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ABSTRACT 
A soliton is the result of a delicate balance between dispersion-induced pulse self-broadening and 

nonlinearity-induced pulse self-narrowing, which brings in a constant propagation of the wave form 

and velocity. Additionally, soliton molecules are stable bound states that develop from two anti-phase 

bright solitons in a dipolar Bose-Einstein condensate, which represents another significant advance in 

the field. The behaviour of the two-soliton molecule of the nonlinear Schrödinger equation (NLSE) in 

the context of delta potential has been studied in this paper. Interaction of the solitons with the 

external potential will affect not only the speed, as classical particles do, but also the soliton’s 

properties and its physical locations. This work seeks to resolve the non-integrable perturbed NLSE of 

the two-soliton molecule analytically using the variational approximation method (VAM). VAM gives 

dynamical equations for the parameters of the soliton in the form of ordinary differential equations, 

and it only creates approximation results. The accuracy of the results is checked numerically by direct 

numerical simulation. The split-step approach and Fast Fourier Transform are two coding techniques 

used in the direct numerical simulation method to assist in issue solving. The results indicated that, the 

two-soliton molecule may be reflected, transmitted through, or trapped within the external potential 

depending on the different potential strength. 

 
Keywords: soliton, nonlinear Schrödinger equation, two-soliton molecule, variational analysis, 

Bose-Einstein condensate 

 

 

INTRODUCTION 

 

Initially observed in the domain of water waves, John Scott Russell made the first discovery of 

this phenomenon in August 1834 and after forth it is called as solitons or solitary waves. The 

concept of soliton has been established using a solution called Korteweg-de Vries (KdV) 

equation (Wadati, 2001). There are a few terms in this equation to characterize the nonlinear and 

dispersion effects. Particularly, it results in waveform steepening for nonlinear effects and 

waveform spreading for dispersion effects. These two effects are competing with each other and 

the fine balance between those effects leads to the existence of the stationary waveform or 

solitary wave. 

According to Cattanil and Bassalo (2013), the word “soliton” can be generally defined as 

a unique solitary wave such that its propagation is governed by a nonlinear equation and it 

possesses a spatial configuration where the nonlinearity of the medium is precisely 

counterbalanced by the dispersion or diffraction effects. Therefore, it is true that soliton is a 

wave but it can also move exactly like how a particle does. There are different kinds of solitons 

exist to solve different nonlinear equations, such as sine-Gordon equation and Nonlinear 

Schrödinger equation (NLSE) which is used in this study, apart from KdV equation itself. NLSE 

is described as having similar types with the propagation of optical pulses in both the anomalous 

dispersion regime (negative group velocity), and the normal dispersion regime (positive group 

velocity), as stated by Panoiu et al. (2000).  
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The scattering of matter wave solitons on localised potentials has been studied and 

received considerable attention for the past few years (Garnier and Abdullaev, 2006; Aklan and 

Umarov, 2015, 2017; Din et. al, 2020; Hansen et. al, 2021). While the study of two-soliton 

molecules (Al Khawaja, 2010; Umarov et. al 2016) is also widely debated for its different 

approaches analysis. The interaction force between multiple solitons was first studied by 

Karpman and Solov’ev using perturbation analysis, Hirota in 1972, who used the exact two 

solitons solution of the sine-Gordon equation, and Anderson and Lisak (1986) who employed a 

variational approach to incoherent two-soliton interaction. 

The two-soliton molecules are two anti-phase bright solitons in a dipolar Bose-Einstein 

condensate (BEC) that can form stable bound states. The work will concentrate on the dynamics 

and scattering of a two-soliton molecule of a strong nonlocal NLSE by an external potential 

using analytically tractable Delta potential barriers and wells in spatial dimension. The 

discussion on the numerical simulations in terms of soliton molecules scattering by weak and 

strong potentials will be covered in the next section. The potential’s strength and velocity of the 

collision will give substantial impact to the result of the soliton’s scattering.  

 

MAIN EQUATION 

This study will use the Gross-Pitaevskii equation (GPE), which in general is the nonlinear 

Schrödinger equation (NLSE) as the main equation. This particular equation is convenient to use 

in the research of solitons. Based on Debnath (2005), the NLSE does not allow for a soliton 

solution representing a steady wave propagating with a constant velocity, which is different from 

the KdV equation. Moreover, an exponential function is represented for the plane wave part, and 

the amplitude of the sech profile propagates with different velocities. As a result, a solution 

known as an envelope soliton emerges, exhibiting particle-like behaviour. This phenomenon was 

numerically demonstrated by Yajima and Outi (1971) while, Zakharov and Shabat (1972) proved 

it analytically using the inverse scattering method. They discovered that this method gives an 

exact solution to the initial-value problem for the NLSE. In the process of addressing this 

problem, the concept of Lagrangian stability is introduced and the solution is ( , )x t  if constant 

K  that is independent of t  is exist, but possibly dependent on the initial data. 

