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ABSTRACT 

This article presents a nonlinear deterministic mathematical model which simulates the transmission 

dynamics of hantavirus infection in the presence of vaccination as well as other optimal control 

measures. The model is formulated by improving the previous models and including vaccination as 

an essential component of its optimal control variable. The model is then analyzed for local stability 

and the disease reproduction number is obtained. Subsequently, the analysis of the model’s optimal 

controls is done using the Pontryagin maximum principle. The necessary conditions for the optimal 

solution are obtained and used to formulate the adjoint equations and characterize the optimal 

controls. The model equations and adjoint equations are then solved in the MATLAB environment 

and used to simulate the population dynamics of the infected and susceptible humans and rodents. 

The values for the model parameters used for the simulations are obtained from previous works of 

literature. Thereafter, the global sensitivity analysis of the model's optimal control variables is 

performed using infected humans and rodents as the expected outputs. The simulation results 

indicate that within five months, the populations of rodents and infected humans had approached 

zero. The population of susceptible humans increased initially but the rate of increase later slowed 

down. As for the susceptible rodents, the population increased for the first two months to a 

maximum point, then it decreased and approached zero. The results of the global sensitivity analysis 

show that the first-order sensitivity index for the vaccination in the infected human is 1.0 and 0.9935 

in the infected rodents. Similarly, the total-effect sensitivity index for the vaccination in the infected 

humans is 0.0142 and -0.0691 in the infected rodents. Lastly, based on the simulation and sensitivity 

analysis results, the presented model, which integrated vaccination with other optimal control 

strategies, is the most viable model for Hantavirus. 

 
Keywords: Hantavirus; Vaccination; Pontryagin Maximum Principle; Biodiversity; Sensitivity 

Analysis 

 

INTRODUCTION 

Hantaviruses, which are etiological agents carried by wild rats, are primarily transmitted to 

people through direct human contact. Such encounters may occur while inhaling polluted air, 

touching contaminated soils and surfaces, consuming contaminated water and food       

(Martins et al., 2019), or coming into contact with an infected rodent's excreta, urine, or saliva   

(Wang et al., 2020). The breakout of hantavirus infections within the human population can be 

attributed to the ecological interactions between the virus, the humans, and the reservoir 

(Koishi et al., 2016). In the New World, the Hantavirus Cardiopulmonary Syndrome (HCPS) 

has been confirmed as a deadly disease caused by Hantavirus. Similarly, in the Old World, 
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Hemorrhagic Fever with Renal Syndrome (HFRS) which is also carried on by the worm has 

also been categorized as a deadly disease (Nusshag et al., 2017). Consequently, these viruses 

have been responsible for over 200,000 yearly human infections, with case fatality rates of 5–

15% for HFRS and up to 40% for HCPS. Unfortunately, neither of the disease caused by the 

virus has an effective cure (Liu et al., 2020). Therefore, it is crucial to carry out research 

activities to discover a treatment for the virus, halt its spread, or optimally control the spread 

of the virus. The employment of mathematical models is crucial to achieving this objective. 

 The use of mathematical models for describing Hantavirus infection was pioneered by 

Abramson and Kenkre (2002). The authors formulated a nonlinear deterministic model that 

described the infection's temporal and spatial properties. Apart from this model, several 

nonlinear deterministic models for Hantavirus have also been developed by other authors 

(Abdul Karim et al., 2009; Abramson et al., 2003; Abramson, 2008; Kenkre et al., 2007;  Goh 

et al., 2009; Gokdogan et al., 2012; Peixoto and Abramson, 2006; Rida et al., 2012). In 

continuation, Yusof and Ismail (2019) presented a mathematical model which examined the 

transmission dynamics of the infection and forecasted the path of the disease. The authors 

concluded that the elimination of the disease depended on the environmental parameter ( k ) of 

the real ecosystem of the model, where humans can get sick from being bitten or scratched by 

an infected rodent. Furthermore, the authors obtained the reproduction number and discussed 

its sensitivity with respect to the model parameters. Finally, the bifurcation analysis was done 

by the authors which resulted in the discovery of the disease-free equilibrium points and the 

asymptotical stability of the endemic.  

