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ABSTRACT 
The quasi-Newton method was popular due to the fact that only the gradient of the objective is required 

at each iterate and, since the second derivatives (Hessian) were not necessary, the quasi-Newton 

approach is often more efficient than the Newton method, especially when Hessian computation is costly. 

However, the method needed a full matrix storage that approximated the (inverse) Hessian.  As a result, 

they might not be appropriate for dealing with large-scale problems. In this paper a diagonal quasi-

Newton updating strategy is presented. The elements of the diagonal matrix approximating the Hessian 

were determined using the log-determinant norm satisfying weaker secant equation. To ensure the 

positive definiteness of the proposed diagonal updating matrices, their Cholesky factor will be considered 

within the variational problem. The corresponding variational problems are solved with the application of 

Lagrange multipliers approximated using Newton-Raphson method. Executable codes were developed to 

test the effectiveness and efficiency of the methods compared with some standard conjugate-gradient 

methods. Numerical results show that the proposed methods preforms better. 

 
Keywords: Quasi-Newton methods, diagonal-updating strategy, trace and log-determinant norm, 

Cholesky factor, weak secant equation. 

 

 

INTRODUCTION 

 

In this paper we propose a new diagonal quasi-Newton (QN) updating strategy using Bard and 

Nocedal (1989), traces and log-determinant norm subject to Dennis and Wolkowicz (1993) weak 

secant equation. Therefore, we consider the problem of the form:    

  

 min ( ),f x  (1) 

 

where : nf R R→ → is continuously differentiable of n variables which is assumed to be large. The 

first variable metric known as QN method was due to Davidon (1959), and later improved by 

(Fletcher & Powell, 1963).  The method serves as an alternative to Newton's method. The 

Newton's method requires the determination of the Hessian matrix at every iteration which is 

known to be computationally expensive, while the QN- method requires only the computation of 

the gradient of the objective function at each iteration. On the other hand, the standard QN-

method also has its peculiar problems. For instance, the method sometimes is affected by ill 

conditioning, and also may require full matrix storage which is not suitable for large scale 

problems. Starting from an initial point 0

nx R  and an initial approximation 0

n nB R to the 

Hessian of the function f at 0x symmetric and positive definite, the QN is an iterative of the form: 
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 1 , 1, ,k k k kx x d i n+ = +  = L  (2) 

where ( )k kg f x= is the gradient vector of f at
kx  and 1

kB− is the quasi-Newton approximation to the 

inverse Hessian 2 1( ( ))kf x − at 
kx . The step-size parameter 0k  is chosen by inexact line-search 

satisfying the  Armijo, (1966) condition given by: 

 ( ) ( ) T

k k k k k k kf x d f x g d +  + ,  (3) 

 

Where (0,1)k  . To guarantee that the methodology includes correct curvature information  then , 
1kB +
 

the update of 
kB  should satisfy the quasi-Newton equation, 

                                                                         
1k k kB s y+ =                                                                           (4) 

   Where 
1k k ks x x+= −  and 

1k k ky g g+= − .  Many authors have tried to let 
kB  satisfy equation (4), but since 

it is normally very difficult  to the quasi-Newton relation with a matrix of diagonal form to satisfy the 

relation (4), moreover, since our  updating matrix is diagonal in order to maintain ( )O n floating point we 

let our 
kB  satisfy the Dennis and Wolkowictz, (1993)  weak secant equation v which is given by: 

 1 ,T T

k k k k ks B s s y+ =  (5) 

Most popular among the quasi-Newton methods is the (BFGS) method which is developed (Broyden, 

1970; Goldfarb, 1970; R. Fletcher, 1970; Shanno, 1970). According to Nocedal and Wright (2006), the 

method can be derived by solving the following system of unconstrained minimization problem  

 
1minH k k WH H+ −‖ ‖  (6) 

                                                       s.t 1 1,T

k kH H+ +=  and 
1k k kH y s+ =  

Therefore, to obtain the update to the variational problem in (6), we impose additional condition that is 

the inverse matrix 
1kH +

 is a symmetric positive definite satisfying the secant equation (4). 