The governing equation NLSE includes its generalized form and external potential is 

used throughout the work. It is called perturbed NLSE as perturbation exists with the additional 

term of the external potential. Previous researchers have shown that by using the asymptotic 

perturbation technique, the pulse propagation can be described by the perturbed NLSE as used in 

this study (Mihalache et al., 1993). The main equation can be modelled in the following form,  
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where ( , )x t  denotes the mean-field wave function of the condensate, ( )V x  indicates the 

presence of the external potential, q  and g  are the nonlinearity coefficients account for the 

condensate’s short-range contact and long-range dipole-dipole interactions between atoms, 

respectively (Umarov et al., 2016). As the external potential added is not integrable, so the NLSE 

cannot been solved analytically. It is known that Inverse Scattering Transform (IST) can be used 

to solve integrable partial differential equation (PDE) such as NLSE but not for this perturbed 

NLSE. Therefore, variational approximation method is used to find the approximate solutions for 

this study and checked its accuracy by using the direct numerical simulation method. This 

method will be discussed in the next section. 

The normalization condition of the wave function to the number of atoms within the 

condensate is written as 
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and Eq. (2) is known as the norm of the system. The norm is regarded as a conserved quantity of 

Eq. (1) where / 0dN dt =  for every trajectory. Next, supposed that the response function 

( )R x z−  is characterized by 
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where w  is the width of the potential, and is normalized, ( ) 1R x z dx


−
− = . The response 

function defines the medium’s level of nonlocality. Particularly, it demonstrates how closely the 

characteristics of the medium depend on those of its surrounding regions at a specific position. 

According to Umarov et al. (2016), the response function for contact interactions is the same the 

Dirac delta function where the particles can only affect one another when they are at a similar 

spatial location. Meanwhile, the response function for the long-range dipole-dipole interactions 

is considered to take the form as in Eq. (3). 

We examined the interaction of a two-soliton molecule with an external potential that has 

the form of a Delta function given by 

 

 0( ) ( ),V x U x= −  (4) 

and 0U  corresponds to the strength of the potential. In general, the shape of the potential can be 

classified based on the value of potential strength. For the positive value of 0U , the potential has 

the shape of a potential wall whereas for the negative value of 0U , the potential has the shape of 

a potential well. 

 

VARIATIONAL ANALYSIS: VARIATIONAL APPROXIMATION METHOD 

Variational approximation method (VAM) was first introduced by Anderson in 1983. In previous 

years, numerical investigations are often used to solve the convoluted form of the exact solution 

for the nonlinear Schrödinger equation (NLSE) and it becomes a complementary tool to 

understand the properties of the NLSE (Satsuma & Yajima, 1974). Other than the numerical 

method, the approximate analytical results are also needed to be obtained as it is useful in further 

understanding the physical phenomena between dispersion and nonlinear effects in optical fibers 

related to the propagation of the pulse. To get the approximate solutions, nevertheless, some of 

the more specific information of the solutions are need to be sacrificed. 

Anderson used a variational approach to illustrate the main characteristics of the soliton 

dynamics governed by the NLSE on the basis of trial functions. Prior research on the nonlinear 

self-focusing of laser beams used this method and achieved successful agreement with the 

numerical results (Anderson & Bonnedal, 1979). There are some main advantages of variational 

approach that have been mentioned by Anderson such as this approach provides a clear 

analytical expression for the most significant parameters, including pulse compression or 

decompression factor, the maximum amplitude and the induced frequency chirp, which describes 

the propagation of the solitons, even though it is approximate. 

Using the same approach, we develop the method for our particular case. To begin, we 

derive the Lagrangian density of Eq. (1) as follows, 
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By utilizing the Euler-Lagrange equation below, 
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it can be easily verified that the above Lagrangian of Eq. (5) can generate the system in Eq. (1) 

corresponding to the following variational principle, 
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Next, choosing a suitable trial function is the most critical step in developing the VA method as 

it will determine the success of the method. Commonly, many of the literature used Gaussian 

profile as the trial function since the variational equations obtained will particularly reproduce 

the exact solution of Eq. (1) (Anderson, 1983). The chosen trial function for our case is the first 

Gauss-Hermite function as being applied by Umarov et al. (2016) which has the form as below, 
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where ( ),  ( ),  ( ),  ( ),  ( )A t a t t b t v t  and ( )t  are the time-dependent amplitude, width, center-of-

mass position, chirp, velocity and phase of the soliton molecule, respectively. The velocity v  is 

specified as a derivative of the center-of-mass position of the soliton molecule with respect to 

time t  such that tv = . The norm is calculated to be 2 3 2N A a =  and it is proportional to the 

number of atoms in the condensate. 

