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ABSTRACT 

This paper is motivated by the unbalance utilization rate of public transit which affects the take-up rate 

of public transportation. The authors advocate solving this via the first-mile ridesharing problem. The 

selective open vehicle routing problem is used to model the first-mile ridesharing problem. Constrained 

K-Mean and K-Mean clusterings are used to cluster the dataset to represent the number of available 

drivers to service the transit to the stations. In terms of the meeting point selection, it can either be at a 

mutual meeting point (centroid) or at one of the cluster’s commuter residences (non-centroid).  For this, 

two types of models, Multi Origin Single Destination Split Delivery Open Vehicle Routing Problem 

(MOSD-SDOVRP) (Centroid) and Multi Origin Single Destination Split Delivery Selective Open 

Vehicle Routing Problem (MOSD-SDSOVRP) (Non-Centroid), are discussed. The proposed models 

are evaluated and compared using CPLEX with the well-known Solomon benchmark dataset. The 

results will allow a smooth transit for commuters from their respective residences to the station to 

encourage a high take-up of public transportation. 

Keywords: public transit; ridesharing; first-mile problem; split delivery. 

INTRODUCTION 

Urban transportation can be categorized into public transport and private transport. Public 

transport is a transportation system that is managed on a schedule and operated on established 

routes to serve the travel demand of the public. Private transport allows an individual to freely use 

a vehicle without sharing it and allows users to have more flexibility and freedom to travel. 

However, this kind of transportation is not environmentally friendly. 

In response to the increasing environmental awareness, governments of various countries 

have implemented policies to encourage more people to use public transport. However, 

Malaysians tend to not consider public transit because the current system is inefficient, unreliable, 

not punctual, and crowded. It is crucial that an effective urban transportation system facilitates the 

commuting of people from their homes to their working places and vice versa. Due to the limited 

coverage of transit hubs, some commuters may find it difficult to get to or from the transit hub. 

This is the first mile or last mile problem respectively.  "First-mile" and "Last-mile" can be 

described as the beginning and end of a commuter's transit trip. 

In the wake of Covid-19, users will appreciate more privacy and comfort from not needing 

to share transport with others. Hence ride-hailing services such as Grab, MyCar, EzCab, Dacsee, 

and MULA have become Malaysia’s preferable transport. Ride-hailing (also known as ride-

sourcing) is a prearranged and on-demand transportation service in hiring personal drivers to meet 

commuters' ride requests by sending them to the exact place they need to go without sharing the 

rides with other ride requests. The public has begun to switch their mobility choice from public 

transit, towards ride-hailing to not worry about the first and last-mile connectivity to public transit. 

mailto:lls@upm.edu.my


Kien Hua Ting, Lai Soon Lee And Hsin-Vonn Seow 

 
 

Menemui Matematik Vol. 45(1) 2023                                                      39 

 

This leads to the low utilization rate of public transit. At the same time, the increase in ride-hailing 

demand causes an increase in the number of vehicles on the road (Anderson et al., 2014; 

Hampshire et al., 2017). 

To solve the unbalance utilization rate of public transit and ride-hailing, ride-hailing can be 

the first-mile/ last-mile service provider but with the condition that commuters must share the 

rides. First-mile service is much more crucial than last-mile service because it can be one of the 

main factors that can influence people in choosing either public transport or private transport to 

go to work. With the convenience of first-mile services, people tend to choose public transport 

which indirectly influences people to choose last-mile services (Tay et al., 2012). Hence, this paper 

mainly focuses on the first-mile problem. To further support a sustainable environment, a first-

mile ridesharing problem that possesses a ride-share concept is proposed. 

The remainder of the paper is organized as follows. The next section is a presentation of 

relevant literature that has made possible the models used in this paper. This is followed by the 

methodology of the study and the mathematical formulations of the problem. The computational 

experiments of the proposed models are performed and discussed. Finally, the conclusion is given.  

INNOVATIVE RIDESHARING SOLUTIONS 

Vehicle Routing Problem with Ridesharing 

The authors suggest this innovation based on the combination of the work done previously 

by Li et at. (2018), Bian and Liu (2019 & 2020), Chen et al, (2020), and Ning et al. (2021). Li et 

al. (2018) designed an improved ridesharing system by including meet places and the users' 

preferred time windows. With the advent of meet sites, rideshare operators balanced the 

advantages of reducing the number of delays that occur along the route against the costs of more 

walking that certain commuters must endure being collectively picked up or dropped off. Bian and 

Lie (2019) suggested a first-mile ridesharing service that allows commuters to personalise their 

requirements on various aspects of the inconveniences they face, such as the number of people 

riding with them, the amount of additional time spent travelling and waiting time at the transit hub. 