Although these previous authors have contributed substantially to the research work of 

eliminating Hantavirus by developing and analyzing models, certain control mechanisms were 

still left out in the models. An effective way of eradicating or stopping the spread of an 

infectious disease is to introduce control measures. As a result of this gap, Yusof et al. (2019) 

presented a mathematical model that considered two distinct effective control measures that 

could stop the spread of the infection.  According to the authors, the disease can be effectively 

controlled by reducing the number of rodents that disseminate the Hantavirus infection. 

Hence, harvesting efforts and biodiversity control measures were included in their proposed 

model as model parameters. Despite the strong academic effort of the authors, the control 

measures presented only addressed the population of the infected rodents, thereby 

overlooking the significant populations of infected as well as susceptible humans, which was 

the main objective of the research endeavor.  As a result, this article presents a multi-species 

nonlinear deterministic mathematical model simulating the dynamics of Hantavirus 

transmission and the consequences of the disease in the presence of three essential 

preventative strategies: vaccination, biodiversity, and harvesting efforts. 

Amongst these preventative strategies, the use of vaccination has been described as a 

successful strategy and has undergone extensive research. According to Mu et al. (2019), 

vaccination is an effective method of stopping infectious disease transmission. Hugo et al. 

(2017) studied the effects of chicken vaccination, education campaign, and treatment as the 

optimal control strategies in curbing the spread of Newcastle disease (ND). According to the 

scientists, the chicken vaccination introduces latent diseases into the susceptible population, 

enabling the vaccinated animals to manufacture potent defenses against the frailer pathogens. 

Thus, the authors concluded that the optimal control measures with chicken vaccination could 

contribute to the eradication of Newcastle disease (ND) among humans. So, including 
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vaccination as a control measure in Hantavirus modeling is a significant input Peixoto and 

Abramson (2006). 

The proposed multi-species model in this article is formulated by combining the 

biodiversity model of Peixoto and Abramson (2006) and the Hantavirus transmission 

dynamics model of Yusof et al. (2019). This combination allows the biodiversity and 

harvesting control measures to be included in the proposed model. Thereafter, the effect of 

vaccination on susceptible and infected humans is included in the proposed model by using 

the same strategy as used by Hugo et al. (2017) in the chicken vaccination. The proportion of 

infected rodents and humans in the population is reduced once the model is created using the 

optimum control theory. According to Bryson (1996), the process of calculating out control 

and state trajectories for a dynamic system over a period of time in order to minimize a 

performance index or cost functional is known as optimal control theory. The optimal control 

theory is defined as a mathematical method derived from the calculus of variations (Gaff and 

Schaefer, 2009) and it has recently been used to decide optimal strategies for infectious 

diseases. 

This article is divided into sections. The strategy utilized to acquire the results is 

explained in Section 2. The methodology section is divided into subsections which include the 

model formulation, the model analysis, the model simulation, and the sensitivity analysis. 

Section 3 presents the results and discussion. The article is then concluded by stating the 

summary of this research.     

 

METHODOLOGY 

This section presents the methodology used in obtaining the results. The first part includes the 

model formulation which is done in three steps. Thereafter, the model analysis is done in two 

stages. The first stage is the local stability analysis while the second stage is the optimal 

control analysis. The model simulation is then done in MATLAB by using numerical values 

from previous literature. Finally, the sensitivity analysis is done and the sensitivity values of 

the three optimal controls with regard to two model variables (infected humans and infected 

rodents) are done.     

 

Model derivations 

The proposed model is presented in this section in three steps. In the first two steps, the 

previous models used for the formulation are presented while the third step presents the 

proposed model.  

