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ABSTRACT 
Volterra integro-differential equation with delay (VIDED) is solved using a diagonally multistep 

block method (DMB). This study provides the derivation of the DMB utilizing Taylor series with 

a constant step size strategy for treating the first order VIDED. In predictor-corrector mode, the 

DMB method combines the predictor and corrector formulae. It approximates two numerical 

solutions simultaneously within a block. The algorithm for the approximation solution is developed 

and the Newton-Cotes formulae are adapted in the DMB method to estimate the solution for an 

integral component. Theoretically, the consistency and zero stability that led to convergence 

properties are examined. The stability region also has been plotted. The numerical results indicate 

that the developed method is superior in terms of the number of steps, accuracy and computation 

time taken. 

 
Keywords: Volterra integro-differential equation with delay, diagonally multistep block,  

                    Newton-Cotes formulae 

 

 

INTRODUCTION 

 

The following Volterra integro-differential equation with delay is considered: 

( )( ) , ( ), ( )), ( , , ( ), ( )) ,
t

t
y t F t y t y t K t u y u y u du


 

−
 = − −  0[ , ].t t T           (1) 

where 

0
( ) ( , , ( ), ( )) ,

t

z t K t u y u y u du= −      

depending on the initial function, 

( ) ( ),y t t=  where 0 0[ , ].t t t −              (2) 

 ,F K and   are supposed to be sufficiently smooth. In this case, the delay term, , is assumed to 

be continuous and positive integer. Equation (1) can be simplified to a standard initial value 

problem to yield an approximation of a numerical solution as follows, 
( ) ( , ( ), ( ), ( ))y t F t y t y t z t = −                  (3) 

where 

0
( ) ( , , ( ), ( )) .

t

z t K t u y u y u du= −              (4) 

On mesh points with 0 0 1,  ,  k kt a t T t t t= =   , the block methods have been developed to 

approximate the solutions of the standard initial value problem. Frequently, the constant step size, 

h , is utilized to analyse these methods. 

 

This type of equation arises widely in steady-state solution (Verdugo, 2018) and HIV-1 infection 

model (Ali et al., 2018) which the delay term denotes the dormant period. The analytical solution 
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for the VIDED is too complex; thus, the qualitative results may depend on numerical approaches. 

Brunner and Zhang (1999) obtained several primary discontinuity results for integral and integro-

differential equations (IDE) involving different delays. Meanwhile, Ayad (2001) came up with the 

idea of using a polynomial spline function to obtain an approximation of the solution to two distinct 

kinds of IDE with delay, namely Fredholm IDE with delay and VIDED. 

Schoenberg was the first to introduce the B-spline in 1949. B-splines are the typical non-

linear smooth geometry representation in numerical computation. Ali (2009) established a 

numerical solution to the VIDED problem using the expansion method (collocation and partition) 

in conjunction with basis function of B-spline polynomials. Meanwhile, Salih et al. (2010), had 

solved the 
thn -order linear VIDED with convolution type using the Galerkin method with the B-

spline function. Salih et al. (2014) created a MATLAB algorithm to evaluate the 
thn order linear 

VIDED of convolution types and employed the B-spline function with the aid of the Weddle rule 

to estimate the required integrals for the equations. Galerkin's method is prevalent in solving 

differential equations numerically. Consequently, Zaidan (2012) introduced Bernstein polynomial 

of degree two defined as the weighted residual method with Galerkin's method in solving the linear 

VIDED.  

Yüzbaşı and Karaçayır (2018) approximated a solution for higher order VIDED by 

converting the problem into a linear algebraic equation system. They suggested a Galerkin-like 

approach to approximate this system. Baharum et al. (2022) solved VIDED using the third order 

multistep block method. While Janodi et al. (2020) considered a hybrid block method when solving 

Volterra IDE. Lagrange interpolation polynomials have been used to solve the delay in Ismail et 

al. (2020). Moreover, Baharum et al. (2022) implement the Boole’s rule strategy in solving the 

Volterra IDE using the multistep block method. 

The two-point diagonally multistep block approach is used in this study to obtain new 

numerical findings for Volterra integro-differential equation with delay problem. Several 

examples illustrate that the proposed method yields relevant numerical results. 

 

 

DERIVATION OF THE METHOD 

 

Linear difference operator, L  associated with 

0 0

[ ( ); ] ( ) ( ),
k k

i i

i i

L y t h y t ih h y t ih 
= =

= + − +                                   (5) 

as ( )y t is a function and continuously differentiable on 0[ , ]t T . Linear difference operator is 

generated by substituting ( )y t and its derivatives, ( )y t  with Taylor series. 