This was expanded upon by Bian et al. (2020) to accommodate instant booking. An autonomous 

vehicle dispatch and ridesharing scheduling with advanced requests was developed by Chen et al. 

(2020) as a potential solution to the issue of the first-mile with a clustering technique to partition 

the pickup points to cut down computational time. Ning et al. (2021) found the best travel routes 

for a large number of commuters while taking into account the uncertainty of commuter demand, 

which ensures good Quality of Service (QoS) for a Passenger-Centric Vehicle Routing for First-

Mile Transportation (PCVR-FMT).  

Clustering Method 

In terms of the clustering method in vehicle routing, the K-Mean clustering method in 

classifying drivers' origins and destinations according to their respective locations (Najmi et al., 

2017; Miranda-Bront et al., 2017; Shu et al., 2021). Hence for this paper, the authors utilize this 

method. Czioska et al. (2019) studied shared demand-responsive transportation (SDRT) systems 

using meeting points which can bring a significant impact towards customer satisfaction. To 

prevent a combinatorial explosion during the assignment of commuters to the meeting site, 

customer requests are clustered under a specified cluster size. After customer clustering, meeting 

point selection and route optimization are determined.  

An adaptive clustering approach is employed to determine the position of the bus stop based 

on historical consumer demand data (Shu et al., 2021). The K-means clustering technique is used 

to produce the first set of bus stop locations and then adjusted by dividing and merging clusters to 

further reduce the walking distance and maintain a balance between bus stops. 
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Split Delivery 

Allowing split deliveries may result in substantial savings in terms of both the total distance 

travelled and the number of necessary vehicles. The adoption of a split-delivery restriction in the 

VRP problem was first suggested by Dror and Trudeau (1989). This was further researched by 

Archetti et al. (2008), Gulczynski et al. (2010), Gutiérrez-Jarpa et al. (2010), Tang et al. (2013), 

Archetti et al. (2015), Yan et al. (2015), Moshref-Javadi and Lee (2016), Chen et al. (2016), Wang 

et al. (2016), Bianchessi et al. (2019), Bortfeldt and Yi (2020), Ji et al. (2021), and Ferreira et al. 

(2021). Ferreira et al. (2021) presented a study about the Capacitated Vehicle Routing Problem 

with Two-Dimensional Loading Constraints (2L-CVRP) by allowing split delivery and green 

requirements. 

METHODOLOGY 

In this section, the flow of the study, clustering method, and meeting point selection are 

discussed. The authors use the well-known Solomon benchmark datasets for Vehicle Routing with 

Time Windows problem (Solomon, 1987). These consist of randomly generated datasets (R sets), 

clustered datasets (C sets) and mixed random and clustered datasets (RC sets). Problem sets R1, 

C1 and RC1 have a short scheduling horizon and allow only a few commuters per route. These 

are suitable to represent the different conditions of commuters’ residence locations. 

Flowchart 

First, a set of modified Solomon’s datasets from Solomon (1987) are used in this study. The 

dataset will go through data clustering either by K-Mean clustering or constrained K-Mean 

clustering to obtain the clusters or groups of commuters. Once these groups are obtained, the 

selection of meeting points based on either centroid or non-centroid is carried out (see Figure 1). 

A centroid method (MOSD-SDOVRP) allows picking a meeting point which requires all 

commuters to walk a short distance to. A non-centroid method (MOSD-SDSOVRP) chooses the 

residence of one of the members of that cluster as a meeting point. Both methods’ walking distance 

is shorter than walking to the nearest public transit spot. Both methods will be solved using the 

CPLEX with the branch and cut method. 

One of the novelties of this study is the inclusion of the maximum walking distance to 

identify the most favourable number of clusters or groups of commuters for pick-up for each 

dataset. The maximum walking distance is 10 units (equivalent to 100 meters) which is the 

maximum distance between the residences of the commuters and the centralized pickup point 

within each cluster/meeting point (centroid case), or the maximum distance between the residences 

of the commuters within each cluster/meeting point (non-centroid case).  

