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ABSTRACT 

Healthcare stock market price is usually nonstationary. General practice of handling nonstationary stock 

market price is through transformation process, which may cause loss of data originality. To overcome 

this, an alternative way of direct handling of the stock market price is of interest. The dimensionality 

reduction of nonstationary stock market price was performed by using generalized dynamic principal 

component (GDPC), adapting Brillinger dynamic principal component (BDPC) concept based on the 

reconstruction of the stock market price. Daily observations of healthcare stock market price were 

considered for this study. Stationarity test was carried out and the analysis were two-based, transformed 

and non-transformed. Then, three principal component methods were used to reduce the dimensionality. 

The results shows that GDPC have a higher percentage of explained variance percentage (above 90%) 

and lower mean squared error among the other methods. Thus, this shows that a direct application may 

also achieved better result performance. 
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INTRODUCTION 
 

Healthcare is one of the emerging sectors that has gained importance in the stock market price 

worldwide. Among the industries that these healthcare companies venture includes drug 

manufacturers, medical appliances and equipment, specialized health services, medical 

laboratories & research, and medical insurance services. Nonstationary are found in most stock 

market price pattern due to several factors such as constitutional events, economic variables (i.e. 

interest rates, exchange rates, commodity prices) and expectations of traders (Andu et al., 2018). 

Similarly, healthcare also follows this nonstationary pattern. Transforming these data to stationary 

is perceived as the popular approach of handling nonstationary. This includes first difference 

(Crump and Gospodinov, 2022), linear transformation (Sánchez et al., 2015), and log 

transformation techniques (Andu et al., 2019; Caparole et al., 2019).  

One of the approaches of handling nonstationary healthcare stock market price is by reducing 

its dimension to obtain a meaningful interpretation of the data. Ordinary principal component 

(OPC) is a well-known dimension reduction technique. This technique can concurrently reduce 

the dimensionality of the stock market price and retain possible variation in the data as much as 

possible (Androniceanu et al., 2021). OPC uses covariance matrices to describe the relationship of 

the variables inside the data. Meanwhile, Brillinger dynamic principal component (BDPC) 

(Brillinger, 1964) is also a dimension reduction technique, developed from the expansion of 
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principal component. Unlike OPC, BDPC used spectral density matrix instead of covariance 

matrices. Noteworthy that both OPC and BDPC methodology are mostly used for stationary stock 

market series. In the case of nonstationary data, stationary transformation needs to be done first 

before further analysis can be carried out. However, transformation process may cause the loss of 

data originality (Andu et al. 2019). 

To overcome this, a non-transformed principal component was introduced known as generalized 

dynamic principal component (GDPC) (Peña and Yohai, 2016). This method can be directly used 

on the nonstationary stock market price without need for stationary transformation process (Andu 

et al., 2019). The highlights of this method are, 1) it is entirely data-analytic and does not assume 

any given model; and 2) it does not assume a fixed number of factors to be identified, instead the 

number of components is chosen to achieve a preferred degree of accuracy in the reconstruction 

of the original series. GDPC can also be applied to any data pattern but are more focused on 

nonstationary data. A possible nonstationary behaviour of the time series may also be achievable 

through this method. Hence, the present study will be carried out to compare the performance of 

all the three dimension reduction techniques using daily healthcare stock market price. It is 

envisaged that the non-transformed methodology will be a better alternative in handling the 

nonstationary data directly. This paper is organized as follows. Section 2 describes the methods 

used. Section 3 presents the data and result comparison between the methods. Section 4 is the 

conclusion. 

 
 

METHODOLOGY 

Augmented Dickey-Fuller (ADF) test 

Data which have strong stationarity may concealed the low signal power of nonstationarity 

(Worden et al., 2021). Hence, it is important to wisely select the time series duration to distinguish 

the nonstationarity in the data. This can be achieved by performing stationarity tests using either 

Augmented Dickey-Fuller (ADF) (Dickey & Fuller, 1979), Phillips-Perron (PP) test (Phillips & 

Perron, 1988) or Kwiatkowski-Phillips-Schmidt-Shin or KPSS test (Kwiatkowski et al., 1992). In 

this study, ADF test is chosen as it can identify the stationarity of the data based on the unit root 

existence. When unit root exists, it implies that the data is nonstationary.  