 

Step 1 

The following describes the Hantavirus model involving the two basic components of infected 

and susceptible rodents have been proposed by Abramson and Kenkre (2002). This basic two-

component model considered the transmission dynamics of the Hantavirus within the 

populations of a single rodent specie. The populations of the infected and susceptible rodents 

are represented by rS and rI
 
respectively.  
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where ( ) ( ) ( )tItStN rrr +=  denotes the total population of rodents. The birth rate is 

represented by  , the natural mortality rate is given by  , the transmission rate of Hantavirus 

is given by   and this term is also called the aggression parameter. Finally, the environmental 

parameter is given by e . Based on the Abramson and Kenkre (2002)  model, the infection 

dies away when cee  , where ( )( ) −= /ce

 

and the infection continues to thrive since 

there is abundant edible resources when cee  .  

 The formulation of the proposed model is then continued by including other 

populations in addition to the two rodents’ populations.  

 

Step 2 

The populations of aliens and susceptible as well as infected humans are now incorporated 

into the proposed model. This is accomplished by applying the model of  Yusof and Ismail 

(2019). The model developed by Yusof and Ismail (2019) expanded the model of Peixoto and 

Abramson (2006), which included biodiversity, by including the impact of human infection 

on the direct transmission of the propagation of the Hantavirus. 

The model is given by Equation 2 below     
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where, hS  and hI  are the populations of susceptible and infected humans, respectively at any 

given time t. The parameter   denotes the human birth rate,   gives human death rate,   

denotes the human recovery rate, and   denotes the transmission rate from humans to 

rodents. As for the alien population,  denotes influence of the alien population and ( )tAz  

represents the population of aliens. For the alien population,  and   , nm  denote the 

corresponding parameters for obtaining resources from the other species and e  denotes the 

environmental parameter.  

To include control strategies in the proposed model, the dynamical Newcastle disease 

model of Hugo et al. (2017), which incorporated chicken vaccination, is used with the model 

of Yusof and Ismail (2019). The Newcastle disease model is given below by Equation (3).  
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where ( )tS1  and ( )tI1  represent the populations of susceptible chicken and infected chicken, 

respectively. As for the human populations, the susceptible humans is denoted by ( )tS2 , the 

infected humans is given by ( )tI2 , and the human recovery class is denoted by ( )tR2 . The 

parameters of Equation (3) are described in Table 1. 

 

Table 1: Details of the variables utilised in Equation (3). 

Symbol Description 

R The intrinsic growth rate of chickens 

K The carrying capacity of the population 

1  The force of the infection 

2  The infection of Humans as a result of force of infection 

1  The natural death rate of chickens 

M The death rate caused by the disease 

2  
The loss suffered by the human population as result of the natural 

death rate 

  The rate of recovery   
  The treatment rate  

1b , 1c , 2b , 2c  
The predation functional response of humans towards susceptible 

and infected chicken rate 

1a , 2a , 1n , 2n  The half saturation constant rate 

1 , 2 , 3 , 4  
The consumed susceptible and infected chickens are converted into a 

human at an efficient rate 

( )tu1  Control variable for the chicken vaccination 

( )tu2  Control variable based on the human education campaign 

( )tu3  
Control variable used to measure the effectiveness of treatment of 

infected humans. 

 

Step 3 

The proposed model is then formulated by using Equation (2) and (3). Equation (2) is used as 

the reference and the chicken vaccination strategy in Equation (3) is integrated into Equation 

(2). The vaccination strategy for susceptible and infected chickens in Equation (3) is now used 

as a vaccination strategy for susceptible and infected humans in Equation (2).  Subsequently, 



Fauzi Mohamed Yusof and  Farayola Musiliu Folarin  

 

Menemui Matematik Vol. 45(1) 2023                                                      61 

 

the second control measure of harvesting efforts (removal of the populations of infected 

rodents and susceptible) is included in Equation (2). Finally, the control measure of 

biodiversity is included in the alien population of Equation (2). Therefore, the proposed 

optimal control strategy for eliminating Hantavirus from rodent and human populations is a 

combination of these three strategies (vaccination, harvesting activities, and biodiversity). The 

proposed model is then given in Equation (4).  
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where ( )t1 , ( )t  and ( )t2  are the control variables for human vaccination, the harvesting 

efforts, and biodiversity respectively. The fraction of the rodent population that is removed 

during each period is referred to as the harvesting efforts. The supply and profusion of alien 

and rodent species within an ecosystem are referred to as biodiversity. 