2 2
2 2

0 0

[ ( ); ] ( ) ( ) ( ) ( ) ( ) ( )
2! 2!

k k

i i

i i

i i
L y t h y t ihy t h y t h y t ihy t h y t 

= =

   
    = + + − + +   

   
  .       (6) 

DMB method has been formed by evaluating ( )y t h+ and ( 2 )y t h+  with delay arguments and 

solutions, respectively. As indicated below, the first-point corrector formula was developed by 

expanding the linear multistep method, (LMM) (5) . 
4

3 0 2

( ) ( ) ( ).
k k k

i i i

i i i

y t ih h y t ih h y t ih  
−

= = =

 + = + + +    

When the number of steps, 4k = , DMB method formulated the first point corrector formula; 
4 0 4

3 0 2

3 4 0 2 3 4

                  ( ) ( ) ( ),

( 3 ) ( 4 ) ( ) ( 2 ) ( 3 ) ( 4 ).

i i i

i i i

y t ih h y t ih h y t ih

y t h y t h h y t h y t h h y t h h y t h

  

     

= = =

 + = + + +

   + + + = + + + + + +

  
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By letting 3 1 = − and 4 1 = yields, 

0 2 3 4( 3 ) ( 4 ) ( ) ( 2 ) ( 3 ) ( 4 ),y t h y t h h y t h y t h h y t h h y t h      − + + + = + + + + + +     

0 2 3 4                     ( 4 ) ( 3 ) ( ) ( 2 ) ( 3 ) ( 4 ).y t h y t h h y t h y t h h y t h h y t h      + = + + + + + + + +         (7) 

 

Taylor series produces the expression for ( 4 ),  ( 3 ),  ( ),  ( 2 ),  ( 3 ),y t h y t h y t y t h y t h  + + + + and 

( 4 )y t h + .  

2 3 4 (4)

2 3 4 (4)

2 3 (4)

2

16 64 256
( 4 ) ( ) 4 ( ) ( ) ( ) ( ),

2 6 24

9 27 81
( 3 ) ( ) 3 ( ) ( ) ( ) ( ),

2 6 24

4 8
( 2 ) ( ) 2 ( ) ( ) ( ),

2 6

9
( 3 ) ( ) 3 ( )

2

y t h y t hy t h y t h y t h y t

y t h y t hy t h y t h y t h y t

y t h y t hy t h y t h y t

y t h y t hy t h y

  + = + + + +

  + = + + + +

   + = + + +

   + = + + 3 (4)

2 3 (4)

27
( ) ( ),

6

16 64
( 4 ) ( ) 4 ( ) ( ) ( ).

2 6

t h y t

y t h y t hy t h y t h y t

+

   + = + + +

 

The terms of Taylor series are truncated as the fourth-order method at the fourth derivative. Hence, 

Taylor series is substituted into the equation (7) and yields, 

( )

2 3 4 (4)

2

0 2 3 4 2 3 4

3 4 (4)

2 3 4 2 3 4

16 64 256
( ) 4 ( ) ( ) ( ) ( )

2 6 24

9
( ) ( ) 3 ( ) 2 3 4

2

27 9 16 81 8 27 64
        ( ) 2 ( ) .

6 2 2 24 6 6 26

y t hy t h y t h y t h y t

y t hy t h y t

h y t h y t

      

     

  + + + +

 
  + + + + + + + + + 

 

   
+ + + + + + + +   

   

         (8) 

As a result of associating the left and right sides of equation (8) , the result would be, 

0 2 3 4

2 3 4

2 3 4

2 3 4

        3 4,

9 16
         2 3 4 ,

2 2

27 9 16 64
   2 ,

6 2 2 6

81 8 27 64 256
.

24 6 6 26 24

   

  

  

  

+ + + + =

+ + + =

+ + + =

+ + + =

 

The coefficients i obtained as follows, 

0 2 3 4

1 7 3 37
,    ,    ,    .

96 48 4 96
   = = − = =  

Hence, the formula could be expressed as 

4 3 4 3 2

37 3 7 1
.

96 4 48 96
n n n n n ny y h F F F F+ + + + +

 
= + + − + 

 
 

By choosing the value 3n n= − , the first point of corrector formula for DBM method is obtained, 

1 1 1 3

37 3 7 1
.

