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ABSTRACT 

In this paper, a one-dimensional heat equation with Dirichlet boundary condition is solved 

using the method of lines where the discretization is made with the help of higher-order non-

central finite difference approximation method. During imposing higher-order approximation 

method, the specification of the values of the field variable at some exterior points outside the 

domain are required which are made using proper assumption. It is found that the attained 

results agree well with the exact solution on the basis of the root mean square errors.   

 

Keywords: Heat equation, Boundary condition, Method of lines, Higher-order finite 
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INTRODUCTION 

 

Partial differential equations (PDEs) are effective tools for explaining natural phenomena. As most of 

the PDEs do not have an analytical solution, numerical solutions with more efficient and faster 

techniques are therefore highly required. The numerical solution of PDEs has got good popularity to 

the research community after John von Neumann from mid-1940 (Tadmor, 2012). Nowadays, several 

tools such as Fourier transform, Laplace transform, finite difference method (FDM), finite element 

method, finite volume method, first recursive marching method, boundary matching method, homotopy 

perturbation method, method of lines (MOLs) have been developed in solving PDEs both analytically 

and numerically. In recent decades, the MOLs, advocated in the past, has been made great attraction to 

the research community for its simplicity in computation (Paul and Ali, 2019; Bakodah, 2011; Hicks 

and Wei,  1967; Paul et al., 2014; Pregla, 1987; Pregla and Pascher, 1989; Sadiku and Obiozor, 2000; 

Schiesser and Griffiths, 2009). It is a semi-analytic technique that transforms PDEs to a set of ordinary 

differential equations (ODEs) by discretizing all derivatives leaving one continuous. Normally, the time 

derivative, if exists, is kept continuous (Bakodah, 2011; Paul et al., 2014; Pregla, 1987; Sadiku and 

Obiozor, 2000; Schiesser and Griffiths, 2009; Paul et al., 2018).  Sometimes, it is regarded as a special 

type of FDM with more flexibility in accuracy, computational cost, and stability (Sadiku and Obiozor, 

2000).  

Generally, it is seen in several studies, such as Pregla (1987), Pregla and Pascher (1989), Sadiku 

(2000), Paul et al. (2014, 2018), second-order 3-point forward, backward, and central finite difference 

approximations (FDAs) are being used in making discretization of spatial variables during computation 

with MOLs, but higher-order FDAs, such as 5-point, 7-point, 9-point, 11-point forward, backward and 

central differences possess local truncation error of higher-order resulting from a higher step size 

(Bakodah, 2011; Chapra and Canale, 2015; Paul and Ali, 2019; Ahmed and Yaacob, 2013). Thus, a 
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smaller step size with a higher-order FDA method (FDAM) may return a more accurate result. On the 

other hand, according to Hicks (1967), 5-point non-central FDA with MOLs makes the computation 

much faster and more efficient. So, it is our interest to solve a very simple one-dimensional diffusion 

equation, viz. one-dimensional heat equation is solved using the higher-order backward finite difference 

approximation MOLs in coordination with some sophisticated ODE solvers, which in turn will help to 

solve other PDEs. But the problem of implementing the higher-order approximation method is that the 

speciation of the values of the field variables at some points outside of the boundary are to be supplied 

(Paul and Ali, 2019). The problem has been solved in Hicks (1967) which is applicable only for 

homogeneous type boundary with a higher grid resolution (Paul and Ali, 2019). However, the 

assumption that outside the domain, some neighboring points will preserve the same temperature as that 

of the respective boundary does (Paul and Ali, 2019). The assumption works so easily in homogeneous 

and non-homogeneous boundary conditions (BCs) as well as every type of BC (Paul and Ali, 2019). In 

the study due to Paul and Ali (2019), it is seen that higher-order central difference MOLs can retain 

more accurate results for non-homogeneous BCs over the assumption made in Hicks (1967). The 

intention of the study is, therefore, to see the computation efficiency of higher-order finite difference 

MOLs in addition to the assumption made by Paul and Ali (2019). The obtained results using the 

technique adopted in this study, as we will see later, is found to be fairly reasonable in comparison with 

those of some previous studies. 