Clustering Method 

The clustering analysis can be divided into two main groups: hierarchical and partitional 

(see, Figure 2). They generally depend on providing prior knowledge or information of the exact 

number of clusters for each dataset to be clustered and analysed. A hierarchical clustering 

algorithm is further subdivided into agglomerative and divisive methods, while the partitional has 

four subdivisions: hard or crisp clustering method, fuzzy method, mixture, and square error. The 

application of hierarchical clustering in large-scale datasets is limited because it has high 

computational complexity. A drawback of hierarchical methods is that those that are practical in 

terms of time efficiency require memory usage proportional to the square of the number of groups 

in the initial partition (Fraley and Raftery, 1998). There are some limitations as well in partitional 

methods such as the user having to specify in advance the number of clusters, data-dependent, and 

often converging to suboptimal solutions. 
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Figure 1: Flowchart of this Study 

In this paper, K-Mean clustering and constrained K-Mean clustering, which are under 

partitional methods in clustering, are selected. The main advantage of these methods is they are 

easy to implement and have low time complexity for large datasets (Das et al., 2007). Also, 

constrained K-Mean clustering allows for the clustering of data sets with a fixed number of people 

in each cluster (the number of clusters can also be fixed). For instance, if the minimum and the 

maximum limit within each cluster are set to be 2 and 3 respectively. Then, a dataset with 25 

commuters will have a maximum number of clusters of 13 and the minimum number of clusters 

is 9. K-Mean clustering, on the other hand, is a simple iterative hill-climbing algorithm which only 

requires a number of clusters (Garai and Chaudhuri, 2004). Since there is no cluster size limit, 

therefore a 25-commuter dataset can have a cluster size of 1 to 25.  

Meeting Points Selection (Centroid and Non-Centroid) 

In terms of solving this first-mile ridesharing problem, a new approach called the Selective 

Open Vehicle Routing Problem (SOVRP) is used. The centroid-based clustered dataset was solved 

by Multi Origin Single Destination Split Delivery Open Vehicle Routing Problem (MOSD-

SDOVRP) while the non-centroid-based clustered dataset was solved by Multi Origin Single 

Destination Split Delivery Selective Open Vehicle Routing Problem (MOSD-SDSOVRP) (see, 

Figure 3). In the case of centroid, the coordinate for the center of each cluster is defined as the 

pickup point of the cluster. All the commuters within the cluster must walk to the center of the 

cluster or fixed pickup point. Therefore, MOSD-SDOVRP is the suitable model for demonstrating 
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 the centroid case scenario problem. While in the case of non-centroid, either one of the nodes 

within each cluster will be the possible pickup point. Hence, the model of MOSD-SDSOVRP is 

used in demonstrating non-centroid cases in which either one of the nodes within the cluster will 

be picked under the model. 

 

 

Figure 2: Types of Clustering Methods 

 

Figure 3: Meeting Point Selection 
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MATHEMATICAL FORMULATION 

The mathematical formulation of MOSD-SDOVRP is a common vehicle routing problem 

with split delivery which refers to work by Vornhusen & Kopfer (2015) work. On the other hand, 

the mathematical formulation of MOSD-SDSOVRP is the combination between split delivery and 

selective concept which refer to studies by Sabo et al. (2020) and Vornhusen & Kopfer (2015). 

The formulation for MOSD-SDSOVRP is considered one of the novelties of this paper since there 

are no existing studies that have split delivery together with a selective concept. 

Multi Origin Single Destination Split Delivery Open Vehicle Routing Problem (MOSD-

SDOVRP) 

The MOSD-SDOVRP is defined over an undirected graph 𝐺 = (𝑉, 𝐸)  with vertex set 𝑉 =

{0,1, … , 𝑛}.  

𝐾 = a fleet 𝐾 of homogeneous vehicles 𝑘 , 

𝐷 = set of depot, 

𝐷𝑒 = set of destination nodes, 

𝑄 = capacity of the vehicle, 

𝑞𝑖 = demand of the node 𝑖 , 

𝑥𝑖𝑗
𝑘 = {

1, if the vehicle 𝑘 traverse the edge (𝑖, 𝑗) 

 0, if the edge (𝑖, 𝑗) is not part of any route
 , 

𝑦𝑖
𝑘 = {

1, if  demand point 𝑖 is visited by vehicle 𝑘 (𝑦0
𝑘 = 1)

0, otherwise                                                                           
 , 

𝑤𝑖
𝑘 = delivery amount at demand point 𝑖 by vehicle 𝑘 (𝑤0

𝑘 = 0) , 

𝑢𝑖
𝑘 = dummy continuous variables for subtour elimination constraints . 

