

Menemui Matematik (Discovering Mathematics)

Vol. 45, No. 2: 177 - 184 (2023)

Uncover Weak Keys of RSADemo2 Software Using Batch Greatest Common

Divisor Algorithm

Luqman Hakeem Zainul Hisham1, Muhammad Asyraf Asbullah2

and Saidu Isah Abubakar3

1Department of Mathematics and Statistics, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
2Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
3Department of Mathematics, Sokoto State University, Airport Road Sokoto, PMB 2134, Nigeria

1200581@student.upm.edu.my, 2ma_asyraf@upm.edu.my, 3siabubakar82@gmail.com

ABSTRACT
RSA encryption is crucial for protecting our privacy and allowing us to transfer information over the

internet without being concerned that unauthorised people will see it. RSA encryption can be deemed

insecure in a variety of ways. This project focuses on factoring RSA moduli to detect weak RSA keys

generated by an RSA simulator software called RSADemo2 (v2.1) (Darby, 2016). The approach used

to factor RSA moduli is collecting samples from RSADemo2 and then using the batch-greatest common

divisor (gcd) method. In addition, we will be using Maple software to simulate the batch-gcd algorithm

on the collected samples.

Keywords: encryption, RSADemo2, greatest common divisor, cryptography weak keys

INTRODUCTION

Cryptography is a centuries-old science that involves writing secret codes. Some experts believe

cryptography arose spontaneously following the invention of writing, with applications ranging

from diplomatic messages to wartime battle plans. New types of cryptography emerged shortly

following the widespread development of computer communications. Nowadays, cryptography is

necessary when communicating over any untrustworthy medium, especially when discussing our

privacy, such as our work and personal details like our name and address.

Public Key Cryptography (PKC) is the most important new cryptographic advancement

discovered by Diffie and Hellman (1976). It is called asymmetric encryption because a two-key

cryptosystem is used in which two people can communicate securely across an insecure channel

without sharing the secret key. PKC relies on one-way functions, which are simple but difficult to

compute for their inverse. The crucial point is that it does not matter which keys are used first, but

both are needed for the process to work (Diffie and Hellman, 2022). RSA is a cryptographic

algorithm named after the initials of three creators: Rivest, Shamir, and Adleman (Rivest et al.,

1978). RSA was inspired by the earlier published works of Diffie and Hellman (1976), who

described the idea of such an algorithm but never fully developed it. RSA implemented two crucial

ideas: public key encryption and digital signature, and later, such cryptographic algorithm was

made to replace the less secure National Bureau of Standards (NBS) algorithm (Milanov, 2009).

Heninger et al. (2012) conducted the largest network survey analyzing the Internet’s public

keys to detect RSA weak keys of Transport Layer Security (TLS) and Secure Shell (SSH) servers.

They proved that weak keys are surprisingly widespread. Even more worryingly, these researchers

extracted RSA private keys for 0.50% of TLS hosts, 0.03% of SSH hosts, and 1.03% of SSH hosts,

thanks to nontrivial common factors between their public keys. The study’s first part is the most

thorough Internet-wide analysis of two of the most significant cryptographic protocols, TLS and

SSH. They gathered 6.2 million distinct SSH host keys from 10.2 million hosts and 5.8 million

different TLS certificates from 12.8 million hosts. At least 5.57% of TLS hosts and 9.60% of SSH

mailto:1200581@student.upm.edu.my
mailto:2ma_asyraf@upm.edu.my
mailto:3siabubakar82@gmail.com

Uncover Weak Keys of RSADemo2 Software Using Batch Greatest Common Divisor Algorithm

Menemui Matematik Vol. 45(2) 2023 178

hosts appear vulnerable because they share the same keys. The study was able to compute the

private keys for 64,000 (0.50%) TLS hosts and 108,000 (1.06%) SSH hosts using only the scan

data they collected by exploiting known flaws in the RSA cryptosystem. Finding the largest

common divisor makes it simple to compute the private keys of distinct moduli that share exactly

one prime factor in the case of RSA, although the public keys appear distinct.

Lenstra et al. (2012) performed a sanity check on the public keys they had gathered online.

