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ABSTRACT 

In this study, a one-dimensional heat equation, subject to non-homogeneous Dirichlet boundary 

conditions (BCs) was solved by the well-known and efficient Galerkin weighted residual method 

in coordination with the embedded RKACeM(4,4) technique, which is based on the Runge-Kutta 

arithmetic mean and centroid mean methods each of order 4. The approximate solution was 

assumed to be the linear combination of the finite number of basis functions chosen from the 

solution space satisfying the boundary conditions. Imposing Galerkin requirement on the residual 

of the approximate solution as well as on initial condition, a system of first order ordinary 

differential equations (ODEs) of initial valued was obtained. Embedded RKACeM(4,4) method 

was then employed to solve the resulting system of  ODEs, where the solution of the system, in 

turn, provided the required approximate solution to the given problem. The obtained results 

compared well with the analytic solution of the problem and were found to be more suitable with 

regard to the root mean square error values over the results obtained with other sophisticated 

techniques. 

 

Keywords: Heat equation, Dirichlet boundary conditions, Galerkin weighted residual 

method, RKACeM(4,4) method 

 

 

INTRODUCTION 

Partial differential equations (PDEs) play an important role in explaining natural phenomena 

and, therefore, many areas of science and engineering seek solutions to these equations. But it 

is found that a large number of PDEs do not have analytic solutions, then one may rely on an 

approximated solution (Tadmor, 2012). As in Petrolito (1998), the modern treatment of PDEs 

relies heavily on the approximation methods, which provide a way to find out approximate 

solutions to these PDEs. To get an approximate solution of a PDE numerically, it is handled 

with a specific discretization scheme, and three discretization schemes are finite difference, 

finite element, and finite volume. The efficient and foremost among the approximation 

methods is finite element method (FEM), which is the most powerful numerical approach to 

solve PDEs (Gockenbach, 2005). It has now-a-days become a standard method for analyzing 

different problems arising in the field of thermo-mechanics, solid mechanics, biomechanics, 

fluid mechanics and about every branch of physics (Sharma et al., 2011). FEM is developed 

based on the weak formulation of a problem, which approximates its exact solution. The 

accuracy of such a solution is subject to the number and size of the elements, and the types of 
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functions that are considered within the elements (Liu and Glass, 2013). FEM works based on 

the principle of minimizing the error generated from conceding a trial solution.  It is found that 

different types of FEMs depending on minimizing process of generated errors belong to a 

family of weighted residual methods (Lindgren, 2009). In weighted residual methods, a 

residual function of a given differential equation (DE) is obtained by substituting a trial solution 

into the given equation, where such a solution is a linear combination of linearly independent 

basis functions satisfying the BCs of the given problem (Finlayson, 1972). In Galerkin 

weighted residual method (GWRM), one of the powerful weighted residual methods, the 

residue is forced to be zero by making orthogonal to each member of the basis functions 

(McGrattan, 1997). Setting inner products of the residual and basis functions to zero, a system 

of equations is obtained, which on solving, in turn, yields an approximate solution to the given 

problem. However, for solving the PDEs with the aid of a numerical approach, it is important 

to distinguish the type of the PDEs, which can be classified as elliptic, parabolic and hyperbolic 

types. Elliptic equations usually arise from a physical problem that involves steady state cases. 

Hyperbolic PDEs customarily arise in relation to mechanical oscillators, such as a vibrating 

string, or in convection driven transport problems while a parabolic PDE can be found to arise 

in time dependent diffusion problems, for example, heat equation. It is the notion of the study 

to solve a parabolic type PDEs using GWRM with a sophisticated time integrator to have an 

efficient solution. As a test case, one dimensional heat equation (ODHE) with 

nonhomogeneous Dirichlet BCs is chosen. It is pertinent to mention here that heat is the energy, 

transferred from one body to another as a result of a difference in temperature, which describes 

the distribution of heat in a particular space over time. The equation refers to an irreversible 

process and makes a difference in temperature between the previous and next steps (Dabral et 

al., 2011). One-dimensional heat equation has been studied extensively by several authors 

adopting different approaches for its applications in science and engineering (see Ekolin, 1991; 

Liu, 1999; Sun and Zhang, 2003; Cagler et al., 2008; Mohebbi and Dehghan, 2010, Tatari and 

Dehghan, 2010). The FEM has great flexibility and importance in solving heat equation (El-