96 4 48 96
n n n n n ny y h F F F F+ + − −

 
= + + − + 

 
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Calculated based on the LMM, the corrector formula for the second point of the DBM method 

yields, 
2 5 3

3 0 2 4

( ) ( ) ( ) ( ) ( ).
k k k k k

i i i i i

i i k i i i

y t ih y t ih h y t ih h y t ih h y t ih    
− − −

= = = = =

  + + + = + + + + +      

With 5k = as the step number, the following will be: 
3 5 0 2 5

3 5 0 2 4

3 5 0 2 4 5

( ) ( ) ( ) ( ) ( ),

       ( 3 ) ( 5 ) ( ) ( 2 ) ( 4 ) ( 5 ).

i i i i i

i i i i i

y t ih y t ih h y t ih h y t ih h y t ih

y t h y t h h y t h y t h h y t h h y t h

    

     

= = = = =

  + + + = + + + + +

   + + + = + + + + + +

    
 

Hence, letting 3 1 = − and 5 1, =  

0 2 4 5( 3 ) ( 5 ) ( ) ( 2 ) ( 4 ) ( 5 ),y t h y t h h y t h y t h h y t h h y t h      − + + + = + + + + + +  

0 2 4 5                    ( 5 ) ( 3 ) ( ) ( 2 ) ( 4 ) ( 5 ).y t h y t h h y t h y t h h y t h h y t h      + = + + + + + + + +          (9) 

Taylor series will expand ( )y x and ( ).y x
 

2 3 4 (4)

2 3 4 (4)

2 3 (4)

25 125 625
  ( 5 ) ( ) 5 ( ) ( ) ( ) ( ),

2 6 24

9 27 81
  ( 3 ) ( ) 3 ( ) ( ) ( ) ( ),

2 6 24

4 8
( 2 ) ( ) 2 ( ) ( ) ( ),

2 6

16
( 4 ) ( ) 4 ( )

2

y t h y t hy t h y t h y t h y t

y t h y t hy t h y t h y t h y t

y t h y t hy t h y t h y t

y t h y t hy t

  + = + + + +

  + = + + + +

   + = + + +

  + = + + 2 3 (4)

2 3 (4)

64
( ) ( ),

6

25 125
( 5 ) ( ) 5 ( ) ( ) ( ).

2 6

h y t h y t

y t h y t hy t h y t h y t

 +

   + = + + +

 

Since the method order is four, the terms of Taylor series are truncated at the fourth derivative. 

Hence, replacing the expansion for the equation (9) and acquiring, 

( )

2 3 4 (4)

2

0 2 4 5 2 4 5

3 4 (4)

2 4 5 2 4 5

25 125 625
( ) 5 ( ) ( ) ( ) ( )

2 6 24

9
     ( ) ( ) 3 ( ) 2 4 5

2

27 16 25 81 8 64 125
         ( ) 2 ( ) .

6 2 2 24 6 6 6

y t hy t h y t h y t h y t

y t hy t h y t

h y t h y t

      

     

  + + + +

 
  + + + + + + + + + 

 

   
+ + + + + + + +   

   

      (10) 

Associating the left and right sides of the equation (10) could yield, 

0 2 4 5

2 4 5

2 4 5

2 4 5

         3 5,

9 25
          2 4 5 ,

2 2

27 16 25 125
  2 ,

6 2 2 6

81 8 64 125 625
.

24 6 6 6 24

   

  

  

  

+ + + + =

+ + + =

+ + + =

+ + + =

 

Thus, 

0 2 4 5

1 1 19 4
,    ,    ,    .

60 6 12 15
   = − = = =  

The formula can be written as 
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5 3 5 4 2

4 19 1 1
.

15 12 6 60
n n n n n ny y h F F F F+ + + + +

 
= + + + − 

 
 

After letting 3,n n= −  the corrector formula for the second point of the DBM method can be 

obtained as follows, 

2 2 1 1 3

4 19 1 1
.

15 12 6 60
n n n n n ny y h F F F F+ + + − −

 
= + + + − 

 
 

The corrector formula of DMB: 

1 3 1 1

2 3 1 1 2

1 7 3 37
,

96 48 4 96

1 1 19 4
.

60 6 12 15

n n n n n n

n n n n n n

y y h F F F F

y y h F F F F

+ − − +

+ − − + +

 
= + − + + 

 

 
= + − + + + 

 

          

(11) 

 

The first point predictor formula based on the LMM, can be created using the same procedure as 

follows,  
4 2

3 0

( ) ( ),i i

i i

y t ih h y t ih 
= =

+ = +   

and for the predictor formula's second point, 
3 5 2

3 5 0

( ) ( ) ( ).i i i

i i i

y t ih y t ih h y t ih  
= = =

+ + + = +    

Hence, the formulae for predictor would be identified as follows: 

1 1 2 3

2 1 2 3

53 16 23
,

12 3 12

37 50 19
.