The Lagrangian density in Eq. (5) is then re-expressed by using the response function in 

Eq. (3) and the ansatz in Eq. (8). Consequently, we evaluate the effective Lagrangian by solving 

the spatial integration of each term in the Lagrangian density where 
GL dx

+

−
=  L  and GL  

represents the results obtained from substituting the Gauss-Hermite ansatz into the Lagrangian 

L . Finally, we arrive at the total averaged Lagrangian, 
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The collective coordinate equations are derived from the averaged Lagrangian above. With iq  as 

the ansatz parameters of , , ,a b   , we apply the Euler-Lagrangian equation below, 
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producing the following system of coupled equations for the two-soliton molecule parameters of 

the width and center-of-mass position, 

 

 

2

22 2

0

3 24 2

41 2
3 ( ),

3 4 2 6 2

a

tt

U e qN gN
a F a

a aa a



 

  

−

 
= − − − + 

 
 (11) 

 

 

2

2

2

0

23

4
1 ,a

tt

U
e

aa




 


−  
= − − 

 
 (12) 

 

where  
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Therefore, Eq. (11) and Eq. (12) are the main results of this VA method which provide insight 

into the scattering phenomena of the soliton molecule by external Delta potential. Both equations 

become decoupled when the external potential is absent, i.e., 0 0U =  and the soliton molecule 

propagates freely with constant velocity and width. In particular, the stationary width sa  of the 

soliton molecule of the NLSE can be approximated from Eq. (11) by letting 0tta =  and there is 

no dipole-dipole interaction so that 0g = . The stationary width obtained is given by  
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This implies that the width may oscillate around this stationary point due to perturbation. On the 

other hand, the system becomes coupled when the soliton molecule approaches the external 

potential and the entire system of Eq. (11) - (12) should be taken into account. Afterward, Eq. 

(12) describes the scattering of the effective classical particle by a localized barrier such that 
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Integrating once the above equation reduces it into the following form, 
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which characterizes the velocity of the soliton molecule. The coupled equation of Eq. (11) and 

Eq. (12) are then interpreted numerically using different values of parameters in order to observe 

the behaviour of the two-soliton molecule interacted with external Delta potential. There are two 
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cases of observation were made, where the different potential strength and soliton’s initial 

velocities were taken into account.  

 The interaction of two-soliton with different potential strength of Delta potential Eq. (4) 

and a constant velocity of  0 0.3v =  can be referred to Figure 1. Figure 1 (above panel) illustrates 

that the two-soliton molecule reflects when it collides with a strong potential wall ( ) 3.0V x = . 

The two-soliton molecule happened to oscillate within the potential well for a while during the 

collision after 10t s=  until 20t s=  before it is reflected back from the potential of ( ) 3.0V x = −  

as shown in the Figure 1 (below panel). The width and amplitude of the solitons started to 

change when perturbation started to happen after it interacts with the potential barrier. Then, the 

two-soliton molecule maintained back its amplitude after the collision. 

 

  
 

Figure 1: Evolution of the width and center of mass position of a soliton versus time t , 

according to ODE systems for Eq. (11) and (12). The parameters used are 0 0.3, ( ) 3.0v V x= =  

(above panel), ( ) 3.0V x = −  (below panel). 

In addition, Figure 2 shows the scattering of the two-soliton molecule by external Delta 

potential with different initial velocities of the soliton and similar potential strength of 

( ) 3.0V x = − . Figure 2 (above panel) shows that the two-soliton molecule moving with lower 

velocity is trapped and oscillates for a while within the potential well during the collision before 

a total reflection. The perturbation started to happen after 6t s=  when the amplitude and width 

started to change. On the other hand, Figure 2 (below panel) showed that with a higher value of 

soliton’s initial velocity, the two-soliton molecule demonstrated a total transmission through the 

potential well after the collision with the barrier.  
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Figure 2: Evolution of the width and center of mass position of a soliton versus time t , 

according to ODE systems for Eq. (11) and (12). The parameters used are 

0( ) 3.0, 0.6V x v= − = (above panel), 0 1.5v =  (below panel). 

 

 

DIRECT NUMERICAL SIMULATION 

The VAM method is based on the assumption and describes an approximate result while direct 

numerical simulation shows an exact solution. The direct numerical simulation method of main 

Eq. (1) is used to verify the findings of the VAM method. In this method, the soliton is initiated 

with a certain velocity, v  moving towards the potential barrier, ( )V x  which is originally located 

far from the potential. In programming, there are two methods used which are Split Step Fourier 

Method (SSFM) and Fast Fourier Transform (FFT). Firstly, the first method is SSFM which is 

used to solve the time dependent nonlinear partial differential equation (PDE) and it followed by 

the old strategy where it divides and conquers (Suarez, 2015).  