Morsy and El-Azab, 2012; Kalyani and Rao, 2013). But in solving ODHE using GWRM, a 

system of first order ODEs is obtained, which can be solved with the aid of any sophisticated 

time integrator. At this juncture, it is suitable to note that RKACeM(4,4), an embedded 

technique, combined with two Runge-Kutta (RK) methods, namely RK based on the arithmetic 

mean (RKAM) and centriodal mean (RKCeM) each of order 4, is better over the RKAM  

method and RK Fehlberg (RKF(4,5)) method with respect to accuracy and central processing 

unit (CPU) time  to solve an IVP or a system of IVPs (Murugesan et al., 2002). Thus, an 

accurate and efficient solution of ODHE can be achieved by using the GWRM in coordination 

with the RKACeM (4,4) technique. Accordingly, our current work attempts to implement the 

GWRM in coordination with the RKACeM(4,4) method for solving the specified equation with 

non-homogenous Dirichlet BCs.  It is also our aim to show how the results emanated from this 

different approach support the results came out through some sophisticated techniques, namely, 

the finite difference method (FDM), the numerical method of lines (MOLs) in addition to 

RK(4,4) technique, the GWRM with the RK(4,4) method  and analytical results. It is also seen 

the variation in residual curve obtained from the difference of the results calculated using the 

mentioned approaches with the analytic result. All the residual curves observed deeply and the 

residual calculated for the present study found to have smaller variations about zero. Actually, 

the study focused on the approach that can calculate a better result in very nearer to beginning 

time. 

The rest of the part of the paper is arranged as follows. An overview of GWRM is 

presented in “A short note on GWRM” section. The model equation and boundary conditions 

are stated in “Problem statement” section. The integration procedure and error estimated 

process are discussed in detail in “Methodology” section and its subsections. Model emanated 



Gour Chandra Paul, Md. Nuruzzaman and Md. Emran Ali 

 

 
 

Menemui Matematik Vol. 44(1) 2022                                                  3 

 

results, its discussion and validation of the model are presented in “Result and discussion” 

section. Finally, conclusion on the basis of obtained results is put forward in “Conclusion”. 

 

A SHORT NOTE ON GWRM 

GWRM is an approximation method coined by Russian mathematicians Borish Grigoryevich 

Galerkin (1871–1945) for finding out an approximate solution of a continuous operator 

problem. The method converts the problem to a discrete one by making a weak formulation of 

the problem characterizing with a finite set of basis functions of the solution space to the 

problem. To find an approximate solution of a DE having the form  

 

𝐿[𝑈(𝑥)] = 𝑓(𝑥),                                                       (1)  

 

on boundary  

 

𝐵[𝑈] = [𝑎, 𝑏],                                                   (2) 

 

where 𝐿 is a differential operator and 𝑓 is a given function, the GWRM introduces a trial 

solution 𝑢̃(𝑥) of Eq. (1) as 

 

𝑢̃(𝑥) = 𝜙𝑜(𝑥) + ∑ 𝑐𝑗𝜙𝑗(𝑥)𝑛
𝑗=1 ,         (3) 

 

where 𝜙𝑗 are basis functions and 𝑐𝑗 are the coefficients to be determined. 

The basis functions are linearly independent and satisfy the BCs of the problem. 

According to the principle of GWRM, the resulting values of 𝑐𝑗 linearly combined with the 

basis functions give an approximate solution to the given problem through Eq. (3). This 

approximation method then introduces an error 𝑅(𝑥), called residual, which can be set as 

𝑅(𝑥) = 𝐿(𝑢̃) − 𝑓(𝑥), and then attempt to make the residual to be zero relative to a weighting 

function 𝑊𝑖  as 

 
〈𝑊𝑖, 𝑅〉 = 0,  

                                         (4) 

which is known as Galerkin requirement. 

 

In GWRM, weighting functions 𝑊𝑖 are self-basis functions. Therefore, the Galerkin 

requirement takes the following form 〈𝜙𝑖 , 𝑅〉 = 0,, which implies that 

       ∫ 𝜙𝑖𝑅
𝑏

𝑎
𝑑𝑥 = 0,  

or,  ∫ 𝜙𝑖𝐿(𝑢̃)
𝑏

𝑎
𝑑𝑥 = ∫ 𝜙𝑖𝑓(𝑥) 𝑑𝑥

𝑏

𝑎
, 

which represents a system of 𝑛 algebraic equations or a system of 𝑛 ODEs. Solving this system 

of equations, one can obtain the values of 𝑐𝑖 and hence the approximate solution to the given 

problem. 

 

PROBLEM STATEMENT 

 

As in Ahmad and Yaacob (2013), ODHE is considered as  
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𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2; 0 < 𝑥 < 1; 𝑡 > 0,                          (5) 

 

subject to initial condition (IC) 

 

𝑢(𝑥, 𝑡 = 0) = 70 𝑜𝐶,                             (6) 

 

and the Dirichlet BCs 

 

𝑢(𝑥 = 0, 𝑡) = 50 𝑜𝐶,                 (7) 

 

𝑢(𝑥 = 1, 𝑡) = 20 𝑜𝐶,                 (8) 

 

with the analytic solution obtained by using the method of separation of variables as 

 

𝑢(𝑥, 𝑡) = 50 − 3𝑥 + 2 ∑ [∫ (20 + 30𝑥) sin 𝜉  𝑑𝜉
1

0
] 𝑒−𝑛2𝜋2𝑡 sin(𝑛𝜋𝑥)∞

𝑛=1 ,         (9) 

 

where the symbols play the same meaning as stated in Ahmad and Yaacob (2013). 