Ordinary least squares method is used to obtain the coefficients of a model distribution. Let 

autoregressive AR(1) process as 

 

𝑦𝑡 = 𝜌𝑦𝑡−1 + 𝜀𝑡 𝜀𝑡~(0, 𝜎
2) 

 

then, if 𝜌 = 1, the equation defines a random walk and 𝑦 is nonstationary. The null hypothesis for 

testing nonstationary is 𝐻0: 𝑝 = 1, where the rejection would be on the left side. Here, “tseries” 

package in R was used to perform the stationarity test. 

 

Transformed Ordinary Principal Component 

OPC is a popular dimension reduction technique. According to (Andu et al., 2019), the OPC 

covariance matrix is: 
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{
 
 

 
 𝑌1 = 𝛼⃗1

𝑇 ∙ 𝑋⃗ = 𝛼11𝑋1 + 𝛼12𝑋2 +⋯ + 𝛼1𝑛𝑋𝑛

𝑌2 = 𝛼⃗2
𝑇 ∙ 𝑋⃗ = 𝛼21𝑋1 + 𝛼22𝑋2 +⋯ + 𝛼2𝑛𝑋𝑛

⋯

𝑌𝑛 = 𝛼⃗𝑛
𝑇 ∙ 𝑋⃗ = 𝛼𝑛1𝑋1 + 𝛼𝑛2𝑋2 +⋯ + 𝛼𝑛𝑛𝑋𝑛

 

 

where 𝑋𝑖 is the original variable, 𝑌𝑖 is the principal component and 𝛼⃗𝑖 is the coefficient vector, 

respectively. Nonstationary data need to be transformed to stationary before applying OPC. Hence, 

it might not be able to depict the healthcare stock market price well because of its restrict feature 

to direct application.  

 

Brillinger dynamic principal component (BDPC) 

Another dimension reduction approach which is BDPC works by reconstructing the time series 

(Brillinger, 1981). Given the zero mean 𝑚 dimensional stationary process, {𝑧𝑡}, −∞ < 𝑡 < ∞, the 

dynamic principal components can be found for 𝑚 ×  1 vectors 𝑐ℎ, −∞ < ℎ < ∞ and 𝛽𝑗, −∞ <

𝑗 < ∞. Therefore, the linear combination of the first principal component becomes 

 

 𝑓𝑡 = ∑ 𝑐ℎ
′∞

ℎ=−∞ 𝑧𝑡−ℎ, (1) 

 

subsequently 

 

 𝐸 [(𝑧𝑡 − ∑ 𝛽𝑗𝑓𝑡+𝑗
∞
𝑗=−∞ )

′
(𝑧𝑡 − ∑ 𝛽𝑗𝑓𝑡+𝑗

∞
𝑗=−∞ )] (2) 

is minimum. 

The principal components of the cross spectral matrices are given by 𝑐ℎ, which is the inverse 

Fourier transform of the principal components for each frequency. Meanwhile, inverse Fourier 

transform of the conjugates, 𝛽𝑗 can be acquire from the same principal components (Brillinger, 

1981). It should be noted that BDPC is best used with stationary series and can also with 

nonstationary series. Despite that, a best minimum mean squared error (MSE) may be difficult to 

be obtained.  

Generalized dynamic principal component (GDPC) 

GDPC was developed by reconstructing BDPC vector of time series using a finite number of lags 

(Peña & Yohai, 2016). The following methods are according to (Andu et al., 2018; Peña & Yohai, 

2016). Supposed that 𝑧𝑗,𝑡, 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑡 ≤ 𝑇, and the two integer numbers 𝑘1 ≥ 0 and 𝑘2 ≥ 0 

as the lags and leads. Hence, the first dynamic principal component is vector 𝐟 =
 (𝑓𝑡)−𝑘1+1≤𝑡≤𝑇+𝑘2, of which the series is reconstructed  where 𝑧𝑗,𝑡, 1 ≤ 𝑗 ≤ 𝑚, as a linear 

combination of (𝑓𝑡−𝑘1 , 𝑓𝑡−𝑘1+1,⋯ , 𝑓𝑡 , 𝑓𝑡+1,⋯ , 𝑓𝑡+𝑘2) is optimum, given the MSE criteria. In 

addition, 𝐟, a possible factor of a m × (𝑘1 + 𝑘2) matrix of coefficients γ =
(γ𝑗,𝑖)1≤𝑗≤𝑚,−𝑘1≤𝑖≤𝑘2 , and 𝛼 = (𝛼1, ⋯ , 𝛼𝑚), the reconstruction of the original series 𝑧𝑗 , 𝑡 is defined 

as 

 