The main objective was to test the validity of the presumption that distinct random choices are

made each time keys are created. Most public keys work as intended, but two out of every one

thousand collected RSA moduli provide no security. In this paper, they contribute extra features

in such a way as to improve their qualities from previous studies. These issues are usually taken

for granted, focusing on actual public keys' randomness and computational characteristics. The

fact that 12720 of the 4.7 million individual 1024-bit RSA moduli they initially gathered share a

single large prime factor is very concerning. It is even worse because it is a trend that has been

around for a while. From the current 11.4 million RSA moduli collection, 26965 are vulnerable,

including ten 2048-bit ones. When used illegally, it may weaken the level of security that the public

key infrastructure is designed to provide.

In 2003, Taiwan launched an e-government effort to offer all residents access to national

public-key infrastructure. The cards create RSA keys, which are then digitally certified by a

government agency and stored in a Citizen Digital Certificates database online. Unfortunately,

some of these smart cards’ random-number generators have produced legitimate certificates with

keys that offer zero security because of serious design flaws. The method used to generate the

secret keys for 184 different certificates is described in Bernstein et al. (2013). The simple gcd

attack reveals that 103 keys factor into 119 primes on the whole Citizen Digital Certificates

database. First, there is enough information in the shared primes to create a model of the prime

generation procedure. Extrapolation from these prime factors is the next step: They propose a

specific failure model in randomness generation compatible with 18 common divisors. The same

model can produce 164 primes and verify each prime via batch trial division factors additional

keys. Among the 184 keys are 103 with shared primes that can be effectively factored using a

batch-gcd computation. The same kind of computation was used by Heninger and Shacham (2009)

to factor tens of thousands of cryptographic keys on the Internet.

Our Contribution. Generating a lot of RSA keys can cause several keys to share the same

prime factors whenever insufficient randomness happens. Factoring two RSA moduli that share

the same prime factor can be very easy using the greatest common divisor (gcd), which means

anyone with knowledge can factor those numbers, not just the owners. Therefore, data leak occurs

because some servers or websites share different public keys but somehow share the same prime

factor, which can be used to steal information or impersonate others, which are very dangerous.

To detect weak RSA keys in a large set of moduli, we need to compute them using the gcd

algorithm, and it will take much time and computing power depending on the size and length of

the keys. In this work, we collect samples of RSA public keys generated via an RSA simulator

application called RSADemo2 (v2.1) by Darby (2016). Then simulate the batch-gcd algorithm

using Maple software on the collected samples.

METHODOLOGY

This section will discuss the batch’s greatest common divisor method, introduced by Heninger et

al. (2012), to factorize large moduli so that weak RSA keys can be detected. Firstly, let

1 2, ,..., mN N N be distinct RSA moduli. We want to find all moduli in this set that have a non-trivial

factor in common with other moduli. Quasi-linear gcd computations are used in batch-gcd

Luqman Hakeem Zainul Hisham, Muhammad Asyraf Asbullah and Saidu Isah Abubakar

Menemui Matematik Vol. 45(2) 2023 179

algorithms. This gcd computation is slow for small numbers but becomes more efficient as the

numbers increase. According to Heninger et al. (2012), the following lemma is used:

Lemma 1 (Heninger et al. (2012)). Let 1 2, ,..., mN N N be distinct RSA moduli. Then

()2

1 2 1

1 2 1

1

... mod
gcd(, ...) gcd , .

m

m

N N N N
N N N N

N

   
   =
 
 

This approach aims to efficiently compute all gcd by doing a single massive multiplication. Before

using this lemma, a product tree is used to compute the product of all moduli. The only way we

can accomplish this is by computing all pairwise gcd(,)i jN N where .i j After that, we compute

the product of all numbers,

1 2 ... mN N N N=    (1)

Then, to see if it shares any factors with others, see whether,

2gcd(,)i iN N N (2)

First, we compute the product of all moduli, and after that, we will compute the gcd of (1) with all
2

iN squared. We follow Kraft and Washington (2018) for most of the part related to mathematical

correctness of computing gcd. Next, the batch-gcd is divided into three phases as follows.

Phase 1: Using product tree to compute product N efficiently.

The important point to remember is that while multiplication is associative, its execution time is

not. It means that computing the product of

1 2 3 4 1()()...()m mN N N N N N−   (3)

is faster than computing it from left to right, i.e.

()1 2 3 4 1(((()))...)m mN N N N N N−     (4)

In general, computing a product of n-bit numbers can be completed reasonably by multiplying

balanced inputs (i.e., nearly equal sizes) whenever possible. It encourages the computation to be

organized in a tree, which is commonly called the product tree.