 

METHODOLOGY 

 

Choice of basis functions 

As a basis of the solution space of the stated problem represented by Eq. (5), a usual basis of 

polynomials 𝜙𝑗 = 𝑥𝑗 − 𝑥𝑗+1 is chosen.  The linear combination of the linearly independent 

basis functions satisfying the BCs is considered as a trial solution. Thus, the trial solution for 

the chosen basis functions of the given problem specified by Eq. (5) can be represented as 

  

𝑢̃(𝑥, 𝑡) = 𝜙0(𝑥) + ∑ 𝑐𝑗(𝑡)(𝑥𝑗 − 𝑥𝑗+1)𝑁
𝑗=1 ,                         (10) 

 

with 𝜙𝑜(𝑥) = 𝑧𝑎 +
𝑧𝑏−𝑧𝑎

𝑏−𝑎
(𝑥 − 𝑎), whereas for the given problem, 𝑧𝑎 = 50, 𝑧𝑏 = 20, 𝑎 =

0 𝑎𝑛𝑑 𝑏 = 1. i.e., 𝜙𝑜(𝑥) = 50 − 30𝑥. 

 

Therefore, the trial solution gets the following form:  

  

 𝑢̃(𝑥, 𝑡) = 50 − 30𝑥 + ∑ 𝑐𝑗(𝑡)(𝑥𝑗 − 𝑥𝑗+1)𝑁
𝑗=1 .                    (11) 

 

Now, the residual for the trial solution can be set to the form: 

 

𝑅 = ∑ 𝑐̇𝑗(𝑡)(𝑥𝑗 − 𝑥𝑗+1) − ∑ 𝑐𝑗[𝑗(𝑗 − 1)𝑥𝑗−2 − 𝑗(𝑗 + 1)𝑥𝑗−1]𝑁
𝑗=1

𝑁
𝑗 . 

 

The Galerkin’s requirement, 〈𝜙𝑖, 𝑅〉, 𝑖 = 1, 2, 3, … , 𝑁 then yields to form a system of first 

order ODEs with unknowns 𝑐𝑖 as 

 

∑ 𝑐̇𝑗(𝑡) (
1

𝑖+𝑗+1
−

2

𝑖+𝑗+2
+

1

𝑖+𝑗+3
) =𝑁

𝑗=1 ∑ 𝑐𝑗(𝑡) [
𝑗(𝑗−1)

𝑖+𝑗−1
−

2𝑗2

𝑖+𝑗
+

𝑗(𝑗+1)

𝑖+𝑗+1
]𝑁

𝑗=1 .          (12) 

 

The solution of this system of ODEs gives the values of 𝑐𝑖 while the ICs for solving the above 

system of equations are obtained by imposing Galerkin requirement on the residual of the IC. 
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Therefore, imposing Galerkin requirement on the residual of the IC, we have 
〈𝜙𝑖 , 𝑢(𝑥, 0) − 𝑢̃(𝑥, 0)〉, 
 

which yields to have 

 

 ∑ 𝑐𝑗(0) (
1

𝑖+𝑗+1
−

2

𝑖+𝑗+2
+

1

𝑖+𝑗+3
) =𝑁

𝑗=1 [
20

𝑖+1
−

10

𝑖+2
+

30

𝑖+3
].                               (13) 

 

Equation (13) provides a set of IC to solve the system of ODEs given by Eq. (12). 

 

Integration procedure  

Now to attain our solution of interest, the system of ODEs given by Eq. (12) are to be solved 

with the aid of the ICs specified by Eq. (13). To solve Eq. (12), as aforementioned, we adopted 

the embedded RKACeM(4,4) method, to attain an efficient solution. A gist of it is presented in 

the following sub section. 

 

A short note on RKACeM(4,4) method 

RKACeM(4,4) method is an adaptive method that incorporates the step size adapting the 

number and position of nodes ensuring that the truncation error was kept within a specified 

bound (Burden and Faires, 2010). This is a novel approach for solving IVPs with error control 

(EC) by formulating an embedded method involving RK method based on arithmetic mean 

(AM) and centroidal mean (CeM) methods (Murugesan et al., 2002). 

 

We consider the IVP as under: 

 

𝑦′ = 𝑓(𝑥, 𝑦), 𝑎 ≤ 𝑥 ≤ 𝑏, with IC 𝑦(𝑎) = 𝛼. 