The MOSD-SOVRP can be formulated as follows: 

 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝑥𝑖𝑗
𝑘 ∙ 𝐷𝑖𝑠𝑡𝑖𝑗

𝑘∈𝐾𝑗∈𝑉
𝑖≠𝑗

𝑖∈𝑉

 

 

(1) 

subject to   

∑ ∑ 𝑥𝑖𝑗
𝑘 ≥ 1, ∀𝑗 ∈ 𝑉 ∖ {𝐷 + 𝐷𝑒 }

𝑘∈𝐾𝑖∈𝑉
𝑖≠𝑗

 

 

(2) 

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉
𝑖≠𝑗

= ∑ 𝑥𝑗𝑖
𝑘 , ∀𝑘 ∈ 𝐾

𝑗∈𝑉
𝑖≠𝑗

, ∀ 𝑖 ∈ 𝑉 ∖ {𝐷 + 𝐷𝑒} 

 

(3) 

𝑢𝑖
𝑘 − 𝑢𝑗

𝑘 + 𝑛 ∙ 𝑥𝑖𝑗
𝑘 ≤ n − 1, ∀𝑖 ∈ 𝑉\{𝐷𝑒}, ∀𝑗 ∈ 𝑉\{𝐷 + 𝐷𝑒}, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 

 

(4) 

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉\{𝐷}

= 𝑦𝑖
𝑘 , ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉 

 

(5) 

∑ 𝑤𝑖
𝑘 ≤ 𝑄 

𝑖∈𝑉\{𝐷+𝐷𝑒}

∀𝑘 ∈ 𝐾 (6) 
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𝑞𝑖 ∙ 𝑦𝑖
𝑘 ≥ 𝑤𝑖

𝑘, ∀𝑖 ∈ 𝑉\{𝐷 + 𝐷𝑒}, ∀𝑘 ∈ 𝐾 
 

(7) 

∑ 𝑤𝑖
𝑘 = 𝑞𝑖 

𝑘∈𝐾

, ∀𝑖 ∈ 𝑉 

 

(8) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝐷𝑒𝑖∈𝑉\{𝐷+𝐷𝑒}
𝑖≠𝑗

= 1, ∀ 𝑘 ∈ 𝐾 

 

(9) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝐷𝑖∈𝑉\{𝐷+𝐷𝑒}
𝑖≠𝑗

= 0, ∀ 𝑘 ∈ 𝐾 

 

(10) 

𝑤𝑖
𝑘 ≥ 0, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉 

 

(11) 

Constraint (2) imposes that any node can be visited at least once, while constraint (3) is the 

flow conservation constraints while (4) is the subtour elimination constraints.  Constraint (5) 

ensures variables 𝑥𝑖𝑗
𝑘  and 𝑦𝑖

𝑘 are linked. Constraint (6) is capacity constraint to ensure the quantity 

delivered by each vehicle does not exceed the vehicle capacity, while constraint (7) ensure that 

vehicles must not fetch any customers which are destined for customers they do not visit. 

Constraint (8) ensures that the entire demand of each customer is satisfied. Constraint (9) makes 

sure that all nodes must end at destination and (10) ensures that all nodes must end at depot.  

Multi Origin Single Destination Split Delivery Selective Open Vehicle Routing Problem 

(MOSD-SDSOVRP) 

The MOSD-SDSOVRP is also defined over an undirected graph 𝐺 = (𝑉, 𝐸) similar to 

MOSD-SDOVRP with the following additional variables. 

𝐶 = set of clusters, 
𝑑𝑐 = total demand of cluster, 

𝑇𝐷𝑗 = updated demand of the nodes within the same cluster 𝑗 , 

𝑧𝑐
𝑘 = {

1, if  total demand of the cluster 𝑐 is visited by vehicle 𝑘
0, otherwise                                                                                   

 , 

𝑣𝑗 = {
1, if one of the nodes within the cluster is visited
0, otherwise                                                                     

 , 

𝑤𝑐
𝑘 = delivery amount at total demand cluster 𝑐 by vehicle 𝑘 (𝑤0

𝑘 = 0), 

𝜆𝑖𝑐 =  if the node 𝑖 ∈  𝑉 belongs to cluster 𝑐 ∈  𝐶 (𝜆𝑖𝑐 = 1) or not (𝜆𝑖𝑐 = 0). 
 
