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ABSTRACT 

Extreme value theory (EVT) has been widely used in finance especially when extreme events such as 

crashes, brakes and peaks occur. EVT focuses on extreme events or situations, which are typically referred 

to as outliers, and is able to provide better estimation for risk models. Cryptocurrency is a popular but high-

risk investment due to its high volatility and occurrence of extreme events. It is difficult and critical to 

predict the return of cryptocurrency, mainly because of its extreme nature. This research employs two 

different EVT approaches, namely, block maxima approach and peaks over threshold approach, are used to 

model the daily extreme returns of Bitcoin and Ethereum by encrypting the left tail of cryptocurrency return 

distributions. Apart from that, Value-at- Risk (VaR) plays an important role in estimating the investment 

risk in the financial sector. Therefore, before investing, it is very important to assess the risk of 

cryptocurrency. In this study, VaR is evaluated by using the age-weighted historical simulation method and 

normal distribution. This study finds that generalized extreme value distribution using the block maxima 

approach fits the cryptocurrencies returns data better and normal distribution outperformed other 

distributions in estimating VaR. In addition, the return levels of Bitcoin and Ethereum indicates that the 

biggest potential losses that Ethereum will face in the next 100 years is 105.02% higher than that of Bitcoin. 

The result of VaR estimation also shows that the risk of Ethereum is higher than that of Bitcoin, because its 

high risk values are 7.03% and 8.46% respectively. The findings in this study can assist investors in 

understanding the behaviour of the tails in the cryptocurrency market and in making financial decisions. 
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INTRODUCTION 

Throughout history, almost all transactions between human beings have been completed with 

money. From beans, shells, pearls, cocoa seeds, tea, pepper, animals, silver, gold and even slaves, 

barter finally gave way to the use of legal tender (Jenks, 1964). However, in the world of digital 

economy, cryptocurrency has started replacing fiat money in facilitating transactions. In this era of 

globalization, the development of modern technology has brought many impacts to people all over 

the world. The digitalization of the economy is beneficial to economic growth, and makes 

economic operations more effective and adaptable. For example, the introduction of electronic 

money or cryptocurrency such as Bitcoin, Ethereum, Dogecoin, Litecoin and many others have 

been used widely in performing transactions as cryptocurrencies work through Blockchain 

technology to enable quick transfers without any transaction fees needed. 

Blockchain technology plays an important role in the cryptocurrency system. It was 

introduced to the public as part of the Bitcoin proposal by Satoshi Nakamoto in October 2008. A 

blockchain is a distributed database or ledger shared between computer network nodes, which 

electronically stores information in a digital form. It is also an accessible, digital and decentralised 

public database of bitcoin transactions, keeping permanent and verifiable record of all transactions 
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between two parties and constantly updates digital records. Over the past few years, 

cryptocurrencies such as Bitcoin, Ethereum and Ripple have become more and more popular, 

especially in the field of financial technology. This is because cryptocurrency operates through 

algorithms and peer-to-peer mechanisms, and opposes the current opaque monetary system by 

achieving transparency and security, which is another way to change the traditional financial 

system (Samuelson, 1968). Apart from that, Glaser et al. (2014) it is also mentioned that the 

popularity of cryptocurrency has increased due to the economic crisis that caused the public to lose 

confidence in the financial system. In addition, Gupta (2017) pointed out that the inefficiencies and 

transaction costs of conventional banks contributed to the invention of bitcoin. 

Due to the vigorous development of cryptocurrency industry, investors and researchers 

started to forecast the daily return of cryptocurrency. Many methods are used to predict the daily 

income. However, in this study, extreme value theory (EVT) will be used to predict the maximum 

extreme return, that is, the potential maximum daily losses of Bitcoin and Ethereum. This is 

because the extreme behaviour of cryptocurrency price fluctuation is the source of inspiration for 

this research. In addition, in most cases, financial data tends to follow a left-skewed or right-skewed 

distribution. In Parkinson's study, he pointed out that the tail of the market has important 

information, which can be used to analyse extreme fluctuations. Because this study emphasized 

more extreme data; EVT technique is used to describe extreme features (Parkinson, 1980). EVT is 

widely applied in many fields, ranging from hydrology to insurance and finance. It provides a 

powerful framework for analysing the behaviour of extreme data and pays special attention to the 

tails of the sample distribution. For example, to determine the likelihood of a market crash, fat tails 

are used. Because of its potential to predict economic situation, EVT might provide useful 

information to financial institutions. Therefore, compared with other methods, it is better in 

predicting unexpected extreme changes and daily returns. 

Since cryptocurrencies are known to have high volatility, large shocks, and extreme price 

jumps, forecasting volatility accurately and Value-at-Risk (VaR) are important approaches for 

investors, professionals, and policymakers to make knowledgeable decisions and to manage 

portfolio risks. The objective of VaR is to recognise and understand the risk exposure, measure the 

risk, and manage the risk using knowledge. It even indicates the worst-case loss scenario for a 

certain time horizon at a specified confidence level. In addition, VaR is typically used by financial 

institutions for internal risk management with a one-day horizon and a 95% confidence level. The 

estimation of VaR through traditional non-parametric and parametric techniques is effective if 

there are lots of observations in the empirical distribution. Therefore, this study adopts a 

nonparametric method, that is, using age-weighted historical simulation, and a parametric method, 

that is, using the normal distribution to estimate the VaR of Bitcoin and Ethereum, two high-risk 

investments. From banking and health care to shipping and supply chains, many industries have 

been hailed as potential game changers by the blockchain technology that promotes bitcoin and 

other cryptocurrencies. Distributed ledgers realizes a new type of economic activity that was 

unrealistic before by eliminating the intermediary and middlemen in computer networks. For those 

who think that digital currencies has a bright future, this potential attracts them to invest in 

cryptocurrencies. 

Although it is challenging to eliminate market risk, there are several solutions to reduce 

market risks. There are other techniques that eventually lead to a number called VaR, such as 
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historical VaR technique, the Monte Carlo VaR method, generalized autoregressive conditional 

heteroscedasticity (GARCH) model and exponential weighted moving average (EWMA) method. 

Since different methods are suitable for different types of situations, it is advantageous to have a 

series of choices. However, if a different method are applied, it will produce different results for 

the same portfolio because it might lead to overestimation or underestimation events. Therefore, it 

is very important to evaluate the performance of VaR and select the appropriate VaR technology 

to provide investors with the most accurate risk level they would accept. In short, investors should 

predict the returns or losses of cryptocurrency before starting to invest, and understand the risks 

they will face, because cryptocurrency is unstable, because unexpected changes in market 

sentiment may lead to sharp and sudden price fluctuations.  

The main objective of this study is to predict the extreme returns and analyse the risk 

measure of Bitcoin and Ethereum. There are three specific objectives for this study, as follows: 1. 

To model the cryptocurrencies’ returns using block maxima approach and peak over threshold 

approach; 2. To estimate the parameters and examine the accuracy of Generalized Extreme Value 

Distribution and Generalized Pareto Distribution in predicting cryptocurrencies’ returns, and 3. To 

investigate the relative predictive performance of Value-at-Risk approaches, age-weighted 

historical simulation and normal distribution. 

