol. 45(2) 2023                                                         249 

 

 

and the covariance matrix, S as follows: 
2
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where the variance and covariance of the jx  as follows respectively: 

                                                        2 2

1
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−
                           (5) 

where 1,..., ;   1,..., ;   .ij p g p j g= =    

 

Robust MCUSUM Control Chart Using Modified One-Step M Estimator (MOM) 

 

The first approach uses the MOM as the location measure to replace the usual mean vector in the 

classical MCUSUM control chart. The MOM estimator (Wilcox and Keselman, 2003) is defined 

as follows: 

                                                       
2

1 1
1 2

jm i ij

j i i
j

x
MOM

m i i

−

= +
=

− −
                                           (6) 

where ijx  is the thi order statistic in thj  characteristics variable.  

1 :i Number of ijx satisfies the criterion ˆ( ) ( *( )ij j njx M K Mad−                       (7) 

2 :i Number of ijx satisfies the criterion ˆ( ) ( *( )ij j njx M K Mad−                         (8) 

:jm  Denote the group size for thj variable   

1
ˆ { ,..., },     1,...,j j njM med x x j p= =   

ˆ1.4826* { }.nj i ij jMad med x M= −                        (9) 

The constant 1.4826K =  was used so that the efficiency is good under normality especially for 

small sample size (Wilcox and Keselman, 2003; Syed Yahaya et al., 2006). Wilcox and Keselman 

(2003) found that the efficiency of MOM estimator is equal to 0.9 for 20m=  when 2.24.K =  

Hence, the value 2.24.K =  will be used throughout this study to MOM approaches. To construct 

the new robust MCUSUM statistic, the MOM will replace the usual mean vector in the classical 

MCUSUM statistic, so we get: 

 

                          
2 1 ,T
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Robust MCUSUM control chart using Hodges-Lehmann estimator (HL) 

 

The computation of Hodges-Lehmann estimator is showed below (Abu Shawiesh and Abdullah, 

2001; Majid, Haron and Midi, 2010). 

 

1. Calculate the Walsh averages rw by using ,
2

ij kj

rj

x x
w

+
= where 1,...,r M= such as  

( 1)
,    

2

m m
M i k

+
=   and , 1,... ,   1,... ,i k m j p= =  m is the group size.  

 

2. Reorder the Walsh averages is ascending order 

                                        1 2 3 ...j j j Mjw w w w                                           (11) 

 

3. Compute the HL estimator 

                            1 2{ , ,..., }j j j MjHL median w w w=                                               (12) 

 

 

Now, we can compute the robust MCUSUM statistic for HL estimator: 

 

i. Let 1,..., ,i ipx x  a matrix of m p  where 1,... ,i m= with m the number of observations and p  

in the number of quality characteristics.  

 

ii. Calculate the mean vector using Hodges-Lehmann estimator for matrix of m p  as follows: 

                                   

1

p

p

HL

HL

HL

 
 

=  
 
 

M                                              (13) 

 

iii. The formula for the new MCUSUM control chart using Hodges-Lehmann as the location 

estimator is  

                           2 1 ,T

i i ic D S D−=   where   
1
( )

m

i ii
D x HL

=
= −                (14) 

The variance covariance matrix, 𝑺  will be replaced with robust scale estimator, Madn. The 

computation of the Madn will be explain in the next subsection. 

Robust MCUSUM control chart using Median Absolute Deviation estimator (Madn) 

 

The p p  covariance matrix of Madn is denoted as .
nMads  First, compute the diagonal element of 

the p p  covariance matrix which are the sample variances of each variable which are represented 

by 

                        2 ( ) ( )nj n ij n jMad Mad x Mad x=    where 1,...j p=                             (15) 

 

According to Abu-Shaweish and Abdullah (2001), the remaining element of p p  covariance 

matrix is calculated as follows: 
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i. Compute the Madn for vectors jx  and gx  which are denoted by ( )n jMad x  and ( )n gMad x  

where 1,...,j p=  and 1,..., ,   .g p j g=   

 

ii. Compute the Spearman correlation for ranks between the variables jx  and ,gx which are 

denoted by ( , ).j gcorr x x   

 

iii. The sample covariance between the variables jx  and gx  is 

         ( ) ( ) ( , )jg n j n g j gMad Mad x Mad x corr x x=                (16) 

 

iv. Thus, the p p  covariance matrix is 

                             

2

1 1

2
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p p
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 
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      (17) 

 

Hence, the formula for the robust MCUSUM control charts will be as follows: 

1. 2 1( ) ,T

MOMMad i i Madn ic x D S D−=  where 
1
( )

m

i ii
D x MOM

=
= −                                       (18) 

2. 2 1( ) ,
n

T

HLMad i i Mad ic x D S D−=   where   
1
( )

m

i ii
D x HL

=
= −                                    (19) 

 

 

PERFORMANCE OF CONTROL CHARTS 

 

This study deals with the classical MCUSUM control charts, which are sensitive to any shifts in 

data sets. Hence, the data are generated from standard normal distributions, contaminated with 

different mean shifts. To monitor the performance and capability of these new robust MCUSUM 

control charts, the probability of detecting mean shifts is calculated. For the probability of the 

detecting mean shifts, the higher the probability, the better the charts perform in detecting mean 

shifts. In order to check the performance of all MCUSUM control charts, we set the values of 

quality characteristics, p  at 2,  3,  5 and 10  with subgroup sizes, 30,  50,  100 and 400.m = Five 

levels of mean shifts ( )i were used that are 0.5,  1.0,  1.5, 2.0 and 5.0  with proportion equal to 

0.1.  