3 3 3

n n n n n

n n n n n

y y h F F F

y y h F F F

+ − − −

+ − − −

 
= + − + 

 

 
+ −


= + 



         (12) 

 

ANALYSIS OF THE METHOD 

 

Using the matrix difference equation defined below, the order of the proposed method could be 

determined, 

,N NY hF =                                                            (13) 

where, 

3 3

2 2

1 1

1 1

2 2

,      .

n n

n n

n n

N N

n n

n n

n n

y F

y F

y F
Y F

y F

y F

y F

− −

− −

− −

+ +

+ +

   
   
   
   

= =   
   
   
   
      

 

The DMB method indicated in the form of a linear multistep method (5) . The equation (6) can be 

represented in its general form as 
2 ( )

0 1 2[ ( ); ] ( ) ( ) ( ) ( ) ,p p

pL y t h C y t C hy t C h y t C h y t = + + ++ +  

whereas, 
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( 1)

0 0

,      0,1,2, ,
! ( 1)!

p pk k
d d

p

d d

d d
C p

p p

 −

= =

= − = 
−

                                    (14) 

The vector columns of the matrices,  and d d   generated by the DMB method.  

 

Definition 1. 

When 0 1 1 10 and 0p p pC C C C C− += == = =  , the LMM takes p as the order of the method. 

 

Thus, the developed method is written in matrix difference form as (13) , 

3 3

2 2

1 1

1 1

2 2

1 7 3 37
0 0

0 0 0 1 1 0 96 48 4 96
.

0 0 0 1 0 1 1 1 19 4
0 0

60 6 12 15

n n

n n

n n

n n

n n

n n

y F

y F

y F
h

y F

y F

y F

− −

− −

− −

+ +

+ +

   
   

    
−    − 

=      
−      −

     
   
      

 

 

Equation (14) is used to identify the order of method, 
  

05

0 0 1 2 3 4 5

0

,
0!

0 0 0 1 1 0 0
    .

0 0 0 1 0 1 0

d

d

d
C       

=

= = + + + + +

−             
= + + + + + =             

−             


 

 
1 05 5

1

0 0

,
1! 0!

0 0 1 1 01
   1 2 3 4 5

0 0 1 0 11!

1 7 37
03

01 96 48 96
        4 4

1 [0 1 190!
0 15

60 6 12

d d

d d

d d
C

 

= =

= −

 −          
= + + + +          

−          

      
−             − + + + + +               −             

 

0
.

0


  

  =  
   
 



 

 
2 15 5

2

0 0

2 2 2 2 2

,
2! 1!

0 0 1 1 01
    1 2 3 4 5

0 0 1 0 12!

7 37
03

01 48 96
           1 2 3 4 54 4

0 1 191!
0 15

6 12

d d

d d

d d
C

 

= =

= −

 −          
= + + + +          

−          

    
−            − + + + +             

          

 

0
.

0

 
=  

  

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3 25 5

3
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 −          
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−          

    
−           − + + + +            

        

 

0
.

0


  
 =  

   
 
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  
 =  
  

 


 

 
5 45 5

5

0 0

5 5 5 5 5

4 4 4 4 4

,
5! 4!

0 0 1 1 01
   1 2 3 4 5

0 0 1 0 15!

7 37
03

01 48 96
        1 2 3 4 54 4

0 1 194!
0 15

6 12

d d

d d

d d
C

 

= =

= −

 −          
= + + + +          

−          

    
−           − + + + +             

          

 

53

1440
.
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180

 
− 

 =  
  
   

 

while 5 0.C   

 1 5

53 13
   .

1440 180

T

pC C+

 
= = − 

 
 

By referring to Definition 1, the DMB method has order four, with 5C being the error constant 

vector. In the similar procedure, by checking the order for the predictor formula in (12),  the 

calculation process revealed that 0 1 2 3 0C C C C= = = = and 4 1 0.pC C +=  This conclude that the 

predictor formula satisfies the order three condition and the error constant is 4

55
   9

24

T

C
 

= − 
 

.  

 

Definition 2. 

The method is considered as consistent if has at least one order method. 

 

Since the DBM method is fourth order method, thus this method can be concluded as consistent. 
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Definition 3. 

If the first characteristics polynomial ( )r have roots such as | | 1jr   and the multiplicity of the 

roots must not exceed two, the method can be considered as zero stable, 

( ) ( )

0

( ) det | | 0
k

j k j

j

r A r −

=

= =  

 

The DMB method could be expressed in matrix form as follows: 

1 10 1

1

2

1 0 0 1
0.