 

The approximation technique of the RKAM(4,4) method can be presented as 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

3
[

𝑘1+𝑘2

2
+

𝑘2+𝑘3

2
+

𝑘3+𝑘4

2
], 

where  

𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛), 

𝑘2 = 𝑓(𝑥𝑛 +
ℎ

2
, 𝑦𝑛 + ℎ

𝑘1

2
), 

𝑘3 = 𝑓(𝑥𝑛 +
ℎ

2
, 𝑦𝑛 + ℎ

𝑘2

2
), 

𝑘4 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘3). 

 

Further, the approximation technique of the RKCeM(4,4) method can be put in the following 

form:  

𝑦̃𝑛+1 = 𝑦̃𝑛 +
2ℎ

9
[

𝑘̃1
2+𝑘̃1𝑘̃2+𝑘̃2

2

𝑘̃1+𝑘̃2
+

𝑘̃2
2+𝑘̃2𝑘̃3+𝑘̃3

2

𝑘̃2+𝑘̃3
+

𝑘̃3
2+𝑘̃3𝑘̃4+𝑘̃4

2

𝑘̃3+𝑘̃4
], 

where   

𝑘̃1 = 𝑓(𝑥𝑛, 𝑦̃𝑛), 

𝑘̃2 = 𝑓(𝑥𝑛 +
ℎ

2
, 𝑦̃𝑛 + ℎ

𝑘̃1

2
), 

𝑘̃3 = 𝑓(𝑥𝑛 +
ℎ

2
, 𝑦̃𝑛 +

1

24
ℎ𝑘̃1 +

11

24
ℎ𝑘̃2), 

𝑘̃4 = 𝑓(𝑥𝑛 + ℎ, 𝑦̃𝑛 +
1

12
ℎ𝑘̃1 −

25

132
ℎ𝑘̃2 +

73

66
ℎ𝑘̃3), 

 

The combination of the RKAM(4,4) and RKCeM(4,4) methods is referred to as RKACeM(4,4) 

and can be formulated as  
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𝑦𝑛+1 = 𝑦𝑛 +
ℎ

3
[

𝑘1+𝑘2

2
+

𝑘2+𝑘3

2
+

𝑘3+𝑘4

2
], 

𝑦̃𝑛+1 = 𝑦̃𝑛 +
2ℎ

9
[

𝑘̃1
2+𝑘̃1𝑘̃2+𝑘̃2

2

𝑘̃1+𝑘̃2
+

𝑘̃2
2+𝑘̃2𝑘̃3+𝑘̃3

2

𝑘̃2+𝑘̃3
+

𝑘̃3
2+𝑘̃3𝑘̃4+𝑘̃4

2

𝑘̃3+𝑘̃4
]. 

 

Error estimate for the explicit RKACeM(4,4) technique  

As in Lotkin (1951), an error estimate (ERREST) for the RK method of order four is given by 

|𝜓(𝑥𝑛, 𝑦𝑛: ℎ) ≤
73

720
𝑀𝐿4|, where 𝐿 and 𝑀 are positive constants. The local truncation error 

(LTE) of the RKACeM(4,4) method can be estimated as 𝐿𝑇𝐸 = 𝑦𝑛+1 − 𝑦̃𝑛+1, which may be 

used to control step size.  

 

The 𝐿𝑇𝐸  for the RKAM(4,4) method, 𝐿𝑇𝐸𝐴𝑀,   is given by 

 

𝑦𝑛+1 = 𝑦𝐴𝑀 + 𝐿𝑇𝐸𝐴𝑀                   (18) 

 

and that for the RKCeM(4,4) method, 𝐿𝑇𝐸𝐶𝑒𝑀,  is given by 

 

𝑦𝑛+1 = 𝑦𝑛 + 𝐿𝑇𝐸𝐶𝑒𝑀,                  (19) 

 

where 𝑦𝑛
𝐴𝑀, and 𝑦𝑛

𝐶𝑒𝑀 are approximated results at 𝑥𝑛 attained by the RKAM(4,4) and 

RKCeM(4,4) methods, respectively. The difference between 𝑦𝑛+1
𝐴𝑀 , and 𝑦𝑛+1

𝐶𝑒𝑀 at 𝑥𝑛+1 gives an 

ERREST as  

 

𝑦𝑛+1
𝐴𝑀 − 𝑦𝑛+1

𝐶𝑒𝑀 = 𝐿𝑇𝐸𝐴𝑀 − 𝐿𝑇𝐸𝐶𝑒𝑀.                 (20) 

 

The LTE for the RKAM (4,4) method can be brought to the following form: 

 