According to CoinMarketCap, there are 20,222 different cryptocurrencies in the market, 

with a total market value of 919 billion US dollars. The top ten most popular cryptocurrencies are 

Bitcoin (BTC), Ethereum (ETH), Tether (USDT), USD Coin (USDC), BNB (BNB), Binance USD 

(BUSD) XRP (XRP), Cardano (ADA), Solana (SOL) and Dogecoin (DOGE). However, the main 

scope for this study will include only the first and second cryptocurrencies, BTC and ETH. Bitcoin 

was one of the earliest cryptocurrencies launched on the market in 2009, and it is also the most 

well-known cryptocurrency for the public. Bitcoin’s market capitalization was valued around $ 391 

billion with a price of $ 20,670.28. Meanwhile, another cryptocurrency, Ethereum, which adopts 

Ethereum blockchain technology was launched in 2015. It is the largest and longest-running open-

ended decentralised software platform. Eventually, Ethereum became a platform for running secure 

applications using smart contracts instead of just being cryptocurrency. The market value of 

Ethereum is about $ 142 billion, and the price is $ 1193.49. The daily closing price data used in 

this study are extracted from the websites, CoinMarketCap and Yahoo! Finance from 1st January 

2020 to 31st December 2022. 

The remainder of the article is organized as follows. In next section, we briefly review the 

relative literature. The data and methods used are introduced in third section, followed by the 

findings of this research. Finally, we will present the conclusion and suggestions for future research.  

 
 

LITERATURE REVIEW 

Financial markets are crucial to capitalist economies, because they allow individuals, companies 

and governments to transfer funds (Mishkin, 2012). They also stabilize and regulate the circulation 

of money, ensuring economic stability. Financial markets make securities products profitable for 

investors or lenders, and provide funds for borrowers in need. In direct financial markets, lenders 

use assets such as stocks, futures, exchange traded funds (ETFs), bonds and mutual funds to 

transfer funds directly to borrowers. A financial intermediaries help transfer money between 
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surplus and deficit accounts in the indirect market. The main task of financial intermediaries is the 

management of collection and credit risk. A well-functioning financial market may promote socio-

economic development (Mishkin, 2012). There are three reasons to promote financial markets. 

First is to overcome the mismatch of capital supply and demand. Secondly, the demand for buying, 

selling and transferring stocks is the growing. Third, with the diversification of commodity 

economy, it is beneficial to flexible capital flow. The financial markets' primary function is to 

connect individuals so money can flow where it's needed. 

Stock, over-the-counter trading, bond, currencies, derivatives and cryptocurrency markets 

are all financial markets. The decentralised digital assets, which are cryptocurrencies, are also 

included in financial markets. Recently, blockchain-based cryptocurrency has gained prominence 

where there are thousands of crypto-tokens that are traded through online crypto-exchanges 

throughout the world. Cryptocurrencies only exist in encrypted form. They are stored and traded 

using software or smart deposit devices. Besides, there is no need for a central organization to 

manage and maintain the value of cryptocurrency (Ashford & Schmidt, 2022). All transactions of 

cryptocurrency are conducted online, or through special networks and applications. Today, the 

core technical element of cryptocurrency is the blockchain system, which makes cryptocurrency 

unchangeable, decentralized and transparent. Therefore, cryptocurrencies are not issued by the 

government. In the virtual currency world, there are new blockchain products like decentralised 

finance, NFT, and the Metaverse that will have the potential to develop future cryptocurrency 

markets.  

The advantages of cryptocurrency is to reduce the transaction costs by eliminating the 

authoritative organization or third parties. It is convenient to use, especially when paying with 

cryptocurrency, and it is easy to store cryptocurrency. For example, cryptocurrency is stored in an 

application, hardware wallet or online storage. Therefore, cryptocurrency will make it easier for 

both parties to transfer funds (Nakamoto, 2008). Funds are transferred directly from one person to 

another, and there is no transaction costs. If transaction costs are required, it is only a minimum 

amount. However, the transaction processing time is less than that of bank transactions, and all 

transaction information will be confidential and anonymous. In addition, cryptocurrency reduces 

inflation, because the creator of Bitcoin, Satoshi Nakamoto, set the upper limit at 21 million, so 

there is no large-scale cloning. When governments issues too much legal tender, it can lead to 

inflation or devaluation. In addition, cryptocurrency is pre-programmed with algorithms that limit 

supply and can reduce inflation. Unlike fiat money, cryptocurrencies cannot be counterfeited as 

cryptocurrencies use blockchain technology with the combination of other consensus mechanisms 

integrated in algorithms to establish their system. The transparency of cryptocurrency is also an 

advantage. Blockchain records all encrypted currency transactions and information, and its 

encryption system and decentralised network can prevent external interference. 

Previous studies have analyzed the tail behavior of cryptocurrency by using the EVT 

method. For example, in the research of Osterrieder and Lorenz (2017), an extreme value analysis 

of bitcoin returns is provided. They compared the tail risk characteristics of bitcoin with the 

traditional exchange rates between the US dollar and the G-10 currencies. According to their 

research, the volatility of Bitcoin is higher than that of the traditional G-10 currencies, and the 

return distribution of Bitcoin has stronger non-normality and heavier tails. Gkillas and Katsiampa 

(2018) used peaks over threshold (POT) approach to study the tail behaviour of the daily returns 
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of Bitcoin, Ethereum, Ripple, Bitcoin Cash and Litecoin. They found that bitcoin cash is the most 

risky cryptocurrency among the five cryptocurrencies, which meant it had the greatest potential 

loss and gain. However, this study showed that Bitcoin and Litecoin are the lowest risk 

cryptocurrencies. 

Ali et al. (2021) employed the GEV distribution to model the monthly maximum negative 

log returns of Malaysian gold prices. Throughout the study, the GEV model's parameters were 

estimated using maximum likelihood estimation (MLE) and L-moments (LMOM) techniques. The 

researchers also showed the quantile-quantile plot to indicate the accuracy of fitting the GEV 

model with the data by using MLE. Apart from that, VaR was estimated as the upper quartile of 

10%, 5%, and 1% to determine the potential losses of investing in the gold market. Using EVT, 

the frequency and probability of extreme situations in the financial world are studied, because it 

focuses on extreme values and can produce a more accurate risk model prediction. A study by 

Hussain et al. (2021) modelled daily extreme returns in the Bitcoin market by employing GP. The 

Bitcoin’s return levels were estimated by using the daily log losses of Bitcoin and they found that 

Bitcoin’s returns data have heavy tail and finite tail distribution characteristics. Islam and Das 

(2021) explored and developed EVT's ability to predict bitcoin returns, because EVT was proposed 

to deal with unusual but extreme events, such as heavy losses or large-scale damage. This study 

used various statistical tests to demonstrate the extreme nature of Bitcoin’s return. However, the 

main focus of this study was to model the return of Bitcoin by using the POT method and the block 

maxima (BM) method, and to evaluate the uncertainty by predicting the return level of Bitcoin in 

the next five, ten, twenty, fifty and one hundred years (with a confidence interval of 95%). The 

result of this study had shown that the BM approach provided a better fit with Bitcoin’s returns 

data compared to the POT approach. 

Although EVT is widely used to investigate and explain the extreme events in the financial 

field, there is still a lack of research on using EVT to analyse bitcoin, especially in predicting 

extreme returns of cryptocurrency, because most research focuses on the overall distribution rather 

than the tail distribution. Apart from that, Hussain et al. (2021) predicted the extreme returns of 

Bitcoin using GP and found that it was difficult to determine which cryptocurrency provided the 

highest return and the accuracy of the model in predicting extreme returns, because they only used 

one cryptocurrency and one model in their research. Meanwhile, Islam and Das (2021) predicted 

the extreme positive returns of Bitcoin only and  suggested using the negative returns to estimate 

the negative return levels for future work. All the limitations and suggestions for future work 

provide the impetus for this research to apply the BM method using GEV model and the POT 

method using GP model to predict the negative extreme returns of Bitcoin and Ethereum. 