Hence, the MOSD-SDSOVRP can be formulated as follows: 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝑥𝑖𝑗
𝑘 ∙ 𝐷𝑖𝑠𝑡𝑖𝑗

𝑘∈𝐾𝑗∈𝑉
𝑖≠𝑗

𝑖∈𝑉

 (12) 

subject to  
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∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉
𝑖≠𝑗

= ∑ 𝑥𝑗𝑖
𝑘 , ∀𝑘 ∈ 𝐾

𝑗∈𝑉
𝑖≠𝑗

, ∀ 𝑖 ∈ 𝑉 ∖ {𝐷 + 𝐷𝑒} 

 

(13) 

𝑢𝑖
𝑘 − 𝑢𝑗

𝑘 + 𝑛 ∙ 𝑥𝑖𝑗
𝑘 ≤ n − 1, ∀𝑖 ∈ 𝑉\{𝐷𝑒}, ∀𝑗 ∈ 𝑉\{𝐷 + 𝐷𝑒}, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 

 

(14) 

∑ ∑ 𝜆𝑗𝑐 ∙ 𝑥𝑗𝑖
𝑘 =

𝑗∈𝑉\{𝐷+𝐷𝑒}𝑖∈𝑉\{𝐷+𝐷𝑒}
𝑖≠𝑗

𝑧𝑐
𝑘 , ∀𝑘 ∈ 𝐾, ∀𝑐 ∈ 𝐶\{𝐷 + 𝐷𝑒} 

 

(15) 

∑ 𝑤𝑐
𝑘 = 𝑑𝑐 

𝑘∈𝐾

, ∀𝑐 ∈ 𝐶\{𝐷 + 𝐷𝑒} 

 

(16) 

𝑑𝑐 ∙ 𝑧𝑐
𝑘 = 𝑤𝑐

𝑘, ∀𝑐 ∈ 𝐶\{𝐷 + 𝐷𝑒}, ∀𝑘 ∈ 𝐾 
 

(17) 

∑ 𝑤𝑐
𝑘 ≤ 𝑄 

𝑐∈𝐶\{𝐷+𝐷𝑒}

, ∀𝑘 ∈ 𝐾 

 

(18) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝐷𝑒𝑖∈𝑉\{𝐷+𝐷𝑒}
𝑖≠𝑗

≤ 1, ∀ 𝑘 ∈ 𝐾 

 

(19) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝐷𝑖∈𝑉\{𝐷+𝐷𝑒}
𝑖≠𝑗

= 0, ∀ 𝑘 ∈ 𝐾 

 

(20) 

∑ ∑ 𝑥𝑗𝑖
𝑘

𝑘∈𝐾𝑖∈𝑉\{𝐷}
𝑖≠𝑗

≥ ⌈
𝑇𝐷𝑗

𝑄
+ 1⌉ ∙ 𝑣𝑗 , ∀ 𝑗 ∈ 𝑉\{𝐷 + 𝐷𝑒} 

(21) 

∑ 𝜆𝑗𝑐 ∙ 𝑣𝑗 =

𝑗∈𝑉\{𝐷}

1, ∀𝑐 ∈ 𝐶\{𝐷 + 𝐷𝑒} (22) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝐷

=

𝑗∈𝑉\{𝐷+𝐷𝑒}

1 , ∀𝑘 ∈ 𝐾 (23) 

𝑤𝑐
𝑘 ≥ 0, ∀𝑘 ∈ 𝐾, ∀𝑐 ∈ 𝐶\{𝐷 + 𝐷𝑒} 

 
(24) 

Constraint (13) is the flow conservation constraints and (14) is the subtour elimination 

constraint.  Constraint (15) ensures variables 𝑥𝑖𝑗
𝑘  and 𝑦𝑖

𝑘  are linked, while constraint (16) is to 

ensure that the entire demand of each cluster is satisfied. Constraint (17) impose that vehicles must 

not fetch any customers which are destined for customers they do not visit. Constraint (18) is 

capacity constraint to ensure the quantity delivered by each vehicle does not exceed the vehicle 

capacity. Constraint (19) makes sure that all nodes must end at destination and (20) ensures that 

all nodes must end at depot. Constraint (21) and (22) ensure that only one of the nodes within each 

cluster is selected which is one of the novelties of this study. Constraint (23) ensures that all 

vehicles are fully utilized. 
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COMPUTATIONAL EXPERIMENTS 

To solve the proposed mathematical formulations of MOSD-SDOVRP and MOSD-

SDSOVRP, the CPLEX with the branch and cut method is used. The models are coded using 