The efficiency of the vaccine is denoted by ( )( )t11 −  and the value ( )( )t21 −  is used 

to lessen the impact of the Hantavirus infection. The control variables being engaged, ( )t1 , 

( )t  and ( )t2  are constrained by Lebesgue measurable functions on  1,0 . The main 

objective of these control variables is to minimize the population of infected humans and 

rodents meanwhile maximize the populations of susceptible human populations. In the 

following section, the model is analyzed for stability after formulating created. 

 

MODEL ANALYSIS 

The analysis of the model Equation (4) is presented in this section. The first analysis is the 

local stability analysis behavior of the model Equation (4) at various positive equilibrium 

points.  

Local Stability Analysis 

The equilibrium point is found by setting 0=====
dt

dA

dt

dI

dt

dS

dt
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dt

dS zrrhh . In the absence 

of infection, the model Equation (4) has a steady state, 0E  called the disease-free equilibrium, 

where ( )( ) 







−− 0 ,0 , ,0 ,0 teE 




. According to Van den Driessche and Watmough 

(2002), linear stability 0E  is formed using the next-generation operator method on the model 

Equation (4). The matrices of the new infection terms (F) and the terms of the vital dynamics 

(V) are given as 
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where ( )( )teQ  −−=1 . Therefore, the disease reproduction number ( 0R ) for optimal 

control strategies in the model Equation (4) is given as the dominant eigenvalue of 1−FV : 
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Optimal Control Analysis 

The optimal control analysis for the model Equation (4) is done by following the method of 

Momoh and Fügenschuh (2018). The Pontryagin maximum principle is then use to control 

the required conditions for the optimal control of the propagation of the Hantavirus 

infection. To achieve optimal control, it is necessary to reduce the number of infected 

humans and rodents disseminating the Hantavirus infection. The controls are vaccination, 

harvesting efforts, and biyodiversity controls. The technique for minimizing the number of 

infected rodents and human disseminating this infection is obtained by using the functional 

given by:  
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Thereafter, the bounded Lebesgue measurable functions are used to determine the objective 

functional. This is given by Equation (6), 
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where 1 , 2  and are weight constants for human vaccination, harvesting efforts, and 

biodiversity respectively. As for the objective functional, the weight constant of infected 

humans is represented by 1M , the weight constant of susceptible rodents is given by 2M , and 

the weight constant of infected rodents is represented by 3M .  

 

Afterward, the optimal control strategies ( ) ( ) ( )( )ttt *
2

**
1 ,,   are sought such that   
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The Lagrangian for the optimal control problem is given as 
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where 1 , 2 , 3 , 4  and 5 are the adjoint variables or co-state variables. 

 

From Equation (7), the subsequent adjoint equations are generated as follows in Equation (8) 
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with transversality condition (or the boundary condition) given below 

  ( ) ( ) ( ) ( ) ( ) 054321 ===== endendendendend ttttt  . 
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The Hamiltonian H is then differentiated into ( )t1 , ( )t  and ( )t2 , and set to be 
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Further, solving for the optimal controls 
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Then the second derivate of the Lagrangian function to ( )t1 , ( )t  and ( )t2  are obtained. 

The values of these second derivatives which are given below are all positive and this implies 

that the optimal control strategy approaches the minimum at controls ( )t1 , ( )t  and ( )t2  

(Lenhart and Workman, 2007). 
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Therefore, the problem is associated with a decrease in the of the populations of infected 

humans and rodents with optimal control strategies since the second derivative is greater than 

zero (Lenhart and Workman, 2007). 