Several studies have compared the accuracy of different types of models in estimating risk 

value, and conducted backtesting procedures to determine the accuracy of models in estimating 

risk value. For instance, Johansson and Nilsson (2011) compared the performance of seven 

different techniques in estimating the VaR for a portfolio consisting five Swedish index-bonds 

with different maturities. In their research, three different windows and seven different methods 

which are basic historical simulation (HS), age-weighted historical simulation (AWHS), volatility-

weighted historical simulation (VWHS), normal distribution, Student's t-distribution, asymmetric 

slope, and symmetric absolute value, were applied to calculate one-day VaR estimates for this 

portfolio. Kupiec and Christoffersen test for unconditional and conditional coverage was also 
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conducted to evaluate the accuracy of the approaches. In addition, Cao & Johansson (2022) has 

estimated VaR and Expected Shortfall (ES) of Bitcoin (BTC), Ethereum (ETH), Binance coin 

(BNB), Ripple coin (XRP), and Cardano (ADA) by using three parametric (normal, Students’s t 

and GP) and three non-parametric estimation methods (HS, AWHS and VWHS).  

In this study, we will estimate VaR by using BM and POT methods. The parameters of 

GEV and GP will be obtained by using L-Moment (LMOM) because it handles the extreme value 

better. Then, nonparametric and parametric methods will be used to estimate VaR, and 

Christoffersen backtesting program will be used to evaluate it. 

 

 

MATERIALS AND METHODS 

Data Used 

The data used in this study are the daily closing prices of Bitcoin and Ethereum extracted from 

Yahoo! Finance. The daily data used are in form of US Dollar (USD) which are from 1st January 

2020 to 31st December 2022. In addition, the data is extracted according to the BM approach of 

GEV distribution and POT approach for GP distribution. The logarithmic return for Bitcoin and 

Ethereum will be calculated. This is because the log-returns can be managed easily and it provides 

better statistical behaviour. Therefore, the logarithmic return series is widely used in financial 

research, rather than using the actual prices. The transformation of prices into returns will be done 

through the following equation: 

𝑅𝑡 = ln (
𝑃𝑡
𝑃𝑡−1

) 

where  𝑅𝑡 is the return of Bitcoin or Ethereum in period 𝑡 
             𝑃𝑡 is the closing price in period 𝑡 
             𝑃𝑡−1 is the price in period 𝑡 – 1. 

 

Extreme Value Theory 

According to the central limit theorem, when the sample size provided is sufficiently large enough, 

the sum and the mean of an arbitrary finite distribution are normally distributed. However, in some 

practical studies, instead of the data’s average, actually we are more interested with the maximum 

or minimum values of the limiting distribution. 

Assume that 𝑋1, 𝑋2, … , 𝑋𝑛  is a sequence of iid random variables having a common 

distribution function 𝐹. One of the most interesting statistics in research is the sample maximum 

𝑀𝑛 = max {𝑋1, 𝑋2, … , 𝑋𝑛 }. 

This theory studied the behaviour of 𝑀𝑛 as the sample size n increases to infinity. 

𝑃𝑟{𝑀𝑛 ≥ 𝑥} = 𝑃𝑟{𝑋1 ≤ 𝑥, 𝑋2 ≤ 𝑥,… , 𝑋𝑛 ≤ 𝑥}  

= 𝑃𝑟{𝑋1 ≤ 𝑥} 𝑃𝑟{𝑋2 ≤ 𝑥}……𝑃𝑟{𝑋𝑛 ≤ 𝑥}  

= 𝐹𝑛(𝑥)  

  

Block Maxima Approach 

Block maxima (BM) approach is the most popular extreme value approach. According to the BM 

approach, data are divided into blocks of equal length. For example, in years, months or days. Then, 

the highest observation of each block is analysed to fit into a model. In this study, the data was 

fitted into the model using BM approach by dividing the time series data into monthly blocks. 
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Generalized Extreme Value Distribution 

Jenkinson (1955) proposed a formula for Generalized Extreme Value (GEV) Distribution which 

is a single parametric family that encompasses the three types of limiting distribution of Gnedenko 

(1943). It comprises the Gumbel distribution, known as EVI distribution, the Fréchet distribution, 

also known as EVII distribution, and the Weibull distribution, also known as EVIII distribution. 

 

The cumulative distribution function (CDF) of GEV distribution is defined as: 

𝐹(𝑥, 𝜇, 𝜎, 𝜉) =

{
 
 

 
 
exp [−(1 +

𝜉(𝑥 − 𝜇)

𝜎
)

−
1
𝜉

]      if   𝜉 ≠ 0,

exp [−𝑒−
𝑥−𝜇
𝜎 ]                        if   𝜉 = 0

  

where the scale parameter is 𝜎 >  0 , location parameter is −∞ < 𝜇 < ∞  and 𝜉  as the shape 

parameter that represents the behaviour of the tail. 

 

The sub-models can be defined by 

• Type I: 𝜉 =  0, the Gumbel family with CDF 

𝐹(𝑥)  = exp (−𝑒−
𝑥−𝜇
𝜎 ) ,  𝑥 ∈  ℝ 

  

• Type II: 𝜉 >  0, the Fréchet family with CDF 

𝐹(𝑥) = {exp [−(
𝑥 − 𝜇

𝜎
)
−
1
𝜉
] ,        𝑥 > 𝜇,

1

𝜉
> 0,

0,                           𝑥 ≤ 0

 

• Type III: 𝜉 <  0, the Weibull family with CDF 

𝐹(𝑥) = {exp [−(−
𝑥 − 𝜇

𝜎
)

1
𝜉
] ,        𝑥 < 𝜇,

1

𝜉
> 0,

1,                           𝑥 ≤ 0

 

for the parameters 𝜎 > 0,−∞ < 𝜇 < ∞. 

 

 

Peaks Over Threshold Approach 

In peaks-over-threshold (POT) approach, a threshold for the data will be chosen. However, only 

data that lies above the threshold value will be selected for fitting into the model. Therefore, it is 

necessary to select a threshold that is neither too high nor too low in order to conform to the GP 

function. If the threshold is not high enough, there is a chance of getting biased estimations. 

Meanwhile, if the threshold is too high, there will only be a few data that are available for analysis, 

which will lead to a higher variance of the estimates. 

 

Generalised Pareto Distribution 

The Generalised Pareto (GP) distribution was introduced by Pickands III (1975), and Balkema and 

De Haan (1974). GP is a limiting distribution of the standardized excesses over a threshold, as the 

threshold approaches the endpoint of the variable. The distribution function for GP can be written 

as 

 

(1) 
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𝐹(𝑥, 𝜇, 𝜎, 𝜉) =

{
 

 
1 −(1 +

𝜉(𝑥 − 𝜇)

𝜎
)

−
1
𝜉

     if   𝜉 ≠ 0,

1 −𝑒−
𝑥−𝜇
𝜎                        if   𝜉 = 0.

  

for 𝑥 ≥ 0, when 𝜉 ≥ 0, or 𝑥 ≥ 0, and 𝑥 ≤ −
𝜎

𝜉
 when 𝜉 < 0, where 𝜎 > 0 is the scale parameter 

and 𝜉 ∈ ℝ is the shape parameter. 