𝑧̂𝑗,𝑡 = ∑ 𝛾𝑗,𝑖𝑓𝑡+𝑖
𝑘2
𝑖= −𝑘1

+ 𝛼𝑗. 
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When 𝑘 = 𝑘1 + 𝑘2 and fixed 

 

𝑓𝑡
∗ = 𝑓𝑡−𝑘1,1 ≤ 𝑡 ≤ 𝑇 + 𝑘, 𝛽𝑗,ℎ

∗ =𝛾𝑗,ℎ−𝑘1−1, 1 ≤ ℎ ≤ 𝑘 + 1. 

𝑓𝑡
∗∗ = 𝑓𝑡+𝑘

∗ , 1 − 𝑘 ≤ 𝑡 ≤ 𝑇, 
 𝛽𝑗,ℎ

∗∗ = 𝛾𝑗,𝑘+2−ℎ, 1 ≤ ℎ ≤ 𝑘 + 1.  (3) 

 

The reconstruction can be achieved as 

 

 𝑧̂𝑗,𝑡 = ∑ 𝛽𝑗,𝑖𝑓𝑡+𝑖+𝑘1 + 𝛼𝑗
𝑘
𝑖=−𝑘1

= ∑ 𝛽𝑗,ℎ+1
∗ 𝑓𝑡+ℎ

∗𝑘
ℎ=0 + 𝛼𝑗 = ∑ 𝛽𝑗,ℎ+1

∗∗ 𝑓𝑡−ℎ
∗∗𝑘

ℎ=0 + 𝛼𝑗 . (4) 

The 𝑘 lags or 𝑘 leads of the principal component can be used to obtain the series reconstruction. 

Acquiring an optimal forward solution will lead to backward solution as well as shown in Equation 

(5). On the other hand, MSE loss function is obtained through reconstructing the m series using 𝑘 

leads, by letting 𝐟 = (𝑓1, ⋯ , 𝑓𝑇+𝑘)
′, 𝛽 = (𝛽𝑗,𝑖)1≤𝑗≤𝑚,1≤𝑖≤𝑘+1 and 𝛼 = (𝛼1,⋯ , 𝛼𝑚), 

MSE(𝐟, 𝛽, 𝛼) ==
1

𝑇𝑚
∑ ∑ (𝑧𝑗,𝑡 − ∑ 𝛽𝑗,𝑖+1𝑓𝑡+𝑖

𝑘
𝑖=0 − 𝛼𝑗)

2𝑇
𝑡=1

𝑚
𝑗=1  (5) 

 

Meanwhile, the optimal options of 𝐟 = (𝑓1, ⋯ , 𝑓𝑇+𝑘)
′ and 𝛽 =  (𝛽𝑗,𝑖)1≤𝑗≤𝑚,1≤𝑖≤𝑘+1, 𝛼 =

(𝛼1, … , 𝛼𝑚) are defined by  

 

 (𝐟̂, 𝛽̂, 𝛼̂) = arg 𝑓𝜖ℝ𝑇+𝑘,𝛽𝜖ℝ𝑚×(𝑘+1),𝛼𝜖ℝ𝑚minMSE(𝐟, 𝛽, 𝛼) (6) 

 

It should be noted that if 𝐟 is optimal, similarly 𝛾𝐟 + δ is optimal. Hence, 𝐟 is chosen in order that 

∑ 𝑓𝑡 = 0 
𝑇+𝑘
𝑡=1  and (1/(𝑇 + 𝑘))∑ 𝑓𝑡

2 = 1.𝑇+𝑘
𝑡=1  From 𝐳1, ⋯ , 𝐳𝑡 observations, the first GDPC of order 

𝑘 can be acquired as 𝐟.  Meanwhile, GDPC of order zero represents the first regular principal 

component.  