Additionally,
1kH +
 supposed to be closer to the current matrix

kH under some Weighted Frobenius norm 

define by 

 
1 1

2 2
W FP W PW=‖ ‖ ‖ ‖ , (7) 

where 
1k kP H H+= − , and . F‖ ‖ is define by 2 2

,

1 1

n n

F i j

i j

C C
= =

=‖ ‖ .  The weighted norm W is any matrix 

satisfying k kWy s= . Then, the unique solution 1kH +  give rise to the inverse Hessian update  

 1 ( ) ( ) ,T T T

k k k k k k k k k k kH I y s H I s y y y  + = − − +  (8) 

where 
1

k T

k ky s
 = .  

Hence, working with kB instead of kH , the BFGS update for the Hessian approximation can be obtained 

by applying the Sherman Morrison formula, giving the (BFGS)  method as 

 1

T T

k k k k k k

k k T T

k k k k k

B s s B y y
B B

s B s y s
+ = − +  (9) 
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There are already been a list of achievements in the global convergence of the algorithm. Powell ( 1976) 

and Werner (1978) proved the global convergence properties of the method for unconstrained convex 

programme with large scale class of line search methods. However, there analysis did not cover the 

backtracking line searches. Byrd and Nocedal, (1989) introduced some mechanisms that makes the global 

convergence of the (BFGS) covered the backtracking strategies. They simplified the method by using the 

trace and log-determinant of the update matrix 
kB  and hence defined that for any positive definite matrix 

kB the function, 

 ( ) ( ) ( ( )),k k kB tr B ln det B = −  (10) 

Therefore, besides the weighted Frobenius norm, Byrd and Nocedal uses simultaneously the properties of 

trace and determinant of the matrix 
kB to simplified the prove for the convergence of BFGS method. For 

this purpose they define for any positive matrix 
kB on a strictly convex function, a measure of closeness 

between the matrix 
kB and the identity matrix I such that 0I = ,  where  ln  denotes the natural logarithm, 

and tr is the trace operator.  Sim et al., ( 2018) proposed a variant of diagonal spectral gradient method  

using the trace and log-determinant norm while satisfying the weak secant equation of (5) . They proved 

the global convergence of the method under the backtracking line search with Armijo condition and it 

shows the method performs better than some conjugate gradient methods. 

Motivated by these advances, we propose another least change secant updating strategy via the Byrd and 

Nocedal (1989) traces and log-determinant norm, satisfying the weak secant equation of Dennis and 

Wolkowicz (1993). To ensure positive definiteness of the proposed method, the Cholesky factor will be 

considered within the variational problem. The corresponding variational problems are solved with the 

application of Lagrange multipliers, approximated using the Newton-Raphson method. In Section 2, we 

present the derivation and mathematical formulation of the updating formulae while section 3 is the 

numerical results and comparison with some standard conjugate gradient methods. Finally, section is the 

conclusion and further research. 

DIAGONAL UPDATING STRATEGY WITH CHOLESKY FACTORIZATION VIA 

VARIATIONAL PRINCIPLE. 

Suppose that the update formula is given by kB is diagonal and positive definite. Our main aim is to 

construct and define an updating formula 
1kB +
 in such a way that it satisfies the weaker secant equation of 

(5). Taking into account the Cholesky factor of trace and log-determinant norm in (10), and letting 
1 1

2 2
1 1,( ) 1, ,k k iB b i n+ +=  = L .  