 

The shape parameter of the GP play a dominant role in determining the qualitative behaviour of 

the tail. So, the following values of the parameter 𝜉 are of interest: 

  

• When 𝜉 → 0, the GP converges to the exponential distribution with mean σ. 

• When 𝜉 = −1, the GP becomes the uniform distribution 𝑈(0, 𝜎). 

• When 𝜉 =
1

2
 , the GP becomes the triangular distribution. 

• The Pareto distribution is obtained when 𝜉 > 0. 

 

Apart from that, GP has associated a Pareto type-II model if the parameter 𝜉 < 0 is related to long 

tail behaviour. However, it will follow short tail distribution if 𝜉 > 0. 

 

Parameter Estimation 

In this study we will use L-moment and maximum likelihood estimation methods to investigate 

the effectiveness of L-moment and maximum likelihood estimation in estimating parameters. 

 

L-moment estimation 

L-moment is based on the probability weighted moments describe the shape of probability 

distributions. The method can be defined as the linear combination of probability weighted 

moments (Hosking 1990). The L-moment of order 𝑟 can be defined as: 

𝜆𝑟 =
1

𝑟
∑(−1)𝑖 (

𝑟 − 1
𝑖
) 𝐸(𝑌𝑟−1:𝑟)

𝑟−1

𝑖=0

          for 𝑟 = 1, 2, …  

 

The GEV distribution parameters according to the L-moment method can be described as follows: 

𝜇̂ = 𝜆̂1 +
𝜎̂[Γ(1 + 𝜉) − 1]

𝜉
  

𝜎 =
𝜆̂2𝜉

Γ(1 + 𝜉)(1 − 2−𝜉̂)
 

𝜉 = 7.8590𝑐̂ + 2.9554𝑐̂2 

 

where 𝜇, 𝜎 and 𝜉 are the location, scale and shape parameters respectively; 𝜆1, 𝜆2 and 𝜆3 are the 

L-moment and 

𝑐̂ =
2𝜆̂2

𝜆̂3 + 3𝜆̂2
−
ln(2)

ln(3)
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On the contrary, the estimates of GP parameters are 

𝜎̂ =  𝜆̂1(1 + 𝜉) 

𝜉 =
𝜆̂1

𝜆̂2
− 2 

 

where 𝜎 and 𝜉 are the scale and shape parameters respectively and the first and the second samples 

of L-moment are 

𝜆̂1 =
𝜎̂

1 + 𝜉
 

𝜆̂2 =
𝜎̂

(1 + 𝜉)(2 + 𝜉)
 

 

Maximum Likelihood Estimation 

From the GEV distribution function, the probability distribution function is 

𝑓𝑋(𝑥) =
1

𝜎
(1 +

𝜉(𝑥 − 𝜇)

𝜎
)

−(1+
1
𝜉
)

exp [−(1 +
𝜉(𝑥 − 𝜇)

𝜎
)

−
1
𝜉

] 

For a set of 𝑛 observations, the log-likelihood function of an observation 𝑥𝑗 is 

𝑙(𝑥𝑗; 𝜇̂, 𝜎̂, 𝜉) = −𝑛 ln 𝜎̂ − (1 +
1

𝜉
)∑ln [1 +

𝜉(𝑥𝑗 − 𝜇̂)

𝜎̂
]

𝑛

𝑗=1

−∑ln [1 +
𝜉(𝑥𝑗 − 𝜇̂)

𝜎̂
]

𝑛

𝑗=1

−
1

𝜉̂

  

and the maximum likelihood estimates of the location, 𝜇, the scale, 𝜎 and the shape, 𝜉, parameters 

are obtained by maximising the log likelihood. 

 

In contrast, from the GP distribution function, the probability distribution function of GP for 𝜉 ≠ 

0 is 

𝑓𝑋(𝑥) =
1

𝜎
(1 +

𝜉(𝑥 − 𝜇)

𝜎
)

−(1+
1
𝜉
)

 

For a set of 𝑘 observations, the log-likelihood function of an observation 𝑥𝑖 is 

𝑙(𝑥𝑖; 𝜎̂, 𝜉) = −𝑘 ln 𝜎̂ − (1 +
1

𝜉
)∑ln [1 +

𝜉(𝑥𝑖 − 𝜇̂)

𝜎̂
]

𝑘

𝑖=1

  

and the maximum likelihood estimates of the scale, 𝜎 and the shape, 𝜉, parameters are obtained by 

minimising the negative log-likelihood function. 

 

Simulation Studies 

Extensive simulation studies are conducted in this section to investigate the performance of 

estimation of 𝜎 and 𝜉 using L-moment (LMOM) and maximum likelihood estimation (MLE). The 

evaluation of the performances will be based on the empirical bias, mean square error (MSE) and 

root mean square error (RMSE) estimated from 10000 simulations. The simulations are conducted 

as follows: 

1. The negative daily log-returns of Bitcoin and Ethereum are fitted into the GP model. 
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2. Parameter estimation using LMOM is conducted to obtain the parameters values for Bitcoin 

and Ethereum. 

3. Independent and identically distributed (i.i.d) observations are generated following GP(𝜎, 𝜉) 

4. Two different pairs of parameters are used where the first pair of parameters are obtained 

from the parameter estimation of Bitcoin while the second pair of parameters are obtained 

from the parameter estimation of Ethereum. 

5. LMOM and MLE are used to estimate 𝜎 and 𝜉. 

6. The steps above are repeated 10000 times and 𝑛 is varied between 500, 5000 and 50000 to 

compute the bias, MSE and RMSE of 𝜎 and 𝜉. 

 

Goodness-of-Fit 

Goodness-of-fit test statistics are used for checking the validity of a specified or assumed 

probability distribution model. The Anderson-Darling test is applied in this section. 

  

Anderson-Darling (AD) Test 

Anderson-Darling (AD) test is one of the most powerful empirical distribution function (EDF) test. 

It was first introduced by Anderson and Darling to place more weight at the tails of the distribution 

(Farrell and Stewart, 2006). In cases with relatively large extremes, it may be expected the AD test 

to be more suitable to select the best-fitted model to data maxima. The AD test statistic, the 

quadratic class of the EDF test statistic, is expressed as 𝐴2 as follows: 

𝐴2 = −𝑛 −∑[
2𝑖 − 1

𝑛
(ln 𝐹𝑋(𝑥𝑖) + ln(1 − 𝐹𝑋(𝑥𝑛+1−𝑖)))]

𝑛

𝑖=1

 

where 𝐹𝑋(𝑥𝑖) is the cdf of the proposed distribution at 𝑥𝑖, for 𝑖 = 1, 2, … , 𝑛. 

 

The observed data must be arranged in increasing order, as 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛. On the other hand, 

the AD test gives more weight to the tails. Hnece, it is a more accurate test when the tails of the 

selected theoretical distribution are the focus of the analysis, as with extreme data. 

 

Value-at-Risk 

Value-at-Risk estimation is conducted for both cryptocurrencies using a non-parametric method 

and a parametric method. 