 For the case of different potential strength, Figure 3 demonstrates the same outcomes 

when the two-soliton molecule scattered by the Delta potential wall, 0 3V =  or potential well, 

0 3V = −  where the initial velocity is fixed. Figure 3(a) illustrates the initial position of the two-

soliton molecule before the interaction with the potential wall or well that is located at 0x = . 

The two-soliton molecule then moves together towards the potential with the same velocity and 

the collision happened (see Figure 3(b) and Figure 3(c)). As the potential strength for both 

potential wall and well are strong enough to prevent the soliton molecule from passing through it, 

the two-soliton molecule is then reflected back to its original place, as shown in Figure 3(d), 

preserving its coherence as in Figure 3(e). The last figure shown in Figure 3 displays the 

summary of the movement of the two-soliton molecule towards the potential. 
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Figure 3: Evolution of the 

n  according to Eq. (1) and parameters used are the same as in 

Figure 1. 

 

For the case of different soliton’s initial velocities, the results for the scattering process 

when the two-soliton molecule moves with low and high velocities are depicted separately in 

Figure 4 and Figure 5. A fixed Delta potential well is considered for both examples where 

0 3V = −  and the location is at 0x = . At low velocity, 0 0.6v = , the two-soliton molecule is 

reflected by the potential well as shown in Figure 4. Before the interaction, the soliton molecule 

propagates freely without being distorted as illustrated in Figure 4(a). When it approaches the 

potential well and starts to interact with it, the soliton molecule experiences perturbation (see 

Figure 4(b) and Figure 4(c)). Since the velocity is quite small, the two-soliton molecule cannot 

traverse through the strong potential well and therefore it is reflected back as shown in Figure 

4(d) while conserving its coherence as in Figure 4(e). The last figure in Figure 4 summarizes the 

propagation of the two-soliton molecule towards the potential well. 
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Figure 4: Evolution of the 

n  according to Eq. (1) and parameters used are the same as in 

Figure 2 (above panel). 

 

On the other hand, the two-soliton molecule manages to transmit through the potential 

well when a high velocity, 0 1.5v =  is considered as in Figure 5. At the beginning, Figure 5(a) 

shows that the two-soliton molecule moves constantly with unchanged shape when it is far away 

from the potential well. Then, collision with the potential well causes the shape of the two-

soliton molecule starts to be disturbed as can be seen in Figure 5(b). Since the velocity is high, it 

has enough energy to travel through the potential well (see Figure 5(c) and Figure 5(d)). After 

that, the two-soliton molecule left the potential well behind and continues to move forward with 

higher velocity. The last picture in Figure 5 shows how the propagation and transmission of the 

two-soliton molecule occurs when interacting with the potential well. From both results, it 

indicates that the two-soliton molecule with a high velocity is able to propagate across the 

potential well, whereas it is reflected when it moves towards the potential with a low velocity. 

 Based on the results obtained from the numerical simulation using the governing 

equation of Eq. (1), it becomes apparent that the results confirm the behaviour of the two-soliton 

molecule as a classical particle in which it exhibits transmission or reflection when encountering 

the potential wall or well. Also, these results are quite similar to those obtained from the VAM 
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method, demonstrating the significance of the VAM method in describing the scattering 

behaviour of the two-soliton molecule under the influence of the external potential. 

 

 
Figure 5: Evolution of the 

n  according to Eq. (1) and parameters used are the same as in 

Figure 2 (below panel). 

 

 

CONCLUSION 

This study mainly addressed how the behaviour of the two-soliton molecule nonlinear 

Schrödinger equation (NLSE) interacts with the external delta potential through analytical and 

numerical studies. This study also demonstrated how the two-soliton molecule behaves when it 

interacts with different potential strengths and soliton’s initial velocities. In the case of different 

potential strengths, it exhibits the two-soliton molecule reflected back after colliding with the 

strong potential. In another case, given a different soliton’s initial velocity, the two-soliton 

molecule is transmitted through the potential when it moves with a higher velocity, and it is 

reflected back when the velocity is low. For weak potentials and low velocity, the molecule 

preserves its coherence, meantime the internal modes are excited. At sufficiently low velocity of 

the incident molecule, we observe quantum reflection from the potential. Scattering by strong 

potentials at moderately high velocity ends up with dissociation of the molecule. 

The VAM method shows results based on approximation and assumptions, while the 

direct numerical simulation of the main equation gives an exact solution. The direct numerical 
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simulation method is then used to verify the VAM results, and it appears that the outcomes from 

both methods were quite similar, which shows that strong correlation is attained between the 

results from both methods. The direct numerical simulation of the governing equation is a time-

consuming method compared to the analytical analysis, or VAM method, which focuses more on 

analytical solutions and requires less time to solve the problem. 
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