 



Fauzi Mohamed Yusof and  Farayola Musiliu Folarin  

 

Menemui Matematik Vol. 45(1) 2023                                                      65 

 

Finally, the characterization of the optimal controls ( )*t  and ( )*t  are given by Equation (9) 

below 
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(9) 

By using standard arguments that involve the limitations on the controls, the optimal controls 

can be written as shown below  
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MODEL SIMULATION 

This section presents the model simulation to describe the affects of the optimal control 

strategies of vaccination, harvesting efforts, and biodiversity on the dynamics of the 

Hantavirus. The model simulation is done in the MATLAB environment.  The model 

Equation (4) and adjoint Equation (8) are solved simultaneously in MATLAB software which 

makes a total of ten equations. The dependent model variables in Equation (4) are the 

populations of the rodents (i.e., infected and susceptible), humans (i.e., infected and 

susceptible), and aliens while the dependent model variables in Equation (8) are the adjoint 

variables. As illustrated in Equation (9), the adjoint variables are employed to obtain the 

optimal control variables ( ) ( ) ( )( )ttt 21 ,,  , which are then used in the ten equations. The 

MATLAB inbuilt code (ode45) was used for solving the ten equations (model Equation (4) 

and adjoint variables Equation (8)). The time interval was chosen as [0,5] which signified five 

months.  

The values for the model parameters used in the simulation were obtained from 

previous literature [20, 14]. The weight constant values in the objective functional were 
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chosen as 25.01 =M , 75.02 =M , 5.03 =M , 16.01 = , 11.02 =  and 15.03 = . According to 

Momoh and Fügenschuh (2018), the factors  iM  ( )3 ,2 ,1for =i  are higher than the  j  

( )3 ,2 ,1for =j  factors, this is to emphasize the size of the groups that should be smaller 

during optimization. The list of the values of the model parameters for Equation (4) and 

Equation (8) and their corresponding descriptions and references are presented in Table 2. 

The initial values for the populations of the rodents (i.e., infected and susceptible), humans 

(i.e., infected and susceptible), and aliens were set as 5 during the simulations while the initial 

values for the adjoint variables were set as 0. The simulation findings for the dynamics of the 

infected human, susceptible human, infected rodent, and susceptible rodent populations are 

shown in Figures 1-4, respectively. 

 

Table 2: Parameter Values of Equation (4) 

Symbol Description Parameter value References 

  Birth rate (Humans) 6.75 Li and Blakeley  

(2011)  

 
  Death rate (Humans) 0.15  Li and Blakeley  

(2011)  

 
  Recovery rate (Humans) 3.075 Li and Blakeley  

(2011) 
  Transmission rate from 

humans to rodents 
0.03 

Li and Blakeley  

(2011) 
  Birth rate (Rodents) 

1 
Peixoto and 

Abramson (2006) 
  Death rate (Rodents) 0.6 Peixoto and 

Abramson (2006) 
  The transmission rate of 

Hantavirus 
0.1 

Peixoto and 

Abramson (2006) 
e  The environmental parameter 200 Assumed 
  Competitive effect of rodents 

on alien species 
0.2 

Peixoto and  

Abramson (2006) 
m  Birth rate (Aliens) 

1 
Peixoto and  

Abramson (2006) 
  n  Death rate (Aliens) 

0.5 
 Peixoto and  

Abramson (2006) 
  Competitive effect of rodents 

on alien species 
0.1 

Peixoto and  

Abramson (2006) 
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Figure 1. The population dynamics of infected humans within 5 months 

 

 

 
Figure 2. The population dynamics of susceptible humans within 5 months 



Modeling the transmission dynamics of Hantavirus infection under the effect of vaccination and other optimal controls   

 

Menemui Matematik Vol. 45(1) 2023                                                        68 

 

 
Figure 3. The population dynamics of infected rodents within 5 months 

 

 
Figure 4. The population dynamics of susceptible rodents within 5 months 
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The sensitivity analysis for the optimal control variables ( )t1 , ( )t  and ( )t2  are presented 

in the next section.  