The rest of the paper is organized as follows, “Materials and Method” section and its subsections 

deal with the materials and methodology applied for making computations. Obtained results and their 

discussion are presented in “Results and Discussion” section, and finally, the conclusion is presented in 

“Conclusion”. 
 

MATERIALS AND METHOD 

 

Problem statement 

One-dimensional heat equation with auxiliary conditions, presented in Ahmad and Yaacob (2013), can 

be written in the following form: 

 
𝜕𝑢

𝜕𝑡
= 𝛼2 𝜕2𝑢

𝜕𝑥2 ; 0 < 𝑥 < 1; 𝑡 > 0,          (1) 

which is subject to the initial condition 

𝑢(𝑥, 𝑡 = 0) = 70𝑜𝐶,                    (2) 

and BCs  

𝑢(𝑥 = 0, 𝑡) = 50𝑜𝐶                     (3) 

𝑢(𝑥 = 1, 𝑡) = 20𝑜𝐶.                     (4) 

The above problem can be stated as a rod of unit length is heated with temperature 70o𝐶, and 

temperatures 50o𝐶 and 20o𝐶 are provided at both the boundaries where the rod is covered by an 

insulator. In this situation, one needs to investigate the temperature profile in the rod. Here 𝛼 represents 

the diffusivity of the substance of the rod. The state variable 𝑢(𝑥, 𝑡) stands for representing the 

temperature distribution of the rod at point 𝑥 over time  𝑡. 

 
 

Discretization of the model equation 

It is stated that the interest of this study is to solve a one-dimensional heat equation with higher-order 

non-central difference MOLs, where the discretization of the spatial variables is made using the 5-point 

backward FDAM. The adopted approximation of the spatial derivative leads to 

 

 
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
≈ 𝑎1𝑢(𝑥 − 3ℎ, 𝑡) + 𝑎2𝑢(𝑥 − 2ℎ, 𝑡) + 𝑎3𝑢(𝑥 − ℎ, 𝑡) + 𝑎4𝑢(𝑥, 𝑡) + 𝑎5𝑢(𝑥 + ℎ, 𝑡),    (5) 

 

where 𝑢(𝑥, 𝑡) is a state variable that depends on 𝑥 and 𝑡, ℎ indicates spatial step size and 𝑎𝑖 (𝑖 =
1, 2, 3, … 5) are unknown coefficients to be determined. To compute the values of the unknown 
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coefficients, we have solved a system of linear equations obtained by equating both sides of Eq. (5) 

after expanding the terms using Taylor’s series at the right side of that equation. It yields 𝑎1 = −
1

12ℎ2
, 

𝑎2 =
4

12ℎ2, 𝑎3 =
6

12ℎ2, 𝑎4 = −
20

12ℎ2, and 𝑎5 =
11

12ℎ2. It is worth noting here that we have neglected fifth 

or higher-order terms during Taylor series expansion and the scheme has the truncation error of fourth-

order. Thus, Eq. (5), by the virtue of the values of the unknown coefficients, can be put in the following 

form: 
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
≈

1

12ℎ2
(−𝑢(𝑥 − 3ℎ, 𝑡) + 4𝑢(𝑥 − 2ℎ, 𝑡) + 6𝑢(𝑥 − ℎ, 𝑡) − 20𝑢(𝑥, 𝑡) +

11𝑢(𝑥 + ℎ, 𝑡) + 𝑂(ℎ4).                                                                                         (6)  

                                                                                     

The finite difference approach used in Eq. (6) is the same as that used in the study of Hicks (1967) to 

discretize the second-order spatial derivative.  This leads to the following system of ODEs: 

 