 

I. Non-Parametric Method (age-weighted historical simulation) 

The non-parametric approach will use historical data to calculate VaR. It does not make any 

assumption on the past data and it mainly depends on the historical simulation method. Boudoukh, 

Richardson & Whitelaw (1998) suggested weighting the observations according to their age in this 

approach. They assigned higher weights for most recent observations as follows, where 𝑤1 is the 

weight for the newest observation: 

𝑤1 =
1 −  𝜆

1 − 𝜆𝑛
 

𝑤𝑖 = 𝜆𝑖−1𝑤1 

Constant 𝜆 lies between 0 and 1 and reflects exponential rate of decay. For the special case 𝜆 → 1, 

age-weighted historical simulation (AWHS) converges to basic historical simulation. Good 
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summary of improvement of age-weighting against basic historical simulation is given in Dowd 

(2005) and mentioned that there are few major attractions of AWHS which are providing a better 

generalization of traditional historical simulation, a suitable choice of 𝜆 that can make VaR 

estimates more responsive to large loss observations and makes them better at handling clustering 

of large losses. In addition, age-weighting helps to reduce distortions caused by events that are 

unlikely to recur and reduces ghost effects. Older observations will probably lose their probability 

weights and their power to influence current VaR falls over time. Last but not least, AWHS can 

be more effective as it gives the option of letting the sample grow with time. 

 

2. Parametric Method (Normal distribution) 

The parametric approach is also known as the analytic or correlation method. When there are large 

numbers of assets in a portfolio, the easiest way to estimate VaR is by using parametric approach. 

A basic VaR model can be based on the normal distribution which requires only the mean and 

standard deviation in order to model the distribution. The normal VaR can be estimated by using 

the following equation 

VaR = 𝜇 − 𝜎𝑧 

where 𝜇 is the mean, 𝜎 is the standard deviation and 𝑧 refers to the z-score corresponding to the 

95% confidence level. The normal distribution is widely used because of its simplicity which only 

requires two independent parameters, mean and standard deviation. 

 

Backtesting 

VaR models are valuable only if they can predict the future risks accurately. Hence, the models 

should undergo the process of backtesting to test the efficacy of the VaR models and to determine 

whether the VaR models are adequate or not. In this study, the backtesting method, three-stage 

unconditional coverage and independence test by Christoffersen is performed. 

Violation process, also known as hit sequence is a popular backtesting procedure. The “hit 

sequence” of VaR violations is defined as 

𝐼𝑡+1 = {
1, 𝑟𝑡+1 < −𝑉𝑎𝑅𝑡+1

𝛼

0, 𝑟𝑡+1 ≥ −𝑉𝑎𝑅𝑡+1
𝛼  

where 𝑉𝑎𝑅𝑡+1
𝛼  is the VaR prediction at time 𝑡 + 1 for risk quantile level 𝛼. The hit sequence will 

return 1 if the loss in day 𝑡 + 1 exceeds the predicted VaR number, else return 0. 

When performing a backtest, a sequence {𝐼𝑡+1}𝑡+1
𝑇  across T days that indicates the past 

violations occur will be constructed. For violation prediction, the hit sequence, {𝐼𝑡+1}𝑡+1
𝑇  is a 

sequence of iid Bernoulli random variables with null hypothesis 

𝐻0 ∶ 𝐼𝑡+1 ~ Bernoulli(𝛼) 

where the Bernoulli variable takes value of 1 with probability 𝑝 and value of 0 with probability 

(1 − 𝑝). The Bernoulli distribution is shown below: 

𝑓(𝐼𝑡+1; 𝑝) = 𝑝𝐼𝑡+1(1 − 𝑝)1−𝐼𝑡+1 

 

Unconditional Coverage Test 

The objective of unconditional coverage test is to determine the fraction of observed violations for 

a particular risk model 𝜋 that is significantly different from the coverage rate, 𝑝. The null 

hypothesis and alternative hypothesis are 
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𝐻0: 𝑝 = 𝜋 

𝐻1: 𝑝 ≠ 𝜋 

The likelihood function for the null hypothesis is 

𝐿(𝑝) = (1 − 𝑝)𝑇0𝑝𝑇1 

𝐿(𝜋) = (1 − 𝜋)𝑇0𝜋𝑇1 

Then, the maximum likelihood estimator of 𝜋̂ =
𝑇1

𝑇
 is estimated. The maximised likelihood for the 

sample is then given by 

𝐿(𝜋̂) = (
𝑇1
𝑇
)
𝑇1

(
𝑇0
𝑇
)
𝑇0

 

The null hypothesis can be tested by means of the following likelihood ratio test: 

𝐿𝑅𝑈𝐶 = −2 ln(
𝐿(𝑝)

𝐿(𝜋)
)~𝜒2(1) 

Under the null hypothesis that the VaR model is correct, 𝐿𝑅𝑈𝐶  is asymptotically chi-square 

distributed with one degree of freedom. However, this test focuses only on the number of 

exceptions. The null hypothesis which is the VaR model gives the correct coverage rate is rejected 

when the p-value is less than the desired significance level. Christoffersen recommends using a p-

value of 0.1 on the count of type II errors which is being costly in practice. 

 

Independence Test 

The independence test is used to investigate whether the violations are independent of one another. 

The hit sequence {𝐼𝑡}𝑡=1
𝑇   is assumed to be independent over time 𝑡 and be described by a discrete-

time Markov chain with transition matrix of 𝜋1. 

𝜋1 = [
𝜋00 𝜋01
𝜋10 𝜋11

] = [
1 − 𝜋01 𝜋01
1 − 𝜋11 𝜋11

] 

where 𝜋𝑖𝑗(𝑖, 𝑗 ∈ {0,1}) = 𝑃(𝐼𝑡+1 = 𝑗|𝐼𝑡 = 𝑖) . Meanwhile, 𝜋01  is the probability of violation 

occurs tomorrow given that no violation occurs today and 𝜋11 is the probability of violation occurs 

tomorrow given that no violation occurs today. 

The likelihood function for this Markov process with 𝑇 observations as follows 

𝐿(𝜋1) = (1 − 𝜋01)
𝑇00𝜋01

𝑇01(1 − 𝜋11)
𝑇10𝜋11

𝑇11  

where 𝑇𝑖𝑗  is the number of days with an 𝑖  followed by a 𝑗 occurred in the hit sequence, with 

𝑖, 𝑗𝜖{0, 1}. 

Then, the maximum likelihood estimates for 𝜋01 and 𝜋11 are then given by 

𝜋̂01 =
𝑇01

𝑇00 + 𝑇01
 ,   𝜋̂11 =

𝑇11
𝑇10 + 𝑇11

 

Hence, the estimated transition matrix will be 

𝜋1 = [
1 − 𝜋01 𝜋01
1 − 𝜋11 𝜋11

] =

[
 
 
 

𝑇00
𝑇00 + 𝑇01

𝑇01
𝑇00 + 𝑇01

𝑇10
𝑇10 + 𝑇11

𝑇11
𝑇10 + 𝑇11]

 
 
 

 

If the hit sequence is independent over time, 𝜋̂01 will be assumed to be equal to 𝜋̂11 and 𝜋̂  

which follow the null hypothesis in independent test: 

𝐻0 ∶ 𝜋01 = 𝜋11 = 𝜋 
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and the transition probability matrix will be in the form: 

𝜋̂ = [
1 − 𝜋̂ 𝜋̂
1 − 𝜋̂ 𝜋̂

] 

Then, to test the independence hypothesis, the likelihood ratio test statistics defined as 

follows: 

𝐿𝑅𝐼𝑁𝐷 = −2 ln (
𝐿(𝜋̂)

𝐿(𝜋̂1)
) ~𝜒2(1) 

 

Conditional Coverage Test 

The conditional coverage test is the combination of unconditional coverage test and independence 

test to be tested jointly whether the average number of violations is correct and the hit sequence is 

independent. The likelihood ratio test is shown as: 

𝐿𝑅𝐶𝐶 = 𝐿𝑅𝑈𝐶 + 𝐿𝑅𝐼𝑁𝐷 = −2 ln (
𝐿(𝑝)

𝐿(𝜋̂)
) − 2 ln (

𝐿(𝜋̂)

𝐿(𝜋̂1)
) = −2 ln (

𝐿(𝑝)

𝐿(𝜋̂1)
)~𝜒2(2) 

 

 

RESULTS AND DISCUSSION 

 
Data and Descriptive Analysis 

In this research, the daily adjusted closing prices of Bitcoin (BTC) and Ethereum (ETH) are used. 