Phyton language and the computational experiments are performed on a laptop computer running 

on Intel® Core™ i5-8250U CPU @ 1.60GHz-1.80 GHz, with 8GB RAM of memory. Both 

models have investigated 12 modified problem instances from the well-known Solomon 

benchmarks dataset. There are three sets of the dataset which are the C, R, and RC datasets. Each 

set of the dataset has 4 different numbers of meeting points. The capacity of each vehicle is 3 

commuters. Table 1 showed the computational results for centroid case (MOSD-SDOVRP). In 

column 1, “Dataset” represents the modified Solomon dataset which are C, R and RC. For example, 

R101-25 represents R type of dataset with 25 nodes. In column 2, “Clustering Method” represents 

the types of the clustering method. Column 3 “Cluster Size” represents the cluster size, especially 

for constrained K-Mean. Column 4, “Clusters” represents the number of clusters produced under 

the stated clustering method. Column 5, “Total Demand” represents the total number of demands 

for each node. The total demand is always equal to the number of nodes due to the setting of only 

one customer demand on each node. Column 6, “Vehicles” represents the number of vehicles that 

will be utilized for each dataset. Column 7, “Status” represents the obtained solution whether it is 

feasible, optimal or unknown. Column 8, “CPU(s)” represents the computational time (seconds) 

of CPLEX. Column 9, “Total WD for Total Demand (unit)” represents the total walking distance 

(x 10m) for the commuters. Column 10, “Radius Cluster (unit)” represents the maximum travel 

distance (x 10m) for each commuter. 

Figure 4 shows the obtained number of clusters/meeting points for the centroid case of both 

constrained K-Mean and K-Mean clustering. As mentioned early, constrained K-Mean clustering 

limits the number of commuters within each cluster to between 2 to 3. It is obvious that the number 

of clusters will be higher as compared to the number of clusters produced by K-Mean clustering 

as the latter does not have a cluster size limitation. Looking at Figure 5, constrained K-Mean 

clustering produced a much higher number of clusters due to the limit in cluster size. Hence, the 

total distance for all commuters to walk to the pickup point will be much lower as compared to K-

Mean clustering. So, as shown in Figure 5, constrained K-Mean can produce a lower total 

commuter walking distance for all types of datasets. Hence, it is much more favourable to use 

constrained K-Mean in clustering the dataset from the commuter point-of-view. Overall, 

constrained K-Mean is the best clustering method for a shorter total walking distance for 

commuters, especially in the centroid case. K-Mean clustering will challenge the welfare of the 

commuters as the total walking distance for them will be much higher. 

Table 2 showed computational results for non-centroid case (MOSD-SDSOVRP).  The 

descriptions for each column are mentioned previously in Table 1. In Table 2, due to the 

complexity of the model, the solution for the dataset of 80 and 100 nodes are unknown even after 

2 hours (7200 CPU seconds) of computation by the CPLEX.  In the case of the non-centroid 

method, the solution for the C dataset is still comparable when discussing which clustering method 

is more suitable to be used. However, it is hard to tell which clustering method is superior for the 

R and RC dataset due to the input parameter of the radius cluster, or which is the maximum 

distance for commuters to walk. The maximum walking distance is 100m but in the case of R101-

25, R101-50 and RC101-50, the clusters cannot be obtained due to that constraint. Hence, to have 

a clustered dataset, the maximum walking distance parameter had to be increased. For example, 

in R101-25 using constrained K-Mean in clustering the dataset for the centroid case, it is calculated 

that the maximum number of clusters/group of commuters is 13 and the minimum is 9. In the non-

centroid case of R101-25, cluster 12 with the lowest maximum walking distance (155.5m) is 

selected. This is one of the limitations of constrained K-Mean clustering which affects the 

maximum walking distance for commuters. 
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Table 1: Computational Results for Centroid (MOSD-SDOVRP) 

Dataset Clustering Method Cluster Size 
Cluster

s 
Total 

Demand 
Vehicle

s 
Status CPU (s) 

Total WD for Total Demand 
(unit) 

Radius Cluster 
(unit) 

C101-25 
Constrained K-

Mean 
Max:3, Min: 

2 
9 25 9 

Optima
l 

22.41 44.372 (= 443.72m) 10 (= 100 m) 

C101-25 K-Mean - 3 25 9 
Optima

l 
0.23 92.213 10 

C101-50 
Constrained K-

Mean 
Max:3, Min: 