             (
𝑑𝑢

𝑑𝑡
)

𝑖
≈

1

12ℎ2
(−𝑢𝑖−3 + 4𝑢𝑖−2 + 6𝑢𝑖−1 − 20𝑢𝑖 + 11𝑢𝑖+1),                          (7) 

 

where 𝑢𝑖 = 𝑢(𝑥𝑖, 𝑡), 𝑖 = 1, 2, 3, . . . , 𝑛, represent the values of the field variables standing at 𝑥 = 𝑥𝑖, i.e., 

at 𝑥𝑖 = (𝑖 − 1)ℎ. Thus, Eq. (1) is converted into a set of ODEs specified by Eq. (7) with ICs 𝑢𝑖,0 =
70𝑜𝐶. Thus, the BCs specified by Eqs. (3)-(4) can be stated as  𝑢0,𝑗 = 50𝑜𝐶 and 𝑢𝑛,𝑗 = 20𝑜𝐶.  

 

Integration procedure 

The system of ODEs with initial valued specified by Eq. (7) can be solved with the help of given BCs 

using any sophisticated ODE solvers, such as classical Runge-Kutta (RK4) method, third-order (stage) 

arithmetic mean Runge-Kutta (RKAM3) method, Runge-Kutta (4,5) (RK45) method, and Runge-Kutta 

(2,3) (RK23) method. It is pertinent to mention here that the solution can be made so easily at every 

grid point of the spatial domain except the first two interior points along the left boundary. For getting 

solutions at those points, it is required to know the values at these two exterior points. For ensuring the 

values, an assumption is made that every neighboring point outside the boundaries preserves the same 

temperature as that of the respective boundary with considerably smaller steps.  

As in the study due to Ahmad and Yaacob (2013), for four inner lines, the system of ODEs characterized 

by Eq. (7) considering the proposed BCs can be written as 

 

𝑈
.

= 𝐴𝑈,            (8) 

 𝐴 =
25

12
(

−20 11 0 0
6 −20 11 0
4 6 −20 11

−1 4 6 −20

),  

and 𝑈 = (𝑢1 𝑢2 𝑢3 𝑢4)𝑇. 

The corresponding eigenvalues (computed using MATLAB R2021a) are found to be 𝜆1 = −9.6019, 

𝜆2 = −34.3525, 𝜆3 = −61.3561 + 8.3141𝑖 and 𝜆4 = −61.3561 − 8.3141𝑖. The eigenvalues show that they have 

negative real parts, so the system characterized by Eq. (8) returns a stable solution with the treated BCs. 

Again, the stiffness ratio is computed to be 𝑠 =
𝑚𝑎𝑥|𝑅𝑒(𝜆𝑖)|

𝑚𝑖𝑛|𝑅𝑒(𝜆𝑖)|
= 6.39.  So, the system of equations given by Eq. 

(8) is mildly stiff (Ashino et al., 2000). 

 

RESULTS AND DISCUSSION 

 

In this study, a one-dimensional heat equation is solved using a higher-order backward finite difference 

MOLs along with some suitable ODE solvers, such as the RK4, RKAM3, RK45, RK23 methods 

considering spatial step size of ℎ = 0.2 and thermal diffusivity 𝛼2 = 0.1. It is worth noting here that 

the obatained results using the solvers RK4 and RKAM3 are presented here due to space consumption 

and the both solvers shows relatively lower accuracy over RK45 and RK23. The computed numerical 
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results obtained with both central and non-central FDA MOLs in coordination with only RK45 and 

RK23 are presented in Figs. 1-4, respectively, as these two solvers show better accuracy over the other 

mentioned technique for both central and non-central cases. Figures 1-2 show the 3-dimensional (3D) 

surface profile of the computed results using RK45 and RK23, respectively. The figures show that for 

both the time integrators, instabilities in initial time steps are found to be observed and they disappear 

soon with the evolution of time (see Figs. 1-2). In both cases (RK45 and RK23), the non-central 

difference approximation method was found to overcome the issue faster. The MOLs with the central 

difference in addition to the RK23 method takes a longer time to get stable results.  