Phase 2: Using a remainder tree to compute
2(mod)iN N efficiently.

After we compute the huge product of ,N we will then compute
2gcd(,)iN N for all 'i s, however,

if we do not perform it properly, it will be time-consuming. First, we observe that,

()2 2 2gcd(,) gcd , (mod)i i iN N N N N= (5)

Rather than computing m gcd’s directly, where one number is huge, we conduct m modular

reductions first, then m instances of 2n− bit gcd’s. We will be using the following simple

Uncover Weak Keys of RSADemo2 Software Using Batch Greatest Common Divisor Algorithm

Menemui Matematik Vol. 45(2) 2023 180

equation; ()(mod) (mod) (mod).N a N ab a= Again, we will be using the product tree computed in

Phase 1 but this time it is different because we will be computing from top-to-bottom. At the top

level, we compute
2(mod).N N Then the next one, we compute

2

1 2

2

(mod(...))mN N N N   (6)

and

 2

1 2
2 2

(mod(...)).m m mN N N N
+ +
   (7)

We use the results from the previous level at each following level, and at every level down the tree,

the length of numbers is halved. This method is called the remainder tree. For a clearer picture, an

illustration by Mironov (2012) is used as an example of a product tree (Figure 1) and the remainder

tree (Figure 2) with eight numbers, respectively.

Figure 1: Product tree

Figure 2: Remainder tree

Phase 3: Computing gcd after the remainder tree is constructed.

According to Cloostermans (2012), after we have obtained information from the remainder tree,

we may compute
2 2gcd(, (mod))i i iG N N N= and for most 'i s, i iG N= which means that iN is co-

prime with all other moduli in the dataset. In some cases, we may factor iN right away if

2

i i iN G N  and, for some case gcd ,i
i

i

G
N

N

 
 
 

 is non-trivial. It means that such computation will

cover 'iN s whose prime factors are shared with another modulus.

Luqman Hakeem Zainul Hisham, Muhammad Asyraf Asbullah and Saidu Isah Abubakar

Menemui Matematik Vol. 45(2) 2023 181

RESULTS AND DISCUSSION

In this section, we will apply the method discussed in the previous section to demonstrate how it

works. We will use the RSADemo2 (v2.1) simulator to randomly collect samples of RSA public

keys generated and simulate the batch-gcd algorithm using Maple software. Figure 3 is the image

of the application, and using this simulator, we can choose between five key lengths (in bits):

16, 64, 256, 512, and 1024.

Figure 2: RSADemo2 (v2.1) (Gary Darby, DelphiForFun.org)

Experiment with a Small Sample

We will first use small samples to determine whether we can factor our RSA public keys using the

batch gcd algorithm. Table 1 shows eight 16-bit RSA keys that we have collected from

RSADemo2 (v2.1).

i 1 2 3 4 5 6 7 8

iN 567109 108601 213013 713809 110893 254477 239011 131981

Table 1. Sampe of RSA moduli generated by RSADemo2 (v2.1)

After gathering samples, we will begin the first phase, which involves utilising a product tree to

calculate the product of all moduli. Shown below in Figure 3 is the example of using the product

tree to compute the product of all moduli.

Uncover Weak Keys of RSADemo2 Software Using Batch Greatest Common Divisor Algorithm

Menemui Matematik Vol. 45(2) 2023 182

Figure 3: Product tree of sample from Table 1.

Figure 4: Remainder tree of sample from Table 1.

i 1 2 3 4 5 6 7 8

()2mod iN N 319400325672 2071889878 2072403477 95317771006 3838450302 16638215214 56776346017 12983630875

Table 2. List of calculated values ()2mod iN N

Luqman Hakeem Zainul Hisham, Muhammad Asyraf Asbullah and Saidu Isah Abubakar

Menemui Matematik Vol. 45(2) 2023 183

i 1 2 3 4 5 6 7 8

iG 567109 108601 213013 713809 71082413 163119757 239011 131981

gcd ,i
i

i

G
N

N

 
 
 

1 1 1 1 641 641 1 1

Table 3. List of factored iN

Therefore, we have obtained the product of all moduli N where

 8336244897772670611843642272564632733969103.N = After that, we will continue with

Phase 2 which we will apply the remainder tree to obtain ()2mod iN N as shown in Figure 4 using

the same tree as the product tree, but this time, we calculate from the top until the bottom. Hence

the list of calculated values ()2mod iN N is as presented in Table 2 as follows. From Table 2, we

can use the information to compute ()2 2gcd , (mod)i i iG N N N= .