When 𝐂𝑗(𝛼𝑗) = (𝑐𝑗,𝑡,𝑞(𝛼𝑗))1≤𝑡≤𝑇+𝑘,1≤𝑞≤𝑘+1 be the (𝑇 + 𝑘)  × (𝑘 + 1) matrix can be expressed as  

 

 𝑐𝑗,𝑡,𝑞(𝛼𝑗) = { 
(𝑧𝑗,𝑡−𝑞+1 − 𝛼𝑗) if 1 ∨ (t − T + 1) ≤ q ≤ (k + 1) ∧ t

0                        if                        otherwise                  
 (7) 

 

such as 𝑎 ∨ 𝑏 = max  (𝑎, 𝑏) and 𝑎 ∧ 𝑏 = min(𝑎, 𝑏).  Then, 𝑫𝑗(𝛽𝑗) = (𝑑𝑗,𝑡,𝑞(𝛽𝑗)) is (𝑇 + 𝑘)  ×

 (𝑇 + 𝑘) becomes 

𝑑𝑗,𝑡,𝑞(𝛽𝑗) = ∑ 𝛽𝑗,𝑞−𝑣+1𝛽𝑗,𝑡−𝑣+1

𝑡∧𝑇

𝑣=(𝑡−𝑘)∨1

 

 

if (𝑡 − 𝑘) ∨ 1 ≤ 𝑞 ≤ (𝑡 + 𝑘) ∧ (𝑇 + 𝑘) and 0 otherwise and 

 

 𝐃(𝛽) = ∑ 𝐷𝑗(𝛽𝑗)
𝑚
𝑗=1  (8) 

 

Differentiating Equation (7) with respect to 𝑓𝑡, the following equation is derived as 

 

 𝐟 = 𝐃(𝛽)−1∑ 𝐶𝑗(𝛼)
𝑚
𝑗=1 𝛽𝑗 (9) 

The coefficients 𝛽𝑗 and 𝛼𝑗 , 1 ≤ 𝑗 ≤ 𝑚, can be obtained using least-squares estimator, that is 
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 (𝛽𝑗
𝛼𝑗
) = (𝐅(𝐟)′𝐅(𝐟))

−1
𝐅(𝐟)′𝒛(𝒋) (10) 

 

where 𝑧(𝑗) = (𝑧𝑗,1, … , 𝑧𝑗,𝑇 )′ and 𝐅(𝐟) is the 𝑇 × (𝑘 + 2) matrix with 𝑡 − th row 

(𝑓𝑡, 𝑓𝑡+1, … , 𝑓𝑡+𝑘, 1). Finally, Equation (9) and Equation (10) define the first GDPC. 

 

Information Criteria Methods 

To describe the methods for model comparison, it is essential to firstly defined its deviance (Kim, 

2021). Therefore, two log likelihood models are used in this study, namely Akaike Information 

Criteria (AIC) (Akaike, 1974) and Bayesian Information Criteria (BIC) (Akaike, 1979). The model 

formulation which has the smallest value can be achieved using these information criteria methods. 

The equations that were used to calculate AIC and BIC in all three principal component techniques 

are shown in Equation (11). 

 

AIC =  −2 log 𝐿 + 2𝑞 

  BIC =  −2 log 𝐿 + log(𝑛) ⋅ 𝑞        (11) 

where 𝑞 is the number of estimated parameters in the model, 𝐿 is the maximum values of the 

likelihood function for the model and 𝑛 is the number of observations.  

 

 

RESULT ANALYSIS 
 

 

The data that were used for this study comprise of ten healthcare sector stock market price which 

are 5225.KL (Malaysia), ABT (U.S.), AZN (U.K.), BSL.SI (Singapore), FMS (German), KANG 

(China), MDT (Ireland), NVO (Denmark), SKR.BK (Thailand), and SNY (France). These stock 

market prices were based on daily observations of a three-year period from January 1st, 2015 to 

January 1st, 2018. These stock market prices are chosen as they are among the major healthcare 

companies in their respected countries. The companies not only provide medical treatment but also 

healthcare services and medical technologies. A stationarity test is conducted before analysing to 

verify the nonstationary pattern of the series (Andu et al., 2019). It is worth noting that the 

nonstationary healthcare stock market price is directly applied using GPDC. As BDPC and OPC 

require the data to be stationary, therefore first difference and log transformation are carried out. 