Then, the problem is equivalent to the variational in component form given by 

 
1 1

2 2
1, 1,

1 1

min ln( ) ( )
nn

k i k i

i i

b b+ +

= =

−   (11) 

 s.t   
1

2 22
, 1,

1

( ) 0( )
n

T

k i k i k k

i

s b s y+

=

− =   

The Lagrangian function of the problem becomes 

 
1 1 1 1 1 1 1

2 22 2 2 2 2 2 2
1,1 1,2 1, 1,1 1,2 1, , 1,

1

( ) ( . . . ) ( )[ ]
n

T

k k k n k k k n k i k i k k

i

L b b b ln b b b s b s y+ + + + + + +

=

= + + + − − −L L  (12) 
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where  is the Lagrange multiplier associated with the constraints of (12). Thus in order to get 

the minimizer we differentiate the Lagrangian with respect to each 
1

2
1, 1, ,k ib i n+  = L and setting 

the result equal to zero, leads to, 

 
1

22
1, ,1 1

2 2
1, 1,

1
1 2 ( ) 0k i k i

k i k i

L
b s

b b

 +

+ +


= − − =



 (13) 

 
1

22
1, , 1

2
1,

1
2 1 0k i k i

k i

b s

b

 +

+

− − + =  (14) 

 
1 1

2 22 2
1, , 1,2 ( ) 1 0k i k i k ib s b + + − + =  (15) 

assuming 
1

2 0kb  . The quadratic in (15) is then solved to obtain 

  

 
21
,

2
1, 2

,

1 1 8
,

4

k i

k i

k i

s
b

s




+

+ −
=  (16) 

or  

   

 
21
,

2
1, 2

,

1 1 8
,

4

k i

k i

k i

s
b

s




+

− −
=  (17) 

As suggested, the Lagrange multiplier  , would be approximated by using the Newton-Raphson 

method where 
0 0 = is the chosen initial guess but, in this place the situation changes because the 

initial trial  guess  at 0( 0) = failed. Since ( )F  and ( )F  are undefined at 0 = , we opt to do the 

approximation by letting T

k ks y = for the sake of simplicity and to ensure boundedness of ,k iB . 

Now let 

 T

k ks y =  (18) 

Subsequently, substituting (18) in (16) leads to  

 

1

21 2
,2

1, 2

,

1 (1 8 )
.

4( )
( )

T

k k k i

k i T

k k k i

s y s
b

s y s
+

+ −
=  (19) 

 

 

 

Given our first updating formula in the first case as 

 

1

2 2
, 2

1 2

,

1 (1 8 )
, .

4( )
( )

T

k k k iI

k T

k k k i

s y s
B i

s y s
+

+ −
=   (20) 
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Following the same procedure, that is substituting (18) in (17) gives our second updating formula 

as 

 

1

2 2
, 2

1 2

,

1 (1 8 )
, .

4( )
( )

T

k k k iII

k T

k k k i

s y s
B i

s y s
+

− −
=   (21) 

Now, the description of our Algorithm together with the line search is given as follows: 

Algorithm 1. LDNCF 1 and LDNCF 2. 

Step 1: Select an initial point 0

nx R , 
0B I=  be an identity matrix, set 0k = and choose the 

stopping criterion 0ò . 

Step 2: If 
kg  ò‖ ‖ stop. Else go to step 3. 

Step 3: Compute 1

k k kd B g−= − . 

Step 4: Find an acceptable step-length 0k  such that  the Armijo backtracking line-search given 

by  (3) is satisfied, with 1 = as the first trial. 

Step 5: Set 
1k k k kx x d+ = + and update 

1kB +
using  (20) or (21). 

Step 6: Set : 1k k= + and go to step 2. 

CONVERGENCE ANALYSIS 

The convergence analysis of our methodologies is presented in this section and, before 

proceeding we make the following assumptions. 

Assumption 1. 

1. The level set 0{ : ( ) ( )}nx R f x f x =   is    convex. 

2. The objective function 2f C that is (at least twice continuously differentiable)  bounded 

below and has a unique minimizer *x in the level set  . 

3. There exists positive constants 1 20 M M  such that : 

                                                  2 2

1 2( )TM z z G x z M z ‖ ‖ ‖ ‖ , 

  for all nz R and x . 

Safeguarding strategies: 

To ensure that our updating formulae are bounded, we propose the following safeguarding 

strategies. 