2 
18 50 17 

Feasibl
e 

7200.0
0 

93.370 10 

C101-50 K-Mean - 5 50 17 
Optima

l 
104.19 198.112 10 

C101-80 
Constrained K-

Mean 
Max:3, Min: 

2 
28 80 27 

Feasibl
e 

7200.0
0 

167.104 10 

C101-80 K-Mean - 8 80 27 
Optima

l 
2073.6

7 
341.249 10 

C101-100 
Constrained K-

Mean 
Max:3, Min: 

2 
36 100 34 

Feasibl
e 

7200.0
0 

211.370 10 

C101-100 K-Mean - 10 100 34 
Feasibl

e 
7200.0

0 
437.960 10 

R101-25 
Constrained K-

Mean 
Max:3, Min: 

2 
11 25 9 

Optima
l 

54.91 151.918 10 

R101-25 K-Mean - 11 25 9 
Optima

l 
100.66 146.559 10 

R101-50 
Constrained K-

Mean 
Max:3, Min: 

2 
17 50 17 

Optima
l 

1869.1
3 

287.332 10 

R101-50 K-Mean - 17 50 17 
Feasibl

e 
7200.0

0 
269.470 10 

R101-80 
Constrained K-

Mean 
Max:3, Min: 

2 
27 80 27 

Feasibl
e 

7200.0
0 

395.846 10 

R101-80 K-Mean - 19 80 27 
Feasibl

e 
7200.0

0 
454.900 10 

R101-100 
Constrained K-

Mean 
Max:3, Min: 

2 
34 100 34 

Feasibl
e 

7200.0
0 

408.060 10 

R101-100 K-Mean - 22 100 34 
Feasibl

e 
7200.0

0 
496.670 10 
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RC101-25 
Constrained K-

Mean 
Max:3, Min: 

2 
9 25 9 

Optima
l 

46.20 57.552 10 

RC101-25 K-Mean - 3 25 9 
Optima

l 
0.28 127.546 10 

RC101-50 
Constrained K-

Mean 
Max:3, Min: 

2 
20 50 17 

Feasibl
e 

7200.0
0 

102.590 10 

RC101-50 K-Mean - 6 50 17 
Optima

l 
10.13 234.630 10 

RC101-80 
Constrained K-

Mean 
Max:3, Min: 

2 
28 80 27 

Feasibl
e 

7200.0
0 

327.320 10 

RC101-80 K-Mean - 18 80 27 
Feasibl

e 
7200.0

0 
374.650 10 

RC101-
100 

Constrained K-
Mean 

Max:3, Min: 
2 

36 100 34 
Feasibl

e 
7200.0

0 
367.150 10 

RC101-
100 

K-Mean - 19 100 34 
Feasibl

e 
7200.0

0 
515.560 10 
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Figure 4: Centroid: Constrained K-Mean versus K-Mean (Number of Clusters) 

 

Figure 5: Centroid: Constrained K-Mean versus K-Mean (Total Commuters Walking Distance) 
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Table 2: Computational Results for Non-Centroid (MOSD-SDSOVRP) 

Dataset Clustering Method Cluster Size Clusters 
Total 

Demand 
Vehicles Status CPU(s) 

Total WD for Total 
Demand (unit) 

Radius Cluster 
(unit) 

C101-25 
Constrained K-

Mean 
Max:3, Min: 2 9 25 9 Optimal 263.88 51.53 (= 515.3m) 10 (= 100m) 

C101-25 K-Mean - 5 25 9 Optimal 26.13 82.993 10 

C101-50 
Constrained K-

Mean 
Max:3, Min: 2 18 50 17 Feasible 

7200.0
0 

113.250 10 

C101-50 K-Mean - 9 50 17 Feasible 
7200.0

0 
202.230 10 

C101-80 
Constrained K-

Mean 
Max:3, Min: 2 30 80 27 Unknown - - 10 

C101-80 K-Mean - 17 80 27 Unknown - - 10 

C101-100 
Constrained K-

Mean 
Max:3, Min: 2 37 100 34 Unknown - - 10.44 

C101-100 K-Mean - 25 100 34 Unknown - - 10 

R101-25 
Constrained K-

Mean 
Max:3, Min: 2 12 25 9 Optimal 156.98 144.626 15.55 

R101-25 K-Mean - 20 25 9 Optimal 70.28 44.140 10 

R101-50 
Constrained K-

Mean 
Max:3, Min: 2 24 50 17 Feasible 

7200.0
0 

217.250 11.18 

R101-50 K-Mean - 34 50 17 Feasible 
7200.0

0 
108.880 10 

R101-80 
Constrained K-

Mean 
Max:3, Min: 2 39 80 27 Unknown - - 12.72 

R101-80 K-Mean - 49 80 27 Unknown - - 10 

R101-100 
Constrained K-

Mean 
Max:3, Min: 2 41 100 34 Unknown - - 13 

R101-100 K-Mean - 50 100 34 Unknown - - 10 

RC101-25 
Constrained K-

Mean 
Max:3, Min: 2 9 25 9 Optimal 74.64 70.840 10 

RC101-25 K-Mean - 6 25 9 Optimal 23.06 88.350 10 
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RC101-50 
Constrained K-