𝐿𝑇𝐸𝐴𝑀 =
ℎ5

2880
(24𝑓𝑓𝑦

4 + 𝑓4𝑓𝑦𝑦𝑦𝑦 + 2𝑓3𝑓𝑦𝑓𝑦𝑦𝑦 − 6𝑓3𝑓𝑦𝑦
2 + 36𝑓2𝑓𝑦

2𝑓𝑦𝑦.                        (21) 

 

On the other hand, LTECeM can be given by  

 

𝐿𝑇𝐸𝐶𝑒𝑀 =
ℎ5

69120
(−762𝑓𝑓𝑦

4 + 8𝑓4𝑓𝑦𝑦𝑦𝑦 + 36𝑓3𝑓𝑦𝑓𝑦𝑦𝑦 − 744𝑓3𝑓𝑦𝑦
2 + 273𝑓2𝑓𝑦

2𝑓𝑦𝑦.         (22) 

 

Thus, 

|𝐿𝑇𝐸𝐴𝑀 − 𝐿𝑇𝐸𝐶𝑒𝑀| =
ℎ5

69120
(186𝑓𝑓𝑦

4 + 16𝑓4𝑓𝑦𝑦𝑦𝑦 + 12𝑓3𝑓𝑦𝑓𝑦𝑦𝑦 − 600𝑓3𝑓𝑦𝑦
2 +

591𝑓2𝑓𝑦
2𝑓𝑦𝑦.                     (23) 

 

Substituting 𝑓, 𝑓𝑦, 𝑓𝑦𝑦, etc. in Eq. (23), we have  

 

|𝐿𝑇𝐸𝐴𝑀 − 𝐿𝑇𝐸𝐶𝑒𝑀| =
281

13824
186𝑃5𝑄ℎ5,                                       (24) 

 

where 𝑃 > 0 and Q>0 are constants satisfying the following conditions:  

|𝑓(𝑥, 𝑦)| < 𝑄 and |
𝜕𝑖+𝑗𝑓(𝑥,𝑦)

𝜕𝑖𝑥 𝜕𝑗𝑦
| <

𝑃𝑖+𝑗

𝑄𝑗−1
,where 𝑖 + 𝑗 ≤ 4. 

 

If we let  𝑇𝑂𝐿 = 10−5, then by setting up |𝐿𝑇𝐸𝐴𝑀 − 𝐿𝑇𝐸𝐶𝑒𝑀| < 𝑇𝑂𝐿, the EC and step selection 

can be determined by Eq. (24) as 
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281

13824
𝑃5𝑄ℎ5 < 𝑇𝑂𝐿, or ℎ < [

49.2×𝑇𝑂𝐿

𝑃5𝑄
]

1

5
. 

 

It is to be notable here that in RKACeM(4,4) method with EC program, we choose the ERREST 

as the difference between the results attained by the RKAM(4,4) and RKCeM(4,4) methods. 

From Eq. (24), the ERREST is given by Murugesan et al. (2002) 

 

𝐸𝑅𝑅𝐸𝑆𝑇 = |𝑌𝐴𝑀 − 𝑌𝐶𝑒𝑀| ×
281

13824
.                                        (25) 

 

RESULTS AND DISCUSSION 

 

In our study, the numerical calculations are carried out by our developed Matlab routine and 

the obtained results are compared with those obtained by the GWRM in addition to the RK 

(4,4) method, the MOLs in coordination with the RK(4,4) method, the FDM and analytic 

solution. All the mentioned methods are performed for solving the problem taking step size 

∆𝑥 = 0.11. The temperature profiles at different times obtained through the present study and 

by employing the other mentioned techniques are depicted in Fig. 1. The figure shows the 

temperature variation in space over time through 3-dimensional (3D) graphical representation. 

Our numerical outputs attained by using the methods at 𝑡 = 0.01, 0.02, 0.03, 0.05, 0.05 with 

analytical solution is presented in Fig. 2 and Table 1 for a better perspective. It is seen from 

Fig. 2 and Table 1 that the results came out through the approach adopted in this study agree 

fairly well with those obtained by the other methods and analytical results. However, it is 

perceived from Fig. 2 and Table 1 that the results obtained via the present study match better 

with exact solution over the others except nearer to the beginning time. The reason behind the 

fact may be that in the case of the RKACeM(4,4)  method, the adaptive step size (ASS) is 

advanced in each step of the solution procedure, if necessary, depending upon the accuracy of 

the results. In advancing step size, a repeated computation may be needed until the wanted 

result is obtained there. But in the cases of the other mentioned methods, the same step size is 

maintained throughout a given domain of integration. It is also mentionable here that the same 

number of time steps has been maintained for both the RKACeM(4,4) and RK(4,4) time 

integrators.  
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Figure 1: The computed 3D temperature profiles attained via mentioned methods at different points 

of the domain for chosen times; (a) for the GWRM in addition with the RKACeM(4,4) method; (b) for 

the GWRM in addition with the RK(4,4) method; (c) for the MOLs in addition with the RK(4,4) method; 

(d) for FDM.  