The data is sourced from Yahoo! Finance, with a total of 1096 observations from 1st January 2020 

to 31st December 2022. The daily adjusted closing prices are converted into daily log-returns and 

the preliminary descriptive analysis of Bitcoin and Ethereum are shown in Figure 1. Descriptive 

statistics provide the measures and the summaries of samples, hence, it is an important part in 

describing the fundamental features of the sample data used in research. The quantitative data is 

described using measures of central tendency and dispersion. The descriptive statistics of daily 

return for Bitcoin and Ethereum are shown in Table 1. 

 

 

Figure 1: Time series plots and scatter plots of Bitcoin and Ethereum daily return in the period 

between 1st January 2020 to 31st December 2022 
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Table 1: Descriptive summary statistics of Bitcoin and Ethereum daily return 

 

Cryptocurrencies 

 

Mean 

 

Median 
Standard 

Deviation 

 

Skewness 

 

Kurtosis 

 

Minimum 

 

Maximum 

Bitcoin 0.0008 0.0008 0.0388 −1.6365 20.4395 −0.4647 0.1718 

Ethereum 0.0020 0.0029 0.0517 −1.3579 14.4169 −0.5507 0.2307 

 

From Table 1, some interesting conclusions can be drawn on these two cryptocurrencies. 

The mean daily log-return for both cryptocurrencies is positive and the standard deviations are 

relatively small. This shows that both cryptocurrencies have brought slightly increasing positive 

return. The mean and standard deviation of bitcoin are 0.0008 and 0.0388 respectively. The lowest 

daily return of Bitcoin is 46.47% and the highest daily return is 17.18%. Meanwhile, the mean for 

Ethereum is a positive value of 0.0020 and its standard deviation is 0.0517. Ethereum's lowest daily 

return is 55.07% and the highest daily return is 23.07%. Hence, Ethereum's daily gain and daily 

loss are greater than Bitcoin during the relevant period. Apart from that, skewness and kurtosis are 

important in this research as they are the measures of symmetry and “tailedness” of a distribution. 

The skewness and kurtosis of Bitcoin are -1.6365 and 20.4395 whereas the skewness and kurtosis 

of Ethereum are -1.3579 and 14.4169. As a result, both cryptocurrencies are negatively skewed and 

have the potential to display a heavy-tail behaviour as both skewness are negative and kurtosis are 

greater than 3. 

In Figure 2, it shows that the Bitcoin daily return is negatively skewed due to the presence 

of a long tail in the negative direction on the horizontal axis. From the histogram, the Bitcoin daily 

return is asymmetric and has a fatter tail in the negative direction. Besides that, there are some 

extreme values which are called outliers in the box-and-whiskers plot. For some studies, researchers 

might remove the outliers. However, the extreme values will not be excluded from this research. 

In Figure 3, it shows that the Ethereum daily return is negatively skewed and outliers are present 

in the box-and-whiskers plot. From the histogram, it can be seen that the Ethereum daily return is 

asymmetric and it is left-skewed which is known as a negative-skewed distribution. The fatter tail 

in the negative direction indicates that Ethereum gives a large number of negative returns. 

    

Figure 2: Histogram and box-and whiskers plot of Bitcoin daily return 
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Figure 3: Histogram and box-and whiskers plot of Ethereum daily return 

 

Normality Test 

Normality test is an essential step in analysing continuous data. It helps researchers to decide the 

measures of central tendency and statistical methods for data analysis. In this study, the Shapiro-

Wilk normality test is used to check the normality assumption of the data and validate the claim 

that the cryptocurrencies’ daily log- return data are not normally distributed. The test hypothesis of 

this test is as follow: 

𝐻0: The log-return series are normally distributed 

𝐻𝑎: The log-return series are not normally distributed 

The result of Shapiro-Wilk Test for cryptocurrencies daily return is presented in Table 2. 

 

Table 2: Shapiro-Wilk Test for Bitcoin and Ethereum 

Cryptocurrencies Test Statistics (W) p-value 

Bitcoin 0.88751 < 2.2 × 10−16 
Ethereum 0.90823 < 2.2 × 10−16 

 

The null hypothesis is rejected for the Shapiro-Wilk test because the p-value of Bitcoin and 

Ethereum tabulated are very small, which is lesser than 𝛼 = 0.05. The rejection of the null 

hypothesis concluded that the log-return data of Bitcoin and Ethereum are not normally distributed. 

Besides that, a graphical approach which is Q-Q plot is implemented to substantiate the result of 

the Shapiro-Wilk Test. 

 

Figure 4: Normal Q-Q Plot for Bitcoin and Ethereum daily return 
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Stationarity Test 

The concept of stationarity is important in time series forecasting as a stationary time series data 

will provide a better prediction of future returns. Therefore, it is essential to perform stationarity 

tests in studies where the underlying variables are time-based. In this research, Augmented Dickey-

Fuller (ADF) test is conducted to test the stationarity of the cryptocurrencies’ daily log-return 

series. The null hypothesis and alternative hypothesis are shown as follow: 

H0 ∶ The series is non-stationary  

Ha ∶ The series is stationary 

 

Table 3: Augmented Dickey-Fuller test result 

Cryptocurrencies Test Statistics (W) p-value 

Bitcoin −9.6976 0.01 

Ethereum −9.7773 0.01 

 

The result of the ADF test is reported in Table 3. Since the p-value for both log-return series is 

equal to 0.01, hence the null hypothesis is rejected at 𝛼 = 0.05. A conclusion can be made from 

this Augmented Dickey- Fuller test which is the log-return series of Bitcoin and Ethereum are 

stationary. 

 

Block Maxima Approach and Peaks Over Threshold Approach 

From the descriptive statistics obtained, it is clear that the distribution is negatively skewed and the 

kurtosis is much higher than the kurtosis of  normal distribution. It indicates that the extreme 

outcomes are more frequent and the number of daily log losses is greater than the daily log returns. 

Hence, this study will focus on the negative returns which are related to the downside risk.  

In this study, the minimum daily log-return which is also known as negative daily log-return 

is implemented for predicting the maximum extreme returns through the GEV and GP model. 

However, for easier understanding and tabulating the data, the negative returns are transformed into 

positive ones. For block maxima approach, the negative log-return series is divided into monthly 

blocks. Then, the monthly maxima of negative log-return of the cryptocurrency’s prices are 

modelled using the GEV distribution. 

For the peaks over threshold approach, the optimal threshold is chosen by using the 

package fExtremes in R software because choosing the threshold value from the mean residual life 

plot is very subjective. The threshold value simulated by R for the negative log- return of Bitcoin 

is 0.0591 while the threshold value simulated for the negative log- return of Ethereum is 0.0753. 

After that, the data that exceeds the threshold value will only be fitted into the GP model. 