 Let 4

1 10M −= and 4

2 10M =  then,  kB is updated by (20) or (21) , if: 
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1 1 2 1, ,kM B M i n+   = L  

Otherwise, 

1, ,k i k iB + = where, ,

T

k k

k i T

k k

s y

s s
 = . 

In general, 

 
1 1 2

1

, ,

(20 or 21) if ,

Otherwise,

where

k

k

T

k k

k i k i T

k k

M B M

B

s y

s s
 

+

+

 
 

  
 

=  
 
 =
  

 

 

NUMERICAL EXPERIMENTS AND COMPARISONS 

In this section, we present some numerical results from an implementation of our new proposed 

Ln (determinant norms) with Cholesky factor (LDNCF1) and (LDNCF2) diagonal quasi-newton 

methods for solving large scale unconstrained optimization problems. We therefore, evaluate the 

performance of our proposed (LDNCF1 and LDNCF2)-methods with some recent conjugate 

gradient (CG) methods. The methods used for the comparison including:  

1. Fletcher and Reeves, FR  (1964) 

2. Polak ,Rebierre and  Polyak, B.T  PRP (1969) 

3.  Dai and Yuan, DY (1999) 

All the experiments are implemented on a PC using Matlab 7.9.0 (R2015 a) with double 

precision Arithmetic. A total of 60 test functions are selected from Andrei  (2008) test problems. 

For each test problem, we perform five numerical experiments with variables dimension ranging 

from 100 to 50,000 with Armijo (1966) line search condition from (3) used with the constant 

0.1. =  As regards to the stopping criteria used in our experiments for the algorithms, 

convergence is assumed when 

 ,kg  ò‖ ‖  (22) 

is satisfied where 410−=ò is accepted as the standard convergence criteria. Hence we forced the 

algorithm to stop whenever the number of iteration exceeds 10,000 and declare the runs as 

failure. To compare the performance of our proposed (LDNCF1) and(LDNCF2) methods with 

the other CG-methods, we  use the performance profile proposed by Dolan and Moré, (2002). 
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Fig.1: (a) Performance profile based on iterations for LDNCF1, LDNCF2 with DY, PRP and FR 

and (b) the performance profile based on function evaluation count for LDNCF1, LDNCF2 with 

DY, PRP and FR. 

 
Figure 1 (a) shows the profiling graph of our proposed methods and the list of conjugate gradient methods 

in terms of the number of iterations. From Figure 1 (a), corresponding to the top curve in the profiling 

graph, it is obvious that our proposed LDNCF1 and LDNCF2 methods perform better than the conjugate 

gradient methods. In other words, our proposed methods require fewer iterations to get the desired 

minimum points. Figure 1(b) shows the profiling graph of our proposed methods and the list of conjugate 

gradient methods in terms of the number of function calls. Therefore, our proposed LDNCF1 and 

LDNCF2 methods confirm that our number of function calls is lower than the compared methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Performance profile based on CPU-time for LDNCF1, LDNCF2 with DY, PRP and FR. 

 

Figure 2 shows the profiling graph of our proposed method and the list of conjugate gradient 

methods in terms of CPU time, and from this figure, the graphs of the LDNCF1 and LDNCF2 

methods appear to be the top curves of the profiling graph rather than the list of conjugate 

gradient methods, which indicates that our proposed algorithms are faster than the CG methods. 
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CONCLUSION 

 

We present a new class of diagonal quasi-Newton (DQN) method in the form of Traces and 

log(determinant) norm. in this method, we consider the Cholesky factor or the square-root of 
1

2
kB to the updating diagonal Hessian matrix

1

2
1kB +
. Our purpose is to determine that the updating 

diagonal Hessian matrix 
1,kB +

preserved positive definite. The outcome from the numerical 

testing confirm our claims that our proposed strategies can improve the performance of gradient 

based algorithms. Our safe guarding strategies are simple, inexpensive, and robust than the other 

compared CG-Methods. Therefore, we conclude that our numerical updating strategy provides 

good alternative to some of the other existing methods. 
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