In a multivariate control chart, only the upper control limit (UCL) is required since the 

lower control limit is always set at 0. For this study, the simulation method is utilised to get the 

UCL of all MCUSUM as done by Alfaro and Ortega (2009) and Jamaluddin (2018). This is 

because the underlying distribution is unknown for the robust statistic. The simulated UCL of all 

control charts is obtained by generating 5000 data set of subgroup size m such that 

1( ,..., ),  1,...,j j ijx x x j p= =  from in-control condition, ( , ).pMVN 0 pI  Then calculate all the related 

classical and robust MCUSUM statistics, 
2c for each observation in the generated data set and 

record the maximum value for the corresponding dataset. In this study, the overall false alarm is 

set at 0.05. =  In order to retain 0.05, = the 
th95  percentile of the recorded maximum values 

are declared as the simulated UCLs.  

The evaluation of the classical and robust MCUSUM control chart are based on their 

probability of detecting shifts according to the following steps: 
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1. Generate new observation vector for each data set from ‘out-of-control’ condition based 

on mean shifts decided. 

2. Calculate the classical and robust MCUSUM statistics, 
2c  for each new observation 

vector.  

3. Compare each value of the MCUSUM statistics with their corresponding simulated UCL. 

4. Repeat steps 1 to 3 for 5000 replications. 

5. The probability of detecting mean shifts is equal to the proportion of data sets that have at 

least one point greater than the simulated UCL. 

 

Computer program in R  were developed to calculate the simulated UCL and probability of 

detecting shift. 

 

RESULTS AND DISCUSSION 

 

The results of the analysis for the probability of detecting mean shifts when 0.05 =  are 

summarised in Table 1 for 2 and 3p =  and Table 2 for 5 and 10.p =  For a clearer and better 

comparison, we will refer to the graphs in Figure 1 to Figure 4. Figure 1 presents the performance 

of the investigated charts in terms of their probability in detecting shifts when the quality of 

characteristics ( )p  equals to 2.  

As shown in Figure 1a and 1b, when small mean shift occurs, the 2

HLMadc  chart appears to 

have the best performance for all subgroup size ,m  followed by 2

MOMMadc  chart and lastly the 
2c  

chart. However, in Figure 1c and 1d, when the mean shifted to 1.5 and 2.0, the 
2c  perform best 

for smaller subgroup sizes and as the subgroup sizes increase, all control charts give comparable 

performance. For large mean shift 1( 5), =  all control charts are able to detect all outliers cause 

by mean shifts since the probability of detecting mean shift is equal to 1 as shown in Figure 1e. 

From all five of mean shift, the performance of each control chart is varied for smaller ,m  and 

becoming similar as the m  increasing.  
 

Table 1: The probability of detecting mean shifts for 2 and 3p =  

m  1  
2p =  3p =  

2c  
2

MOMMadc  
2

HLMadc  2c  
2

MOMMadc  
2

HLMadc  

30 0.5 0.115 0.296 0.343 0.103 0.350 0.428 

 1 0.539 0.601 0.672 0.464 0.622 0.720 

 1.5 0.937 0.868 0.917 0.894 0.868 0.930 

 2 0.998 0.981 0.992 0.996 0.973 0.993 

 5 1 1 1 1 1 1 

50 0.5 0.083 0.164 0.195 0.067 0.196 0.223 

 1 0.439 0.495 0.559 0.370 0.495 0.582 

 1.5 0.908 0.849 0.893 0.842 0.848 0.886 

 2 0.997 0.986 0.991 0.989 0.981 0.990 

 5 1 1 1 1 1 1 

100 0.5 0.034 0.079 0.081 0.033 0.079 0.089 

 1 0.315 0.386 0.408 0.229 0.360 0.403 

 1.5 0.832 0.826 0.852 0.714 0.780 0.822 

 2 0.993 0.986 0.991 0.974 0.975 0.982 

 5 1 1 1 1 1 1 

400 0.5 0.011 0.017 0.020 0.008 0.014 0.013 
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 1 0.162 0.184 0.192 0.087 0.117 0.129 

 1.5 0.665 0.673 0.676 0.489 0.541 0.580 

 2 0.967 0.969 0.969 0.918 0.925 0.931 

 5 1 1 1 1 1 1 

 