0 1 0 1

n n

M M

n N

y y
A Y A Y

y y

+ −

−

+

      
− − =      

   
=

  
 

The following are the first characteristics polynomials to describe the zero stability: 

0 1
1 0 0 1

( ) det | | det ( 1).
0 1 0 1

r A r A r r r
   

= − = − = −   
   

 

The roots r is | | 1,jr  hence the method is zero stable. 

 

Definition 4. 

It is said that a method is convergent if it is consistent and zero-stable. 

 

DMB has been proven to be converging as well as zero-stable and consistent.  

 

IMPLEMENTATION 

 

This study uses three components for solving the VIDED, i.e., initial value problem, delay solution 

and integral part of the VIDED. The DMB, which is built on predictor-corrector formulae in 

PE(CE) mode, will be used to approximate the two-point solutions simultaneously. Before 

complying with the proposed method, it is necessary to approximate the initial points. 

This study considers the problems of VIDED with constant delay type. The proposed method 

is implemented in C code to approximate the numerical solutions. When determining the delay 

solution, it may require locating the delay arguments. The delay solution, ( )y t −  depends on 

where ( )t −  is located. Since the implementation is constant step size, the location could be 

associated with the previously approximated solution. In addition, the initial function, ( )t

computes ( )y t −  if 0( )t t−  . The approximate solution for VIDED is computed using the 

DMB method for solving the ODE component of the VIDED. 

Since explicitly solving VIDED is impractical, the specific Newton-Cotes rules have been 

associated with dealing with the integral component of this equation. The formula used by the 

Newton-Cotes rule is the composite Simpson rule, which could be expressed in the form of: 
1

1 1

0

1

2 1 2 1 1 2 3 3 2 2 2

0 2 2

( , , ),
3

( , , ) ( , , ) 4 ( , , ) ( , , ) ,
3 6

n
s

n i n i i

i

n
s

n i n i i n n n n n n n
n n

i

h
z K t t y

h h
z K t t y K t t y K t t y K t t y





+

+ +

=

+

+ + + + + + + + +
+ +

=

=

 
= + + + 

 




 

where
s

i are Simpson's rule weight, 1,4,2,4, ,2,4,1.  The undetermined evaluate of 3

2
n

y
+

 is 

estimated via quadratic interpolation. 
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3 1 1 2

2

1 5 15 5
.

16 16 16 16
n n n n

n
y y y y y− + +

+
= − + +  

As mentioned in the algorithm below, the procedure is repeated until the end of interval.  

 

 

ALGORITHM 

Step 1 : Set  

0 0 0 0 0 0,  ,  ,  ,  ( ),  ( , ( )).n

b a
N t a t b h y y t z z t y t

N

−
= = = = =  

Step 2 : When 0,n =  

Calculate ( )y t − and 0 .F  

Step 3 : When 1,  2, 3n = ,  

Calculate 0nt t nh= + , and evaluate the initial values with Runge-Kutta method 

and Simpson's 1/ 3 rule. 

Calculate ( )ny t −  and .nF  

Step 4 : When   3,  5, 7, ...n =  

     For 1,  2i = , 

     Evaluate ,n i nt t ih+ = +  

     Step 5   :  Determine the approximate predictor value for p

n iy + using the derived  

                      predictor formulae of DMB method in ( )PE CE mode. 

                   :  Compute ( )y t − . 

                   :  To approximate the integral part, apply the composite Simpson's 

rule.         

                   :  Calculate p

n iF + . 

        Step 6   :  Calculate the approximate solution, n i

cy + using  

                      the derived corrector formulae of DMB method in ( )PE CE mode. 

                   :  Calculate ( )y t − . 

                   :  To solve the integral, use the composite Simpson's rule. 

                   :  Calculate n i

cF + . 

Step 7 : Go to Step 4 and repeat until N . 

Step 8 : OUTPUT: ( , )t y  

STABILITY REGION 

 

The following test equation is used to obtain the stability region for the constant delay type: 

0
( ) ( ) ( ) . 

t

y t y t y u du   = − +                       (15) 

Assume mh = , where the internal staged are not required to estimate ( )y t − and substitute 

( ) N my t Y −− = . The expression of the DBM method in the matrix form given as, 
2 2

0 0

0 1 1 2 2 0 1 1 2 2

                ,    k N k k N k

k k

N N N N N N

A Y h B F

A Y AY A Y hB F hB F hB F

+ +

= =

+ + + +

=

+ + = + +

 
 

where, 



 

 
Diagonally Multistep Block Method for Solving Volterra Integro-Differential Equation with Delay 

Menemui Matematik Vol. 45(2) 2023                                                    217 

 

3 1 1 3 1 1

1 2 1 2

2 2 2 2

0 1 2 0

,   ,   ,   ,   ,   ,

1
0

0 0 0 1 1 0 96
,   ,   ,   ,   

0 0 0 1 0 1 1
0

60

n n n n n n

N N N N N N

n n n n n n

y y y F F F
Y Y Y F F F

y y y F F F

A A A B B

− − + − − +

+ + + +

− + − +

           
= = = = = =           
           

 
 −     

= = = =       
−       −

  

1 2

7 3 37
0

48 4 96
,   .