 

(a) 

 

(b) 

 
 

Figure 1: The 3D plots for the results obtained by using the RK45 method; (a) in respect of non-central 

FDAM; (b) in respect of central FDAM adopted in Paul and Ali (2019). 

 

 

(a) 

 

(b) 

 
 

Figure 2: The 3D plots for the results attained by the RK23 method; (a) in respect of non-central 

FDAM; (b) in respect of central FDAM adopted in Paul and Ali (2019). 

 

The obtained numerical results at time 𝑡 = 1 are also compared with the analytic solution and are 

illustrated in Figs. 3-4, whereas the analytic results were computed by using advanced analytical 

mathematical software Maple 17. It is found that the results agree fairly well with the analytic solution.  

It can also be inferred from Figs. 3 and 4 that the results obtained with higher-order non-central 

FDAM retain a more accurate result relative to the use of central FDAM. It can also be seen from the 

figures that the results nearer to the right boundary is more accurate relative to the results nearer to the 

left boundary (see Figs. 3-4 and Table 1). The reason behind this may be the use of a higher-order non-

central backward FDAM. 
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(a) 

 

(b) 

 

Figure 3: The graphical outputs of the results obtained by the RK45 method; (a) in respect of non-

central FDAM; (b) in respect of central FDAM adopted in Paul and Ali (2019). 

 
(a) 

 

(b) 

 

 

Figure 4: The graphical illustration of the outputs obtained by the RK23; (a) in respect of non-central 

FDAM; (b) in respect of central FDAM adopted in Paul and Ali (2019). 

 

The relative errors for both cases (central and non-central finite difference method) are calculated 

and the results for nine grid points are presented in Table 1. From the table based on the relative errors, 

it is found that the results due to the use of the non-central backward FDAM are in good agreement 

over the central FDAM for both the ODE solvers, RK23 and RK45. It can also be observed from Table 

1 that the RK23 returns more accurate results over the RK45 for the non-central FDAM. On the other 

hand, the RK45 works well when the discretization is made using central difference approximation 

method. This may be the result of the moderately stiff computing ability of RK23, which is seen 

previously that the obtained system of ODEs is mildly stiff with a stiffness ratio of about 6.  

 

Table 1: Analytic results (obtained by using analytic mathematical software MAPLE 17) at different 

grid points and relative errors. 

Grid points 
Analytic 

result 

Relative errors 

Non-central difference 

method 

Central difference 

method adopted in 

Paul and Ali (2019) 

RK45 RK23 RK45 RK23 

10.0=x  56.3266 0.0049 0.0049 0.0080 0.0080 

20.0=x  61.6612 0.0150 0.0150 0.0069 0.0070 

30.0=x  65.3733 0.0084 0.0084 0.0054 0.0054 

40.0=x  67.2353 0.0084 0.0084 0.0047 0.0047 
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50.0=x  67.1142 0.0047 0.0047 0.0056 0.0056 

60.0=x  64.5904 0.0024 0.0024 0.0085 0.0084 

70.0=x  58.8812  0.0005 0.0005 0.0135 0.0135 

80.0=x  49.2675 0.0021 0.0020 0.0212 0.0213 

90.0=x  35.8409 0.0019 0.0017 0.0313 0.0314 

 

We have estimated RMSE (Root Mean Square Error) values for testing the performances of the 

solvers RK45 and RK23 based on the RMSE values for both the cases of interest when discretizing the 

spatial derivatives of our equation of interest using the central and non-central FDAMs. The RMSE 

values are presented in Table 2. The results show that the RK23 works well when discretization is made 

by using the higher-order non-central FDAM while the RK45 shows better performance when the 

discretization is made using the higher-order central finite difference method. It is pertinent to note here 

that the used time integrator, RK23, is a four-stage Bogacki Shampine embedded system of order 2 and 