 

 

 
Figure 2: The comparison of attained temperature profiles via mentioned methods at different points 

of the domain for chosen times with the exact results; (a) for the GWRM in addition with the 

RKACeM(4,4) method; (b) for the GWRM in addition with the RK(4,4) method; (c) for the MOLs in 

addition with the RK(4,4) method; (d) for FDM. In each case, the black-dotted-dash curve represents 

the configuration at time 01.0=t , the blue-dash curve at time 02.0=t , the greed-dotted-dash curve 

at time 03.0=t , dotted-red curve at time 04.0=t , the dotted-black curve at time 05.0=t , the dash-

magenta curve at time 06.0=t , and all small-circles represent the corresponding exact values at the 

mentioned times. 

 

Figure 3 exhibits the residuals of the results attained in the present study and in the other 

mentioned approaches with analytic solution at different times. It can be observed from Fig. 3 

that the residuals of the computed results using the GWRM (in addition with both 

RKACeM(4,4) and RK(4,4)) methods from the analytic result are smaller over the MOLs in 

addition to the RK(4,4) and the FDM which implies the GWRM yields better results over the 

MOLs and the FDM. To compare the results yielded by the GWRM in addition to both the 

RKACeM(4,4) and RK(4,4) methods, the residuals of the results attained by the methods are 
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presented in Fig. 4. It can be perceived from Fig. 4 that at the very beginning of the starting 

time, the GWRM in addition to the RK(4,4) method yields a better result over the present 

approach (see Fig. 4a). But with a little bit increase in time, residuals can be found to be reduced 

in the case of the present approach over the GWRM with RK(4,4) time integrator (see Fig. 4). 

After a short period of time, the variation in residual curve calculated for the present study is 

about disappeared (see Fig. 4f). It is clear from Figs. 3-4 that the GWRM in addition to the 

RKACeM(4,4) technique has a smaller variation in error curves over the others. Thus, the 

approach yields better accuracy in the results after a very short period of time from the starting 

time.  

 

 
Figure 3: Residuals of the results attained via the mentioned methods at different points of the 

domain at chosen times; (a) at 01.0=t ; (b) at 02.0=t ; (c) at 03.0=t ; (d) at 04.0=t ; (e) at 

05.0=t ; (f) at 06.0=t . In each case, the black-dash curve represents the residual obtained 

by the GWRM in addition with the RKACeM(4,4) method, a dotted-blue curve for the GWRM 

in addition with the RK(4,4) method, a green-dotted-dash curve for the MOLs in addition with 

the RK(4,4) method, and a dotted-red curve for the FDM. 
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Figure 4: Residual of the results attained by the GWRM in coordination with the 

RKACeM(4,4) and RK(4,4) time integrators at different points of the domain for chosen times; 

(a) at 01.0=t ; (b) at 02.0=t ; (c) at 03.0=t ; (d) at 04.0=t ; (e) at 05.0=t ; (f) at 06.0=t . 

In each case, the black-dash curve represents the residual obtained for the GWRM in 

coordination with the RKACeM(4,4) method, a dotted-blue curve for the GWRM in addition 

with the RK(4,4) method. 

 

Table 1: Comparison of our computed result came out through the present study with the 

GWRM in addition with the RK (4,4) method, the MOLs with the RK(4,4) method,  the FDM 

and analytic solution at varying time. 
 

  

 

0         0.1111     0.2222      0.3333      0.4444     0.5556         0.6667        0.7778      0.8889        1 
 

 

 

RMSE 

values 

 
 

 

 
0.01 

 

The present 

study 

 

50      61.3609    67.6791    69.624     69.9746     69.9045     69.0825      64.198      48.3973      20 

 

 

0.0058     

GWRM with 
RK(4,4) 

50      61.2327    67.94        69.6745    69.6006     69.9079   69.5130       64.0496    48.1476      20 0.2212 

FDM 50      61.3900    67.3773    69.392     69.8485     69.7083     68.4911      63.4444    48.4751      20 

 

0.3345     

MOL 50      61.3922    67.3776    69.3915   69.848       69.7076     68.49           63.4452    48.4807     20 

 

0.3347 

EXACT 50      61.3588    67.678      69.6314   69.9622     69.9146     69.0788       64.1949    48.3971     20 
 

 

 

 

 
0.02 

 

The present 

study 

 

50      58.4313    64.6653    68.0482   69.2006     68.5792     65.2072       56.6753    41.0782     20 

 

 

0.0024 

GWRM with 

RK(4,4) 