 

SENSITIVITY ANALYSIS 

 

Finding out how each model input factor contributes to the indecision in the output factor is 

the main goal of sensitivity analysis. The sensitivity analysis establishes the impact of 

changes in these input factors on the accuracy of the output factor's prediction. Thus, it is 

possible to establish the order of relevance and relative significance of the model input 

factors. The significance of an input factor to the precision of an output factor increases with 

its sensitivity. For the sensitivity analysis, the populations of infected humans and infected 

rodents are the chosen model output factors, while the chosen model's input factors are the 

optimal controls, which include vaccination, harvesting efforts, and biodiversity 

( ) ( ) ( )( )ttt 21 ,,  .  

As a result, the values of the sensitivity indices of the optimal control factors 

( ) ( ) ( )( )ttt 21 ,,   establish their relative significance in the outcome of populations of 

infected humans ( )hI  and infected rodents ( )rI . The procedures for the sensitivity analysis of 

the model input factors are described in the next section. The steps include the mathematical 

method, the computational process, and the sensitivity values. These steps are presented 

below. 

 

The Mathematical Method 

The variance-based method, which is appropriate for global sensitivity analysis, is the 

mathematical technique used. The first-order sensitivity indices and the total-effect sensitivity 

indices of the model input factors are found by using the variance-based method. A model 

input factor's proportional importance to an output factor is shown by the first-order 

sensitivity index. The significance of the factor increases with the first-order index's 

magnitude. The significance of the interaction of an input factor with other input factors is 

shown by the total-effect sensitivity index. Using the formulae below, the model's sensitivity 

indices are calculated  (Saltelli et al., 2008; Farayola et al., 2020). 

 

( ) 
( )YV

XYEV
S i

i

|
=          (10) 

( ) 
( )YV

XYEV
S i

Ti
~|

1−= ,        (11) 

where iS  is the first-order sensitivity index of the model input factor iX , ( ) iXYEV |  is the 

variance of the conditional expectation of the model input factor iX , ( )YV  is the 

unconditional variance of the model input factor iX , TiS  is the total-effect sensitivity index of 

the input index iX , and  ( ) iXYEV ~|  is the variance of the conditional expectation of all 

input factors except iX . 
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The method for calculating the model factors' sensitivity indices is shown in the following 

section. This is accomplished in MATLAB by utilizing  the computational method proposed 

by Saltelli et al. (2008). 

 

The Computational Process 

The computational process is done in steps as suggested by Saltelli et al. (2008). The steps are 

presented below.   

 

Step 1 

A random matrix X0 with dimension (101, 6) was built. The 6 columns were selected since 3 

model factors ( ) ( ) ( )( )ttt 21 ,,   were to be analyzed. The MATLAB sobolset function was 

used to produce random integers, which were then applied to the matrix X0. The produced 

sobolset's sample space within interval (0,1). 

 

Step 2 

Two matrices MATA and MATB with dimensions (101, 3) each, were built. The values of the 

random matrix X0 (101, 1-3) were assigned to matrix MATA and X0 (101, 4-6) were 

assigned to matrix MATB. Four more matrices A1, 1MAT  (for storing ( )t1 ), 1MAT  

(for storing ( )t ), and 2MAT (for storing ( )t2 ) with dimensions (101,1) each, were built.  

The values of the model factor to be analyzed ( iX ) were then assigned to the matrix A1. This 

was done by solving Equation (4) and (8) in MATLAB with inbuilt function ode45 and the 

results were used in Equation (9) to obtain the optimal control values of ( )t1 , ( )t , ( )t2  

which were then stored in arrays 1MAT , 1MAT , and  2MAT  respectively.  The values 

of the array 1MAT ,  1MAT , or 2MAT  were then transferred to the array A1 

depending on which optimal control value was to be analyzed.  Therefore, the entries in all 

the rows of array A1 were the optimal control values to be analyzed.  

 

Step 3 

For the sensitivity analysis of each of the optimal control values, the values of the A1 are then 

transferred to the appropriate column of the array MATA. For instance, the values of A1 

(from 1MAT ) were transferred to column 1 of the array MATA for the sensitivity analysis 

of ( )t1 . Similarly, the values of A1 (from 1MAT , or  2MAT ) were transferred to 

columns 2 or 3 of the array MATA for the sensitivity analysis of ( )t  or ( )t2  respectively.  