Mean 
Max:3, Min: 2 15 50 17 Feasible 

7200.0
0 

142.790 13 

RC101-50 K-Mean - 20 50 17 Feasible 
7200.0

0 
120.810 10 

RC101-80 
Constrained K-

Mean 
Max:3, Min: 2 37 80 27 Unknown - - 16.401 

RC101-80 K-Mean - 39 80 27 Unknown - - 10 

RC101-100 
Constrained K-

Mean 
Max:3, Min: 2 40 100 34 Unknown - - 13.15 

RC101-100 K-Mean - 36 100 34 Unknown - - 10 
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Figure 6 shows the proposed number of clusters/groups of commuters under the non-

centroid method for both constrained K-Mean and K-Mean clustering. Both clustering methods 

performed as expected in the datasets C101-25, C101-50, and RC101-25 where constrained K-

Mean produced more clusters than K-Mean clustering. However, in the R101-25, R101-50, and 

RC101-50 datasets, constrained K-Mean produced a lower number of clusters. This is totally 

different from other datasets. The reason is that they are clustered under a relaxed maximum 

walking distance for commuters. For example, in R101-25, the relaxed maximum walking distance 

is 155.5m. 

 

Figure 6: Non-Centroid: Constrained K-Mean Versus K-Mean Clustering (Number of Clusters) 

The results in Figure 7 show the obtained total commuters’ walking distance for the non-

centroid. Based on the C101-25, C101-50, and RC101-25 sets in non-centroid cases, constrained 

K-Mean can ensure a lower total walking distance for commuters under 10 meters. Conversely, 

for R101-25, R101-50, and RC101-50, due to the relaxed maximum walking distance, the K-Mean 

clustering dataset tends to have a much higher total walking distance. 

Figure 8 shows the obtained total commuters walking distance for centroid versus non-

centroid. In the C dataset, the non-centroid method performed better in both clustering methods 

but with a little sacrifice of the total walking distance for commuters. However, in the case of the 

centroid for both clustering methods, it does ensure a lower total walking for commuters.  

In the R dataset, the centroid scenario tends to sacrifice a lot of walking distance for 

commuters for both clustering methods. Constrained K-Mean tends to outperform others, 

especially in the non-centroid scenario, but this is due to the relaxed maximum walking distance. 

Overall, constrained K-Mean is still performing better in a centroid for the R dataset and is more 

suitable to be applied.  

In RC dataset, the non-centroid condition seems to have better results compared to the 

centroid condition, regardless of which clustering method is applied. The K-Mean clustering 

performed better in saving total walking distance for commuters.  Conversely, the constrained K-

Mean had a higher total walking distance for commuters. 
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Figure 7: Non-Centroid: Constrained K-Mean versus K-Mean Clustering (Total Commuters 

Walking Distance) 

 

Figure 8: Centroid Versus Non-Centroid (Total Commuters Walking Distance) 

CONCLUSION 

The model allows for a choice to cater for a ridesharing driver perspective or a commuter: a 

driver’s perspective and dealing with the C type dataset; then non-centroid condition must be 

implemented. In terms of the clustering method, constrained K-Mean should be utilized. If it is 

the commuter’s perspective and dealing with the C dataset, centroid condition with constrained 

K-Mean should be picked. For the R type dataset, the centroid condition with constrained K-Mean 
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clustering method must be implemented to ensure the system is driver-oriented. If one considers 

the commuter’s perspective in dealing with the R type dataset, a non-centroid condition with 

constrained K-Mean should be picked. If one is dealing with the driver’s perspective in dealing 

with the RC type dataset, then a non-centroid condition must be implemented. In terms of the 

clustering method, constrained K-Mean should be utilized. When one is looking from the 

commuter’s perspective in dealing with the RC type dataset, the non-centroid condition with K-

Mean should be picked. 
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