50      58.5168    64.6988    67.9499   69.1672      68.6495   65.2307        56.6368    41.0671     20 0.0513 

FDM 50      58.4904    64.5964    67.8215   68.8755     68.1505     64.783         56.5392    41.2347     20 
 

0.2381     

MOL 50      58.4929    64.598      67.821      68.8738     68.1487     64.7831      56.5435    41.2411     20 
 

0.2389 

EXACT 50      58.4293    64.6646    68.0455   69.201        68.5771     65.2038      56.672      41.0741     20 

 

 

 
 

 

0.03 

 

The present 

study 

 

50      56.9842    62.6400    66.2047    67.4418     66.0542     61.1928      51.7568    37.4899     20 

 

 

0.0008 

GWRM with 50      57.0199    62.6247    66.1714    67.4633     66.0757     61.1642      51.7544     37.5128     20 0.0221 

x→ 

 

 

 

 

 

 

 

 t 

↓ 
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RK(4,4) 

FDM 50      57.0073    62.5845    65.9953    67.0993     65.685       60.9573      51.7466    37.5903     20  
 

0.1910 

MOL 50      57.0093    62.5863    65.9951    67.0976     65.6839     60.9594      51.7524    37.596       20 

 

0.1916 

EXACT 50      56.9839    62.6394    66.2039    67.4415     66.0529     61.1917      51.7555    37.4889     20 

 

 

 
 

 

0.04 

 

The present 

study 

 

50      56.032      61.062      64.3078     65.2033     63.2058     57.703        48.2792    35.2468    20 

 

 

0.0007 

GWRM with 
RK(4,4) 

50      56.0387    61.0458    64.3033    65.223        63.207       57.6786      48.2839     35.2644    20 0.0128 

FDM 50      56.0204    60.9825    64.1151    64.9247      62.9418     57.5622      48.2846    35.3060    20 

 

0.1459     

MOL 50      56.0219    60.984      64.1152     64.924       62.9423     57.5659     48.2908    35.311       20 

 

0.1457 

EXACT 50      56.0318    61.0615    64.3072     65.2026     63.2047    57.702        48.2781    35.2462     20 
 

 

 

 

 
0.05 

 

The present 

study 

 

50      55.269      59.6660    62.4143     62.8559     60.4278    54.7091      45.6136    33.6447     20 

 

 

0.0006     

GWRM with 

RK(4,4) 

50      55.2671    59.6546    62.4176     62.8687      60.4237    54.6931    45.6185    33.6553     20 0.0085 

FDM 50      55.236      59.5741    62.2489     62.6479     60.2484     54.6206     45.6172    33.6787     20 
 

0.1097     

MOL 50      55.237      59.5753    62.2496     62.6487     60.2507     54.6254     45.6234    33.6831     20 

 

0.1087 

EXACT 50      55.2688    59.6655    62.4137     62.8551     60.4269     54.7082     45.6127    33.6443     20 

 

 

 

 

  

 

  
Figure 5: Our estimated RMSE values obtained by using different methods with varying time. 

The RMSE values are calculated between the model results and analytic solution by the present 

method, the GWRM in addition with the RK (4,4) method, the MOLs with the RK(4,4) method, 

and the  FDM. 

 

 

For testing the efficiency of the method employed in the present study, the root mean square 

errors (RMSEs) have been estimated between computed and analytical results. RMSE values 
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for the results provided by the other techniques have also been evaluated. The results in this 

regard are presented in Fig. 5. Fig. 5 as well shows the better accuracy of the temporal 

variations of the results by the present study with exact solutions over the other mentioned 

methods. Here, it is justified to note that during solving a system of ODEs, the outputs of the 

system are interdependent. Thus, an error in an output, if available, it can influence the outputs 

for the next subsequent steps and errors can be piled up. In the embedded RKACeM(4,4) 

technique, an output with a suitable accuracy can be attained depending upon the tolerance 

setting. But the other mentioned methods are devoid of providing such a type of advantage. 

Thus, in the case of accuracy, the approach adopted in the study can defeat the mentioned 

methods. We also employed the techniques in solving ODHE subject to homogeneous zero 

BCs and variable type BCs and found that in both the cases the computed results by the 

approach adopted in this study compared the corresponding exact results better over the other 

methods mentioned above. The results have not displayed in this communication due to space 

consumption and we think they are not physically instructive. For testing computational cost, 

all the codes were run on the same computer (Intel(R) Core(TM) i5-4570, 4th generation) with 

ASS size 0.11.  The CPU time in the case of the employed method used in the study was found 

to be a little bit more in comparison with that for the other mentioned methods. The reason 

behind the fact may be that in the case of the embedded system like RKACeM(4,4)  method, 

the ASS can be advanced in each step of the solution procedure depending on the accuracy of 

results and to attain it, a repeated calculation may be needed. But the computational cost highly 

depends on the selection of step size. Thus, it can be reduced with setting up of a suitable 

tolerance. But in the case of the other mentioned methods, such a kind of facility is not available 

as aforementioned.  