 

Step 4 

The values of MATB are then transferred to MATC. Next, the values of A1 are transferred to 

the appropriate columns of the MATC as done in the case of MATA. This implied that matrix 

MATC consists of resampled values of MATA apart from the column to which A1 was 

assigned. The values of the 3 columns of each row were used in solving Equation (4) and (8) 

with ( )t1  in the equations being replaced by the values of column 1 in MATA, ( )t  being 

replaced by values in column 2 in MATA, and ( )t2  replaced by values of column 3 in 

MATA. The only outputs taken into account for the sensitivity analysis were the rodent and 
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human populations that were infected. The outputs of the infected human and rodent 

populations were stored in column matrices FA1 and FB1 respectively.  

 

Step 5 

Similar procedures were used for the matrices MATB and MATC and their outputs were 

stored in arrays (FA12, FB12) and (FA13, FB13) respectively. The sensitivity indices were 

calculated using the output matrices and the algorithm provided below. The sensitivity 

algorithms were used to compute the first-order and total-effect sensitivity indices of ( )t1 , 

( )t , and ( )t2  in the model (Equation (4) and (8)) to the values of the infected humans and 

infected rodents.  

 

The first-order sensitivity index is given as 

 

( ) 
( )YV

XYEV
S i

i

|
=  

     
( )( )
( )( )2

2

11

131

XEFAFA

XEFAFA

−

−
= , 

     

( ) ( ) ( ) ( )( )

( ) ( )( ) ( )( )2
2

2

11

1311

XEFA
N

XEFAFA
N

N

i

i

i
N

i

i

−

−

=




          (12) 

 

The total-effect sensitivity index is given as  
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The N is the number of rows in the matrices, and the expected value ( )XE , in Equation (12) 

and (13), is the mean value of the expected output. These are the mean value of the infected 

rodents ( )rI  and infected humans ( )hI . These mean values are obtained by solving the model 

(Equation (4) and (8)) and storing the populations of the infected humans and rodents in 2 

matrices from which their means were obtained. The sensitivity indices thus provided 

deviations from the accurate value. This computational method is very efficient because the 

total computational cost for each model factor is N(3 + 2), as against 
2N which is the 

computational cost for using the direct brute-force method Saltelli et al. (2008). The matrices 
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( )13,12,1 FAFAFA  were used when the output was the population of the infected humans 

while the matrices  ( )13,12,1 FBFBFB  were used when the output was the population of the 

infected rodents.  

The Sensitivity Values 

The values of the sensitivity indices of the optimal control variables ( )t1 , ( )t , and ( )t2  

are presented in Table 3-Table 4. The sensitivity indices should be between 0 and 1, and the 

higher the magnitude of the first-order index, the higher the importance of the factor in the 

model equations. The values of the total-effect sensitivity index represent the interaction 

between the model factor and other factors.  

Table 3: Sensitivity Values (Infected Humans as output) ( )XE =1.2613 

Model factors 
iS  TiS  

( )t1  1.0 0.0142 

( )t  0.9986 0.0016 

( )t2  0.9997 -0.0012 

 

Table 4: Sensit.ivity Values (Infected Rodents as output)  ( )=XE  2.2551 

Model factors 
iS  TiS  

( )t1  0.9935 -0.0691 

( )t  0.9940 0.2564 

( )t2  0.9975 -0.0945 

 

 

RESULTS AND DISCUSSION 

From the outcomes of the model simulations, as obtainable in Figure 1-4, the transmission 

dynamics of the Hantavirus infections as well as the population changes can be analyzed. As 

for the infected humans, shown in Figure 1, the population decreased and became zero within 

five months. This shows that the infection was eliminated within the human population. This 

implied that the optimal control measures of vaccination, harvesting efforts, and biodiversity 

were effective in eradicating the Hantavirus infection. 