 

Parameter Estimation 

A statistical approach known as parameter estimation is used to estimate the parameter values of 

the sample data in a statistical model. The objective is to determine the parameter values that best 

fit the sample data and produce the most accurate forecasts. In this section, the parameters of the 

Generalized Extreme Value (GEV) Distribution and Generalized Pareto Distribution (GP) are 

estimated through L-moment estimation. The estimation of GEV and GP models fitting are 

implemented in R. 
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(a)  

(b)  
 

Figure 5: The maximum and minimum daily log-return of Bitcoin: (a) positive returns and (b) 

negative returns 
 

 

 
 

 

Figure 6: The maximum and minimum daily log-return of Ethereum: (a) positive returns and (b) 

negative returns 

(a) 

(b) 
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Figure 7: Mean residual life plot for Bitcoin (left) and Ethereum (right) 

 

Generalized Extreme Value (GEV) Distribution 

The parameters of Generalized Extreme Value distribution which are the location parameter (𝜇), 

scale parameter (𝜎) and shape parameter (𝜉) are estimated via L- moment estimation. The results 

for both Bitcoin and Ethereum are shown in Table 4. 

 

Table 4: The estimated parameters of GEV distribution for Bitcoin and Ethereum 

 

Cryptocurrencies 

Parameters 

𝜇 𝜎 𝜉 

Bitcoin 0.060546 0.033243 0.267894 

Ethereum 0.074160 0.038924 0.345114 

 

The shape parameter, ξ obtained from both negative daily log-return are positive and are 

significantly different from zero at a 5% asymptotic level. It implies that the negative daily log-

return of both cryptocurrencies may have a heavier left tail. Overall, the finding indicates that the 

distributions of negative daily log-return of Bitcoin and Ethereum belong to the Fréchet family. 

 

Generalized Pareto (GP) Distribution  

The parameters of Generalized Pareto distribution are also estimated through L-moment estimation. 

The scale parameter (𝜎) and shape parameter (𝜉) for both cryptocurrencies are estimated and 

presented in Table 5. The shape parameter, ξ tabulated from both negative daily log-return are 

positive. When the shape parameter obtained is positive, the tail of the distribution will become 

progressively shorter as a polynomial and it is known as an infinite tail. The presence of an infinite 

tail can result in significant risk for financial portfolios and lead to large losses. Apart from that, 

the scale value of Ethereum is higher than the scale value of Bitcoin, it can be concluded that the 

uncertainty of returns of Ethereum is higher because the distribution’s spread is obtained from the 

scale values. 
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Table 5: The estimated parameters of GP distribution for Bitcoin and Ethereum 

 

Cryptocurrencies 

Parameters 

𝜎 𝜉 

Bitcoin 0.022356 0.355622 

Ethereum 0.034072 0.302534 

 

Simulation Studies 

In the simulation studies, two parameter estimation approaches which are L-moment estimation 

and maximum likelihood estimation (MLE) are conducted to investigate the estimation of 𝜎 and 𝜉. 

The extreme events are simulated from Generalized Pareto Distribution (GP) with three different 

sample sizes, 𝑛 = 500, 5000 and 50000. All evaluations are based on the bias, mean square error 

(MSE) and root mean square error (RMSE) estimated from 10000 simulations. 

The first simulation follows the GP distribution, 𝑋~𝐺𝑃(0.022, 0.356) where the scale and 

shape parameters are obtained from the parameter estimation of the Generalized Pareto Distribution 

of Bitcoin. Meanwhile, the second simulation follows the GP distribution, 𝑌~𝐺𝑃(0.034, 0.303) 

where the scale and shape parameters are obtained from the parameter estimation of the 

Generalized Pareto Distribution of Ethereum. Table 6 presents the full simulation results for 3 

different sample sizes. 

Table 6: Bias, MSE and RMSE of GP parameter estimation 

GP(𝜎, 𝜉) 𝑛 Methods 
Bias MSE RMSE 

𝜎 𝜉 𝜎 𝜉 𝜎 𝜉 

GP

(0.022,0.356) 

500 L-moment −0.0224 −0.3782 0.0005 0.1430 0.0224 0.3782 

 MLE 0.0212 −0.0304 0.00046 0.0281 0.0214 0.1677 

5000 L-moment −0.0224 −0.3780 0.0005 0.1429 0.0224 0.3780 

 MLE 0.0212 −0.0030 0.00046 0.0024 0.0213 0.0491 

50000 L-moment −0.0224 −0.3780 0.0050 0.1429 0.0224 0.3780 

 MLE 0.0210 −0.00045 0.00044 0.00024 𝟎. 𝟎𝟐𝟏𝟏 𝟎. 𝟎𝟏𝟓𝟔 

GP

(0.034,0.303) 

500 L-moment −0.0341 −0.3366 0.0012 0.1133 0.0341 0.3366 

 MLE 0.0190 −0.0187 0.00042 0.0151 0.0206 0.1230 

5000 L-moment −0.0341 −0.3369 0.0012 0.1135 0.0341 0.3369 

 MLE 0.0180 −0.0019 0.00033 0.0014 0.0181 0.0374 

50000 L-moment −0.0341 −0.3366 0.0012 0.1133 0.0341 0.3366 

 MLE 0.0179 −0.00030 0.00032 0.00015 𝟎. 𝟎𝟏𝟕𝟗 𝟎. 𝟎𝟏𝟐𝟑 

 

Based on Table 6, the smallest values of bias, mean square error (MSE) and root mean square error 

(RMSE) are identified. Specifically, the scale parameter, 𝜎 and shape parameter, 𝜉 yielded the best 

performance in MLE for both GP(0.022, 0.356) and GP(0.034, 0.303). In addition, the values of 

bias, MSE and RMSE for MLE will reduce when the sample size increases, while remain the same 

for LMOM. Therefore, it can be concluded that the MLE with sample size 50000 is superior and it 

provides better estimates of the parameters and less computation time compared to LMOM. 

 

Goodness-of-Fit 

Goodness-of-fit for negative daily log-return of Bitcoin and Ethereum are then examined by using 
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Anderson-Darling (AD) test to evaluate the performance between GEV and GP model. The high 

p-value in the Anderson-Darling test indicates a better fitting model. The results tabulated are given 

in Table 7. 

 

Table 7: Anderson-Darling test for Bitcoin and Ethereum 

Model 
Bitcoin Ethereum 

Anderson-Darling p-value Anderson-Darling p-value 

GEV 0.2635 0.6797 0.2164 0.8319 

GP 0.2658 0.6786 0.3852 0.3806 

 

For Bitcoin, the GEV distribution gives the highest p-value which is 0.6797 with AD (0.2635) in 

the goodness of fit test which means GEV distribution fits the data well. Similarly, it can be seen 

that GEV distribution fits well to the negative daily log-return of Ethereum because of the high p-

value shown in Anderson-Darling test. Consequently, GEV distribution fits the two negative log-

return series well especially for Ethereum with the highest p-value which is 0.8319. 

 

Value-at-Risk 

In this section, age-weighted historical simulation method and normal distribution are used to 

calculate the VaR of the daily log-return series for Bitcoin and Ethereum. The sample data is 

separated into in-sample and out-sample data before the VaR is estimated. The sample period for 

this study is from 1st January 2020 until 31st December 2022. The in-sample period will start from 

1st January 2020 to 31st December 2021 while the out-sample period is from 1st January 2022 to 

31st December 2022. 95% VaR are tabulated using the in-sample data which consists of 731 

business days. 