1 19 4
0

6 12 15

B

   
−   

= =   
   
      

 

From the test equation (15),  

0

0

( ) ( ) ( ) ,

( ) ,

N

N

t

t

N m

F y t y t y u du

F Y y u du

  

 −

= = − +

= +




 

where the Simpson's quadrature rule will be insert at the integral part, 

2 1
0

1 4 1
( ) .

3 3 3

t

N N Ny u du h Y Y Y− −

 
= + + 

 
  

Then, apply the test equation to the DMB method and obtain the result as follows, 

0 1 1 2 2 0 2 1

1 1 1 1

2 2

1 4 1

3 3 3

1 4 1
                                         

3 3 3

                                         

N N N N m N N N

N m N N N

N m

A Y AY A Y hB Y h Y Y Y

hB Y h Y Y Y

hB Y h

 

 

 

+ + − − −

+ − − +

+ −

  
+ + = + + +  

  

  
+ + + +  

  

+ + 1 2

1 4 1
,

3 3 3
N N NY Y Y+ +

  
+ +  

  

 

Rearranging the equation yields 

2 2 2 2 2 2

2 2 2 1 1 2 1 0 0 1 2

2 2 2

0 1 1 0 2 2 2 1 1 0

1 1 4 1 4 1

3 3 3 3 3 3

4 1 1
0.

3 3 3

N N N

N N N m N m N m

A h B Y A h B h B Y A h B h B h B Y

h B h B Y h B Y hB Y hB Y hB Y

     

     

+ +

− − + − + − −

     
− + − − + − − −     

     

   
+ − − + − − − − =   
   

 

Replacing 1H h= and 2

2H h= , 

2 2 2 2 1 2 1 2 2 1 0 2 0 2 1 2 2

2 0 2 1 1 2 0 2 1 2 2 1 1 1 1 0

1 1 4 1 4 1

3 3 3 3 3 3

4 1 1
0.

3 3 3

N N N

N N N m N m N m

A H B Y A H B H B Y A H B H B H B Y

H B H B Y H B Y H B Y H B Y H B Y

+ +

− − + − + − −

     
− + − − + − − −     

     

   
+ − − + − − − − =   
   

 

The stability polynomial will determine as follows. 

2 1

1 2 2 2 2 1 2 1 2 2

1

0 2 0 2 1 2 2 2 0 2 1

2 0

1 1 4
( , ; ) det 

3 3 3

1 4 1 4 1
                                  

3 3 3 3 3

1
                                  

3

m m

m m

H H r A H B r A H B H B r

A H B H B H B r H B H B r

H B

 + +

−

   
= − + − −   

   

   
+ − − − + − −   
   


+ −


2

1 2 1 1

1

1 0

2 0 ,  = 0mr H B r H B r H B r− 


− − −



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Figure 1 illustrates the stability region of the proposed method by replacing cos sinr i = +  

where 0 2    and 1,  0,  1r = −  in the stability polynomial. Upon replacing cos sinr i = + , 

complex equation will be produced. The real and imaginary part have been solved simultaneously 

and determined the dot points that appeared in the region. 

The shaded region represents the stable region for the proposed method while all the region 

outside the stable region is unstable. The stable region can be identified by identifying the set of 

roots where | | 1r  , otherwise it would be considered unstable. 

 
Figure 1: Stability region of DBM method. 

 

RESULTS AND DISCUSSION 

This manuscript uses the following abbreviations: 

h  : Step size. 

TS : Total steps taken. 

FCN : Function evaluations. 

Time : Execution time taken in seconds 

MAXE : Maximum absolute error. 

RKS : Runge-Kutta method of order four with Simpson’s 1/ 3 rule. 

ABM : Adam-Bashforth-Moulton three step method with composite Simpson’s rule. 

DMB : Diagonally multistep block method with composite Simpson’s rule proposed in  

this study. 
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Several numerical problems are presented to evaluate the efficacy of the proposed approach. 