Table 2: The probability of detecting mean shifts for 5 and 10p =  

m  1  
5p =  10p =  

2c  
2

MOMMadc  
2

HLMadc  2c  
2

MOMMadc  
2

HLMadc  

30 0.5 0.099 0.489 0.606 0.072 0.700 0.917 

 1 0.359 0.720 0.816 0.237 0.886 0.968 

 1.5 0.806 0.892 0.959 0.602 0.955 0.994 

 2 0.987 0.983 0.994 0.913 0.992 0.999 

 5 1 1 1 1 1 1 

50 0.5 0.054 0.241 0.298 0.053 0.401 0.545 

 1 0.237 0.513 0.624 0.153 0.633 0.773 

 1.5 0.674 0.819 0.900 0.430 0.860 0.941 

 2 0.955 0.972 0.989 0.816 0.970 0.994 

 5 1 1 1 1 1 1 

100 0.5 0.024 0.078 0.094 0.027 0.104 0.147 

 1 0.121 0.308 0.349 0.063 0.280 0.365 

 1.5 0.516 0.699 0.781 0.252 0.598 0.717 

 2 0.906 0.950 0.965 0.606 0.881 0.949 

 5 1 1 1 1 1 1 

400 0.5 0.006 0.009 0.007 0.005 0.006 0.005 

 1 0.045 0.065 0.072 0.011 0.022 0.030 

 1.5 0.270 0.358 0.368 0.072 0.146 0.158 

 2 0.747 0.798 0.822 0.283 0.472 0.492 

 5 1 1 1 1 1 1 
 

 
a 

 
b 
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 c 

 
d 

 
e 

Figure 1: Probability of detecting shift when 2.p =  

 

Next, Figure 2 represent the performance of the investigated charts for various mean shift at 3.p =  

Throughout the figures, it could be easily observed that 
2c  control chart has the worst performance 

for most condition while the 2

HLMadc  mostly showed better performance than another two control 

charts. At 1 0.5 =  and 1.0 as shown in Figure 2a and b,  2

HLMadc  showed the highest probability 

followed by 2

MOMMadc  and 
2c  for small subgroup sizes and at 400,m =  the probability of detecting 

shifts for all control chart are more or less similar. As mean shift to 1 1.5 =  and 2.0, 
2c  gives 

better performance at smaller m  but overtook by other two robust MCUSUM as the m  increase. 

Similar with previous case, for large mean shift 1( 1.5), =  all control charts are able to detect all 

outliers cause by mean shift since the probability of detecting mean shift is equal to 1.0 as shown 

in Figure 2e.  
 

 
a 

 
b 
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 c 

 
d 

 
e 

Figure 2: Probability of detecting shift when 3p =  

 

Figure 3 represents the performance of the control charts when 5.p =  The patterns are observed 

to be almost similar to 2p =  and 3p =  with 2

HLMadc  control chart produced the best performance 

followed by 
2

MOMMadc  and 
2c . For smaller shifted mean as shown in Figure 3a and 3b, the 

probability of detecting shift for all control charts are always differ at small m  but comparable as 

400.m =  Lastly, all control charts are able to detect mean shift when 1 1.5 = as can be seen in 

Figure 3e. 

 

 
a 
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 c 

 
d 

 
e 

Figure 3: Probability of detecting shift when 5p =  

 

Figure 4a, 4b and 4c illustrate the case of mild and moderate contamination when the mean is 

shifted at 1 0.5,1.0 =  and 1.5, the two robust control charts perform better than the classical chart. 

There is a downward trend as the value of the m  increase for all control chart. This means that the 

bigger the subgroup size, the smaller the probability of detecting the mean shift. For condition 

where shifted mean is at 2.0 based on Figure 4d, when m  is small, the performance of all three 

charts is quite similar. However, as the m  increase, the performance gap between the two robust 

control chart and the classical chart become further. Finally, based on Figure 4e, all control chart 

is able to detect shifted mean at 5 for all subgroup size. 
 

 
a 
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 c 

 
d 

 
e 

Figure 4: Probability of detecting shift when 10p =  

 

CONCLUSIONS 

 

In order to apply and check the performance of control chart, the presence of mean shifts or outliers 

in the data set should be considered and investigated. The presence of mean shifts or outliers can 

cause misleading conclusion of the control chart if one uses the classical approach. Therefore, 

robust statistics are used to overcome this problem. Modified one-step M estimator and Hodges-

Lehmann estimator are used by integrating it with the classical MCUSUM control chart to form 

robust control charts which are the 2

MOMMadc  and 2 .HLMadc From the simulation study, the probability 

of detecting mean shifts of all control chart is computed and compared. Data set from Normal 

distribution with different mean shifts with proportion 0.1 are used. The subgroup size, 

30,  50,  100 and 400m =  and number of quality characteristics, p  at 2, 3, 5 and 10 are included 

in this study. As the conclusion, 2

HLMadc  control chart has the best performance among these three 

control charts when the mean shifts happen to present in the data set. Besides, 2

MOMMadc  and 2

HLMadc  

also perform better than the 
2c control chart for smaller mean shifts.  
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