Figure 1 shows the ten-nonstationary healthcare stock market price series plot. 
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Figure 1. Daily stock market price in healthcare sector between January 1st, 2015 to January 1st, 

2018. 

The ADF test results show that the test statistics values were higher than the 95% critical values 

in all healthcare stock market prices. Moreover, the test also failed to reject 𝐻0 indicating the 

presence of unit root. Therefore, the selected healthcare stock market prices can be concluded as 

nonstationary. Several lags were considered to reconstruct the stock market price series and were 

tested using both AIC (Akaike, 1974) and BIC (Akaike, 1979) as has been shown in Table 1, where 

lower value of AIC indicates a better model fit. The AIC model is preferred over BIC because AIC 

had lower values in the model indicating better fitted (Andu et al., 2018). Therefore, based on this, 

the model that is chosen throughout consist of the original stock market price and lags k =3.  

 

Table 1. Information criteria of the healthcare stock market price. 

Stock Price AIC BIC 

5225.KL 10131.97 10150.43 

ABT 10215.69 10234.18 

AZN 10217.57 10236.06 

BSL.SI 10167.04 10185.51 

FMS 10218.41 10236.90 

KANG 10218.01 10236.49 

MDT 10218.22 10236.71 

NVO 10218.43 10236.92 

SKR.BK 9844.63 9862.98 

SNY 10218.36 10236.85 

 

 

Table 2 shows the comparison of MSE and the percentage of explained variance between the non-

transformed method and transformed method. Noteworthy, lower MSE values indicates that the 

model has better performance. Hence, among the three dimension reduction techniques, GDPC 
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has the lowest MSE values as compared to the other two methods with the exception of ABT stock. 

This is followed by BDPC and finally OPC which has the highest value of MSE. These findings 

suggest that the non-transformed method can achieved a better model performance compared to 

the transformed methods.  

 

 

Table 2. Mean squared error and percentage of explained variance of healthcare stock market 

price. 

Stock Price 
MSE Percentage of Explained Variance 

OPC BDPC GDPC OPC BDPC GDPC 

5225.KL 1.4989 1.0793 0.0020 52.8 97.8 98.7 

ABT 5.4446 0.0437 0.2320 50.7 96.8 99.0 

AZN 4.6357 1.0543 0.1730 52.5 93.4 97.2 

BSL.SI 1.6002 0.2912 0.0002 37.9 75.0 99.1 

FMS 1.8025 1.0097 0.2050 50.8 96.1 98.2 

KANG 4.1370 1.1310 0.1160 52.6 85.8 98.0 

MDT 2.0821 1.0461 0.5610 51.1 75.0 97.7 

NVO 4.2714 1.0428 0.4780 51.4 87.4 99.2 

SKR.BK 1.6707 0.9585 0.1480 50.4 87.2 99.8 

SNY 2.0741 0.8731 0.2750 50.2 92.7 98.6 

 

Here, only the first component percentage of explained variance is presented for demonstration 

reason (Andu et al., 2019; Peña & Yohai, 2016). The non-transformed method had higher 

explained percentage in all its ten healthcare stock market price (Table 2). On the other hand, five 

healthcare stock market prices have higher percentage of explained variance at 90% above in 

BDPC. Both BSL.SI and MDT stock market price shared the same percentage of explained 

variance at 75%. However, the transformed method of OPC has the lowest percentage of explained 

variance with an average of almost 50% on all of its stock market price. Therefore, having a higher 

first component percentage of explained variance indicates that much more information can be 

obtained from the non-transformed method compared to its counterpart. 

 

 

CONCLUSION 
 

A direct approach can apply to the nonstationary healthcare stock market price without the need 

for transformation. The non-transformed method presented that it has better result performance 

than the transformed techniques. Furthermore, the non-transformed methodology shows a higher 

percentage of explained variance in the first component of the nonstationary healthcare stock 

market price. Future studies can apply the non-transformed method to other stock market price 

sectors. 
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