Problem 1 

Consider Zaidan (2012), 
4

0
( ) 1   ( 1) ,

3

 ( ) 1,    1 0.

tt
y t t u y u du

t t t

 = − + −

= + −  

  

 

Theoretical solution: ( ) 1y t t= + where 0 1.t   

Table 1: Results of computations in solving Problem 1. 

h  Method MAXE FCN TS Time 

110−
 

RKS 8.133056e-03 40 10 0.023282 

ABM 3.316111e-03 27 10 0.023690 
DMB 1.884408e-06 11 7 0.010282 

210−
 

RKS 1.546064e-02 400 100 0.074236 

ABM 4.058577e-04 297 100 0.025358 

DMB 1.875078e-11 101 52 0.014450 

310−
 

RKS 1.654211e-02 4000 1000 0.595076 

ABM 4.155586e-05 2997 1000 0.038147 

DMB 4.440892e-16 1001 502 0.019876 

410−
 

RKS 1.665417e-02 40000 10000 3.673743 

ABM 4.165556e-06 29997 10000 1.056073 

DMB 1.643130e-14 10001 5002 0.539982 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The efficiency curve for Problem 1. 

Problem 2 

Consider Salih et al. (2010), 

2

0

1 1
( ) 1 exp( ) ,

2 2

1 1
 ( ) ,    0.

2 2

t

y t t t ty t t u y u du

t t t

   
 = + + − − + − −   

   

= + −  


 

Theoretical solution:
1

( ) exp( )
2

y t t= − where 
1

0,
2

t
 

  
 

. 
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Table 2: Results of computations in solving Problem 2. 

h  Method MAXE FCN TS Time 

5e-02 

RKS 1.663650e-03 40 10 0.025499 

ABM 5.055619e-04 27 10 0.024292 
DMB 5.716653e-05 11 7 0.010994 

5e-03 

RKS 2.735074e-03 400 100 0.066722 

ABM 5.833119e-05 297 100 0.026718 

DMB 5.540669e-08 101 52 0.016108 

5e-04 

RKS 2.872346e-03 4000 1000 0.572643 

ABM 5.920416e-06 2997 1000 0.154679 

DMB 5.556938e-11 1001 502 0.075953 

5e-05 

RKS 2.886375e-03 40000 10000 8.292226 

ABM 5.929326e-07 29997 10000 12.133309 

DMB 4.807266e-14 10001 5002 6.018065 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The efficiency curve for Problem 2. 

 

 

 

 

 

 

Problem 3 

Consider Salih et al. (2014) 

( )
0

1 1 1
( ) 1 exp( ) ( ) exp( ) ,

2 2 2

1 1
 ( ) exp( ) ,   0,

2 2

t

y t t t ty t t u y u du

t t t

 
 = − + − − + − − 

 

= − −  


 

Theoretical solution: 
1

( )
2

y t t= +  where 
1

0,
2

t
 

  
 

. 
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Table 3: Results of computations in solving Problem 3. 

 

h  Method MAXE FCN TS Time 

5e-02 

RKS 2.747701e-03 40 10 0.025013 

ABM 6.616172e-04 27 10 0.025648 
DMB 2.952084e-05 11 7 0.012541 

5e-03 

RKS 4.261864e-03 400 100 0.068041 

ABM 7.901441e-05 297 100 0.026290 

DMB 2.853821e-08 101 52 0.017451 

5e-04 

RKS 4.445272e-03 4000 1000 0.572060 

ABM 8.028347e-06 2997 1000 0.158862 

DMB 2.844180e-11 1001 502 0.084439 

5e-05 

RKS 4.463936e-03 40000 10000 9.917162 

ABM 8.041090e-07 29997 10000 12.646411 

DMB 3.663736e-14 10001 5002 6.084151 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The efficiency curve for Problem 3. 

 

Table 1 – 3 represent the computational performances of DMB, ABM and RKS in terms of 

accuracy, total function calls, total steps taken and execution time. It can be observed that the DMB 

achieved better performance compared to ABM and RKS. The proposed method, DMB, is 

inexpensive compared to the ABM and RKS in terms of total function evaluations. Therefore, the 

lesser function evaluations gave an advantage in terms of timing for DMB. The maximum error is 

lesser in DMB compared to ABM and RKS. The efficiency graphs of the numerical results can be 

referred in Figure 2 – 4. 

 

CONCLUSION 

 

The numerical results revealed that the advantage of DMB in obtaining better accuracy, faster in 

terms of the execution time, decreases the total number of function evaluations, and demonstrates 

better performance than the ABM and RKS. Therefore, the proposed method is recommended as 

an alternative well-performing iterative solver. 