The population changes in the susceptible humans were presented in Figure 2, and as 

expected, the population increased initially but the rate of increase decreased over time. The 

initial increase was due to the exposure of people to the Hantavirus and the later decline is 

because of the optimal control measures. Figure 3 shows the population changes in the 

infected rodents. The population of the infected rodents also declined and became zero within 

five months. This is due to the harvesting efforts of removing the infected rodents from the 

ecosystem. The last figure, Figure 4, shows the population changes in the susceptible rodents. 

The population increased initially and got to the maximum turning point within two months 

and it then decreased and tended towards zero. This is due to the control measure of 

harvesting efforts and biodiversity.  The turning point experienced in Figure 4 was also 



Fauzi Mohamed Yusof and  Farayola Musiliu Folarin  

 

Menemui Matematik Vol. 45(1) 2023                                                      73 

 

observed in Figure 1 (population dynamics of infected humans) and Figure 3 (population 

dynamics of infected rodents) as points of inflexions. These turning points showed that the 

optimal control measures changed the trends of the populations. Without control measures, 

the population of the susceptible rodents would have continued to increase, and the 

populations of the infected humans and rodents would not have tended towards zero.  

From the outcomes of the sensitivity analysis, the relative importance of the optimal 

control measures in the model equations can be obtained. For obtaining the population of the 

infected humans, when the model’s output is hI , the most sensitive model factor was 

vaccination ( )t1 . This was shown in Table 1 with its first-order sensitivity value of 1.0. The 

model factors of biodiversity and harvesting efforts followed suit in terms of sensitivities. 

These results show that simulating accurate population changes of the infected humans, 

including the control measures is significant with the vaccination being the most important 

model factor. As for their relative importance in terms of their interactions with one another, 

this can be obtained from their total-effect sensitivity values. Generally, they all have low 

total-effect sensitivity values, showing that the effects of their interactions with one another 

are low. Furthermore, when the model’s output is infected rodents ir , the most sensitive 

model factor is biodiversity. This was illustrated in Table 2. However, the three control 

measures have relatively high first-order sensitivity values, showing their significance in the 

model. As for their relative importance, in terms of interactions, the harvesting effort is the 

only important factor with a total-effect sensitivity value of 0.2564. The other two had 

relatively low total-effect sensitivity values.  

The outcomes of the model simulations show the effectiveness of the model in 

simulating the population dynamics of the Hantavirus infection while the sensitivity analysis 

shows the importance of the optimal control measures in the model. It can be inferred that the 

vaccination of the human population contributed significantly to the elimination of the 

infection within the infected humans while the biodiversity and harvesting efforts also 

contributed to the elimination of infected and susceptible rodents. Although previous authors 

had presented models for Hantavirus elimination, the absence of vaccination in those models 

might have reduced their viabilities since human vaccination is the most effective clinical way 

of curbing an epidemic. Therefore, the presented model in this article has incorporated the 

most effective clinical control measure which is the human vaccination.  

 

CONCLUSION 

 In the present paper, a mathematical model with optimal control for Hantavirus infection was 

developed and analyzed to inspect the greatest strategy for governing Hantavirus infection in 

the populations of humans and rodents. The local stability analysis of the model was done 

from which the disease reproduction number 0R  was obtained. The optimal Hantavirus 

infection control conditions were established using the Pontryagin Maximum Principle. The 

developed model incorporated the optimal control strategies of vaccination, harvesting efforts, 

and biodiversity. The model was then utilised to simulate the population dynamics of the 

susceptible and infected humans and rodents. Furthermore, the global sensitivity analysis was 

done for the optimal control variables by using infected humans and infected rodents as 

outputs.  The results of the simulations showed that the Hantavirus will be eliminated from 

the populations of the infected humans and rodents within five months. The outcomes of the 

sensitivity analysis showed that vaccination is the model factor that can most accurately 
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simulate the population of infected humans.  Finally, it was concluded that the optimal control 

strategies will prevent further propagation of the Hantavirus infection, and the presented 

model which incorporated vaccination is the most viable.  
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