3 with error control, whereas the RK45 is an embedded method of orders 4 and 5 with error control 

introduced by Dormand and Prince (Ashino et al., 2000). Thus, the RK23 method with the 5-point 

backward scheme presented in this study may have a local truncation error of order 𝑂(∆𝑡2) + 𝑂(ℎ4) or 

𝑂(∆𝑡3) + 𝑂(ℎ4) (∆𝑡 = step size in time) for any grid points. Similarly, for the RK45 technique, we 

may obtain local truncation error of order 𝑂(∆𝑡4) + 𝑂(ℎ4) or 𝑂(∆𝑡5) + 𝑂(ℎ4) for every grid point. 

But the RK23 is capable of handling moderate stiff differential equations that may invite much changes 

in RMSE values. 

The computational costs are also computed (in second) for both solvers in both cases and are 

displayed in Table 3. It can be observed from Table 3 that the RK23 method works faster in both cases 

and it works better for using a higher-order non-central finite difference method as stated in the study 

due to Hicks (1967). This is the reason for computing numbers of functions for a single step. In RK23, 

five functions are computed while in RK45, 7 functions are computed in every single step. It is to be 

noted here that the computed numerical results due to RK4 are relatively better on the basis of relative 

errors and RMSE value (0.1662) with a very small step size (with steps>900) but have a high 

computational cost. On the other hand, the number of steps is being used for the RK45 and RK23 

methods is only 25 for displaying the computed results. 

 

Table 2: The RMSE values obtained by using different RK solvers for both central and non-central 

FDAMs 

Solvers Non-central difference  Central difference 

adopted in Paul 

and Ali (2019) 

RK45 0.3912 0.6059 

RK23 0.3910 0.6069 
 

Table 3: Computational cost for both central and non-central differences (in second). 

Solvers Non-central difference  Central difference 

adopted in Paul 

and Ali (2019) 

RK45 0.640240 0.613762 

RK23 0.541899 0.606201 
 

From the above discussion, it may be said that the MOLs along with the RK23 solver works well when 

the discretization is made using a higher-order (5-point) non-central (backward) FDAM in coordination 

with sink type assumptions for exterior points. 

However, the absolute stability regions (ASR) for the two methods, namely RK23 and RK45 are 

also presented in Fig. 5 (Ashino et al., 2000; Butcher, 2016). It is known that the ASR helps to choose 

step size for with the method will converge. From Fig. 5, one can make understand easily that the ASR 



Gour Chandra Paul and  Md. Emran Ali 

Menemui Matematik Vol. 45(2) 2023 

 

 obtained from RK45 (actually RK45 in MATLAB suit) have more flexibility on step size. With a large 

step size, the method returns a good result and if due to the large step size, errors are generated, it is 

automatically controlled by comparing higher-order methods (Ashino et al., 2000). On the other hand, 

BoShaRK23 has a relatively smaller ASR, but it can return a relatively good solution for moderately 

stiff differential equations. It is also to be noted here that our computed ASR for RK45 agrees well with 

the result presented in the study due to Ashino et al. (2000). 

 

 

  
Figure 5: The absolute stability region in the complex 𝑥𝑦-plane of two solvers RK23, and RK45. 

 

 

CONCLUSION 

 

In this study, a one-dimensional heat equation is solved using a higher-order backward finite difference 

MOLs along with some suitable ODE tools considering a new assumption in the case of exterior points. 

The computed numerical results obtained are fairly reasonable on the basis of the RMSE values and the 

computed relative errors. The higher-order backward finite difference MOLs can retain a better result 

over the higher-order central finite difference MOLs in solving the heat equation and the use of RK23 

make the results more finer. This study may help the researchers in getting a more accurate solution of 

the parabolic equation and thus, the approach can be a suitable alternative in such computation. 
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