 

 



 

Nur Auni Baharum, Zanariah Abdul Majid, Norazak Senu and Haliza Rosali 

Menemui Matematik Vol. 45(2) 2023                                                    222 

 

 

 

Acknowledgement 

This research was funded by Ministry of Higher Education Malaysia under Fundamental Research 

Grant (FRGS/1/2020/STG06/UPM/01/1). 

 

 

REFERENCES 

 

Ayad, A., (2001), The numerical solution of first order delay integro-differential equations by 

spline functions, International Journal of Computer Mathematics, 77(1): 125-134. 

Ali, H. A., (2009), Expansion method for solving linear delay integro-differential equation using 

B-spline functions, Engineering and Technology Journal, 27(10): 1651-1661. 

Ali, N., Zaman, G., and Jung, I. H., (2020), Stability analysis of delay integro-differential equations 

of HIV-1 infection model, Georgian Mathematical Journal, 27(3): 331-340. 

Baharum, N. A., Majid, Z. A., & Senu, N. (2022). Boole’s strategy in multistep block method for 

Volterra integro-differential equation. Malaysian Journal of Mathematical Sciences, 16(2), 

237-256. 

Baharum, N. A., Majid, Z. A., Senu, N., & Rosali, H. (2022). Numerical approach for delay 

Volterra integro-differential equation. Sains Malaysiana, 51(12), 4125-4144. 

Brunner, H., and Zhang, W., (1999), Primary discontinuities in solutions for delay integro-

differential equations, Methods and Applications of Analysis, 6(4): 525-534. 

Driver, R. D. (1977), Ordinary and Delay Differential Equation, New York: Springer-Verlag. 

Ghomanjani, F., Farahi, M. H., and Pariz, N., (2017), A new approach for numerical solution of a 

linear system with distributed delays, Volterra delay-integro-differential equations and 

nonlinear Volterra-Fredholm integral equations by Bezier curves, Computational and 

Applied Mathematics, 36(3): 1349-1365. 

Ismail, N. I. N., Majid, Z. A., & Senu, N. (2020). Solving neutral delay differential equation of 

pantograph type. Malaysian Journal of Mathematical Sciences (ICoAIMS2019), 14(S), 

107-121. 
Janodi, M. R., Majid, Z. A., Ismail, F., & Senu, N. (2020). Numerical solution of Volterra integro-

differential equations by hybrid block with quadrature rules method. Malaysian Journal of 

Mathematical Sciences, 14(2), 191-208. 
Lambert, J. D. (1973), Computational Methods in Ordinary Differential Equations, New York: 

John Wiley and Sons. 

Mahmoudi, M., Ghovatmand, M., and Noori Skandari, M. H., (2020), A novel numerical method 

and its convergence for nonlinear delay Volterra integrodifferential equations, 

Mathematical Methods in the Applied Sciences, 43(5): 2357-2368. 

Moghimi, M. B., and Borhanifar, A. (2016), Solving a class of nonlinear delay integrodifferential 

equations by using differential transformation method, Applied and Computational 

Mathematics, 5(3): 142-149. 

Rihan, F. A., Doha, E. H., Hassan, M. I., and Kamel, N. M., (2009), Numerical treatments for 

Volterra delay integro-differential equations, Computational Methods in Applied 

Mathematics, 9(3): 292-318. 

Salih, R. K., Hassan, I. H., and Kadhim, A. J., (2014), An approximated solutions for 
thn  order 

linear delay integro-differential equations of convolution type using B-spline functions and 

Weddle Equations, Baghdad Science Journal, 11(1). 

Salih, R. K., Kadhim, A. J., and Al-Heety, F. A., (2010), B-spline functions for solving 
thn order 

linear delay integro-differential equations of convolution type, Engineering and 

Technology Journal, 28(23): 6801-6813. 



 

 
Diagonally Multistep Block Method for Solving Volterra Integro-Differential Equation with Delay 

Menemui Matematik Vol. 45(2) 2023                                                    223 

 

Verdugo, A. (2018), Linear analysis of an integro-differential delay equation model, International 

Journal of Differential Equations, 2018. 

Yüzbaşı, Ş., (2014), Laguerre approach for solving pantograph type Volterra integro-differential 

equations, Applied Mathematics and Computational, 232: 1183-1199. 

Yüzbaşı, Ş., and Karaçayır, M., (2018), A numerical approach for solving high-order linear delay 

Volterra inetgro-differential equations, International Journal of Computational Methods, 

15(05): 1850042. 

Zaidan, L. I., (2012), Solving linear delay Volterra integro-differential equations by using Galerkin 

method with Bernstien polynomial, J. Babylon Appl. Sci, 20: 1305-1313. 