 

CONCLUSION 

 

In the present study, we have solved ODHE with non-homogeneous nonzero Dirichlet’s BCs 

through the GWRM in coordination with the RKACeM(4,4) method and the results are found 

to be satisfactory with the basis of the RMSE values attained in this study and can be found to 

be better over the other sophisticated employed methods. Thus, the method is found to produce 

efficient results with a reasonable cost, which are always stable. The accuracy of the model 

results can be increased with setting up proper tolerance. Thus, it can be concluded that the 

different approach adopted in the study is optimal enough to solve ODHE that can be employed 

to solve such an equation with various types of BCs, which, in turn, can be applied for solving 

higher dimensional heat equations efficiently.   

 

 

 

REFERENCES 

Ahmad, R.R., Yaacob, N. (2011), Arithmetic-mean Runge-Kutta method and method of lines  

for solving mildly stiff differential equations. Menemui Matematik (Discovering 

Mathematics), 35 (2): 21-29. 

Burden, R.L., Faires, J.D. (2010), Numerical analysis (9th edition), Brooks/Cole, Boston, USA. 

Çağlar, H., Özer, M., Çağlar, N. (2008), The numerical solution of the one-dimensional heat  

equation by using third degree B-spline functions. Chaos Soliton Fract, 38 (4): 1197-

1201. 

Dabral, V., Kapoor, S., Dhawan, S. (2011), Numerical simulation of one dimensional heat  

equation: B-spline finite element method. IJCSE 2: 222-235. 

Ekolin, G. (1991), Finite difference methods for a nonlocal boundary value problem for the  

heat Equation. BIT Numer. Math., 31 (2): 245-261. 



Gour Chandra Paul, Md. Nuruzzaman and Md. Emran Ali 

 

 
 

Menemui Matematik Vol. 44(1) 2022                                                  13 

 

El Morsy, S.A., El-Azab, M.S. (2012), Logarithmic Finite Difference Method Applied to  

KdVB Equation. Am. Educ. Res. J., 4 (2): 41-48. 

Finlayson, B.A. (1972), The method of weighted residuals and variational principles with  

application in fluid mechanics, heat and mass transfer, Academic Press Inc. New York. 

Gockenbach, M.S. (2005), Partial differential equations: analytical and numerical methods.  

SIAM, V- 122. 

Kalyani, P., Rao, P.R. (2013), Numerical solution of heat equation through double  

Interpolation. IOSR-J.M., 6 (6): 58-62. 

Lindgren, L.E. (2009), From weighted residual methods to finite element methods, Technical  

report 

Liu, Y., Glass, G. (2013), Effects of mesh density on finite element analysis. SAE Technical  

Paper (No. 2013-01-1375). 

Liu, Y. (1999), Numerical solution of the heat equation with nonlocal boundary conditions. J  

Comput. Appl. Math., 110 (1): 115-127. 

Lotkin, M. (1951), On the accuracy of RK methods. AMS, 5 (1): 128–133. 

McGrattan, E.R. (1997), Application of weighted residual methods to dynamic economic  

models. Federal Reserve Bank of Minneapolis 

Mohebbi, A., Dehghan, M. (2010), High-order compact solution of the one-dimensional heat  

and advection–diffusion equations. Appl. Math. Model., 34 (10): 3071-3084. 

Murugesan, K., Dhayabaran, D.P., Amirtharaj, E.H., et al. (2002), A fourth order embedded  

Runge-Kutta RKACeM (4, 4) method based on arithmetic and centroidal means with 

error control. Int. J. Comput. Math., 79 (2): 247-269. 

Petrolito, J. (1998), Approximate solution of differential equations using Galerkin’s methods  

and weighted residuals. Int.  J. Mech. Eng. Edu., 28 (1): 14– 26. 

Sharma, D., Jiwari, R., Kumar, S. (2011), Galerkin-finite element method for the numerical  

solution of advection-diffusion equation. IJPAM, 70 (3): 389-399. 

Sun, H., Zhang, J. (2003), A high‐order compact boundary value method for solving one- 

dimensional heat equations. Numer. Meth. Part. D. E. 19 (6): 846-857. 

Tadmor, E. (2012), A review of numerical methods for nonlinear partial differential equations.  

B. Am. Math. Soc., 49 (4): 507-554. 

Tatari, M., Dehghan, M. (2010), A method for solving partial differential equations via radial  

basis functions: Application to the heat equation. Eng. Anal. Bound. Elem., 34 (4): 206-

212. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