 

Table 8: A 95% VaR Estimates  

 

Cryptocurrencies 

Non-Parametric Method 

Age-weighted historical simulation 

(AWHS) 

Parametric Method 

Normal distirbution 

Bitcoin −6.22% −6.49% 

Ethereum −7.03% −8.46% 

 

The VaR at a 95% confidence interval is the daily return located at the 5% percentile of the daily 

return series. For the non-parametric method which is the age-weighted historical simulation 

(AWHS), the risk value realized in Bitcoin is -6.22% but is -7.03% for Ethereum. This indicates 

that the loss for Bitcoin will not exceed 6.22% for 95 days out of 100 days and the loss for Ethereum 

will not exceed 7.03%. Hence, Bitcoin has a smaller VaR, so it will experience a smaller loss 

compared to Ethereum and it can be considered as a lower risk cryptocurrency. For the parametric 

method, which is normal distribution, Ethereum remains as the riskiest cryptocurrency which will 

give the largest loss of 8.46%. However, the maximum loss that will be experienced by Bitcoin 

is only 6.49%. This can be easily understood by the following example: if investors make a 

RM1000 investment on Ethereum, the maximum loss that they will need to face is RM84.60, but 

if they invest RM1000 on Bitcoin, their loss will not exceed RM64.90. Comparing the two 
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cryptocurrencies, the estimated 95% VaR by using AWHS is lower than normal distribution. 

Besides, in nonparametric and parametric methods, the VaR value of Bitcoin is lower than that of 

Ethereum. In fact, because the risk level of Bitcoin is relatively low, it is more worthy of 

recommendation by investors. 

 

Backtesting 

The backtest procedure which consists of unconditional coverage test, independence test and 

conditional test is conducted in this section. Before the backtest procedure is conducted, VaR for 

the year 2022 is tested by using the daily cryptocurrencies returns from the year 2020 and 2021 to 

ensure its accuracy. After that, the estimated VaR is compared with the actual return. The obtained 

results are discussed in the section below. 

 

VaR-breaks Observations 

The number of 95%-VaR produced by age-weighted historical simulation and normal distribution 

are compared to the expected number of violations at a 95% confidence level. The results are 

recorded in the table below. 

 

Table 9: Expected and actual number of 95%-VaR obtained 

 Bitcoin Ethereum 

Trading days 

Expected XVaR(0.05) 

731 

16 

731 

16 

Age-weighted Historical Simulation 

Actual XVaR(0.05) 

 

3 

 

4 

Normal distribution 

Actual XVaR(0.05) 

 

15 

 

16 

 

It can be clearly seen from Table 9 that the actual VaR exceedance of normal distribution is 

equivalent or nearly equal to the expected VaR exceedance whereas the age-weighted historical 

simulation method overestimated the VaR, as the actual VaR exceedance is lower than the 

expected VaR violation. 

 

Unconditional Coverage Test 

The unconditional coverage test is conducted in this section to determine whether the expected 

violations, 𝑝, are equivalent to the actual violations in the series. The result is shown in Table 10. 

 

 

 

 

 

 

 

 



 

 

Value-at-Risk of Bitcoin and Ethereum Using Extreme Value Theory  

 
 

Menemui Matematik Vol. 45(2) 2023                                                173 

  

 

 

 

 

 

 

Table 10: Unconditional coverage test for 95%-VaR 

 Bitcoin Ethereum 

Age-weighted Historical Simulation   

𝐿𝑅𝑈𝐶 17.6824 14.4688 

p-value 0.000026 0.0001425 

Conclusion Reject Reject 

Normal distribution   

𝐿𝑅𝑈𝐶 0.1883 0.0313 

p-value 0.6643 0.8596 

Conclusion Fail to reject Fail to reject 

 

As can be seen from Table 10, a high p-values indicates that the distribution performs well at a 

95% confidence interval. For the non-parametric approach, the p-value obtained for both 

cryptocurrencies are very small. Hence, the null hypothesis where the expected violations are 

equivalent to the actual violations in the series is rejected. However, the normal distribution in 

parametric approach has high p-values which means that normal distribution performs better than 

age-weighted historical simulation method. 

 

Independence Test 

Independence test is conducted to test the independence of VaR violations as according to 

Christoffersen (2004), the violations in a data series need to be independent. 

 

Table 11: Independence test for the 95%-VaR 

 Bitcoin Ethereum 

Age-weighted Historical Simulation   

𝐿𝑅𝐼𝑁𝐷 5.9994 4.6706 

p-value 0.0143 0.0307 

Conclusion Reject Reject 

Normal distribution   

𝐿𝑅𝐼𝑁𝐷 1.9507 0.0707 

p-value 0.1625 0.7903 

Conclusion Fail to reject Fail to reject 

 

A similar result are obtained from the independence test. Under the age-weighted historical 
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simulation method, the null hypothesis is rejected, while under the normal distribution, the null 

hypothesis is not rejected. 

 

Conditional Coverage Test 

The joint test of unconditional coverage test and independence test is conducted, and the result is 

presented in Table 12. 

 

Table 12: Conditional coverage test for 95%-VaR 

 Bitcoin Ethereum 

Age-weighted Historical Simulation   

𝐿𝑅𝐶𝐶 23.6818 19.1394 

p-value 0.0000072 0.00006981 

Conclusion Reject Reject 

Normal distribution   

𝐿𝑅𝐶𝐶 2.1390 0.1020 

p-value 0.3432 0.9502 

Conclusion Fail to reject Fail to reject 

 

For these two cryptocurrencies, the p-value for conditional coverage test by using normal 

distribution is greater than the critical level of 𝛼 = 0.05. Therefore, it can be concluded that normal 

distribution VaR models for Bitcoin and Ethereum have correct exceedances and are independent. 

 

 

CONCLUSION 

 

When making financial decisions, it is important to understand the risk probability. Numerous 

strategies have been proposed; however, they appear to have relevance only when the normality 

statement is considered to be true. Extreme value theory (EVT), in contrast, offers a better approach 

for comprehending tail returns. The main focus of this study is the downside risk of extreme returns 

of Bitcoin and Ethereum by using EVT. In this study, the maximum extreme returns of Bitcoin and 

Ethereum are estimated using the block maxima (BM) and peaks over threshold (POT) approach. 

The negative daily log-return of each cryptocurrency are fitted into the Generalized Extreme Value 

(GEV) Distribution and Generalized Pareto Distribution (GP) models. Suitable representation of 

the perceived data as well as sufficient accordance with the underlying theories are shown by the 

findings of this study. Therefore, investors who are considering cryptocurrencies in their 

investment portfolio can use this study as a benchmark for decision-making as this study gives 

some useful information about the maximum loss and VaR of Bitcoin and Ethereum. In this study, 

the scope of study only involves two types of cryptocurrencies which are Bitcoin and Ethereum. 

Besides that, there are only two methods which are chosen to estimate the VaR of each 

cryptocurrency. Hence, it is suggested that the scope of study be widened by involving much more 

cryptocurrencies like Tether (USDT), Binance Coin (BNB), USD Coin (USDC), and Dogecoin 

(DOGE) since every cryptocurrency has a different level of risk. It is also suggested to include 
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different types of VaR models such as historical simulation and Monte-Carlo simulation for non-

parametric approaches while Exponentially Weighted Moving Average (EWMA), Student’s t-

distribution and Variance Gamma (VG) distribution are used for parametric approaches. 
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