By using the value of iG , we can factor iN . We can see that when the value of i iG N= , they have

one as their only common factor. Then, if 2

i i iN G N  , we can factor right away by computing

gcd ,i
i

i

G
N

N

 
 
 

. From Table 3 above, we can factor the moduli 5N and 6N , showing that they share

the same prime integers.

Now that we can factor RSA moduli for any bit size using the batch-gcd algorithm by

repeating the same step of Phase 1, Phase 2, and Phase 3 until we complete the computation based

on Lemma 1. The larger the sample size, the longer it will take to factor all RSA moduli.

Furthermore, a problem was encountered during the computation process. We also conducted

experiments with 50 samples and not more due to limited computational power. It is due to

executing 256-bit RSA moduli. That is why most websites use larger n-bit numbers, making

factoring such integers harder and more time-consuming.

CONCLUSION

To conclude this research, this study mainly discusses the most efficient way to factor pair-wise

RSA moduli using batch-gcd computation. This method is way more efficient than direct gcd

computation based on the Euclidean algorithm. In a further study, we could use high computational

power to boost the number of samples we can collect and reduce the time taken to factor all RSA

moduli. We could also suggest that the developers use higher n-bit keys to enhance security for

users so that their confidential information remains secure and hidden.

REFERENCES

Bernstein, D. J., CDAhang, Y. A., Cheng, C. M., Chou, L. P., Heninger, N., Lange, T., & Van

Someren, N. (2013). Factoring RSA keys from certified smart cards: Coppersmith in the

wild. In Advances in Cryptology-ASIACRYPT 2013: 19th International Conference on the

Theory and Application of Cryptology and Information Security, Bengaluru, India,

December 1-5, 2013, Proceedings, Part II 19 (pp. 341-360). Springer Berlin Heidelberg.

Uncover Weak Keys of RSADemo2 Software Using Batch Greatest Common Divisor Algorithm

Menemui Matematik Vol. 45(2) 2023 184

Cloostermans, B. (2012). Quasi-linear GCD computation and factoring RSA moduli (Doctoral

dissertation, Thesis (Eindhoven University of Technology, Department of Mathematics

and Computer Science, 2012)).

Darby, G. (2016). RSA Public Key Demo Program, http://delphiforfun.org/programs/math

topics/RSA KeyDemo.htm.

Diffie, W., & Hellman, M. E. (2022). New directions in cryptography. In Democratizing

Cryptography: The Work of Whitfield Diffie and Martin Hellman (pp. 365-390).

Diffie, W., & Hellman, M. E. (1976). New directions in cryptography. IEEE transactions on

Information Theory, 22(6), 644-654.

Heninger, N., Durumeric, Z., Wustrow, E., & Halderman, J. A. (2012). Mining your Ps and Qs:

Detection of widespread weak keys in network devices. In 21st USENIX Security

Symposium (USENIX Security 12) (pp. 205-220).

Heninger, N., & Shacham, H. (2009). Reconstructing RSA private keys from random key bits.

In Annual International Cryptology Conference (pp. 1-17). Berlin, Heidelberg: Springer

Berlin Heidelberg.

Kraft, J., & Washington, L. (2018). An introduction to number theory with cryptography. CRC

press.

Lenstra, A. K., Hughes, J. P., Augier, M., Bos, J. W., Kleinjung, T., & Wachter, C. (2012). Public

keys. In Annual Cryptology Conference (pp. 626-642). Berlin, Heidelberg: Springer Berlin

Heidelberg.

Milanov, E. (2009). The RSA algorithm. RSA laboratories, 1-11.

Mironov, I. 2012, Factoring RSA Moduli. Part I., https://windowsontheory.org/2012/05/15/979/.

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and

public-key cryptosystems. Communications of the ACM, 21(2), 120-126.

http://delphiforfun.org/programs/math%20topics/RSA%20KeyDemo.htm
http://delphiforfun.org/programs/math%20topics/RSA%20KeyDemo.htm
https://windowsontheory.org/2012/05/15/979/

