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ABSTRACT 

 

The nonlinear conjugate gradient (CG) method is essential in solving large-scale 

unconstrained optimization problems due to its simplicity and low memory 

requirement. Numerous studies and improvements have been made recently to 

improve this strategy. Hence, this study will create a modified CG method with inexact 

line search, Strong Wolfe-Powell conditions. The global convergence and sufficient 

descent properties are established by using an inexact line search. The numerical result 

demonstrates that the modified method with inexact line search is superior and more 

efficient when compared to other CG methods.  
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INTRODUCTION 

 

Unconstrained optimization 

Unconstrained optimization problems consider optimizing an objective function that relies on 

actual variables without any value constraints. According to Fasano (2010), the general problem 

of unconstrained large-scale optimization can be defined in (1), where the parameter 𝑛 is huge. He 

also describes the huge 𝑛 value claim for appropriate search directions and step length along with 

the method. The choice of the search directions is responsible for the efficiency of the methods, 

the convergence rate, while a suitable step length choice guarantees the output. Besides, iterative 

methods (2) usually reduce the computational burden compared to direct methods when n is large. 

One of the methods for solving large-scale unconstrained optimization problems is 

Newton’s method. However, according to Cajori (1911), Newton explained his approximation 

approach to the real root of the numerical equation in 1669. Besides, another method used is the 

Quasi-Newton method. Meanwhile, Wikipedia contributor (2020) William C. Davidon, a physicist 

employed at the Argonne National Laboratory, introduced the first Quasi-Newton algorithm. In 

1959, he created the first Quasi-Newton algorithm, the updating method for the Davidon-Fletcher-

Powell, which was later popularized by Fletcher and Powell in 1963, but is seldom used today. 

Unlike Newton’s method, in which the technique needs to minimize the gradient and the Hessian 

matrix of the function’s second derivatives, the Quasi-Newton approaches generalise the secant 

approach to locate the root of multidimensional problems with the first derivative. 
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Generally, the large-scale unconstrained optimization problem formula can be defined as 

below:  

 

 min
𝑥𝜖𝑅𝑛

𝑓(𝑥) (1) 

 

where 𝑓: 𝑅𝑛 → 𝑅 is a smooth, nonlinear function and the gradient indicated by 𝑔(𝑥). 

 

Conjugate Gradient method 

The CG method is widely used to solve large-scale unconstrained optimizations because of its 

convergence properties and low computational cost. Powell (1977) states that the CG technique is 

beneficial for reducing functions of very many variables as it does not involve any matrices to be 

stored. However, the algorithm’s convergence duration is linear until the iterative process is 

periodically “restarted”. This approach will use only the previous vector 𝑃𝑘−1 to calculate a new 

vector 𝑃𝑘 . This exceptional property means that the system needs minimal storage and 

computation (Nocedal and Wright (2006). Continuos research from the CG method includes the 

methods of Fletcher-Reeves (FR), Polak-Ribi`ere-Polyak (PRP), the method of Hestenes-Stiefel 

(HS), the method of Liu-Storey (LS), the method of Dai-Yuan (DY) and the method of Conjugate 

Descent (CD). They are some of the popular parameters, 𝛽𝑘 of the CG method. 

 

The CG method is an iterative method given as follows, 

 

 𝑥𝑘+1 = 𝑥𝑘 +  𝛼𝑘𝑑𝑘 ,   𝑘 = 0, 1, 2, 3 … (2) 

 

where 𝑥𝑘 is the current iterate point, 𝑎𝑘 is the step length and 𝑑𝑘 is the search direction. The search 

direction is defined by, 

 

 𝑑𝑘 = {
−𝑔𝑘,                       𝑖𝑓 𝑘 = 0
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1     𝑖𝑓 𝑘 ≥ 1

 (3) 

where 𝛽𝑘𝜖𝑅  is a scalar known as a scalar. Various conjugate gradient methods have been 

suggested, which differ mainly in the choices of the parameter, 𝛽𝑘 . There are some popular 

classical formulas for parameter 𝛽𝑘 which given as follows, 

 

 𝛽𝑘
𝐹𝑅 =  

𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘−1
𝑇 𝑔𝑘−1

 (4) 

 

 

 

 

𝛽𝑘
𝑃𝑅𝑃 =  

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑔𝑘−1
𝑇 𝑔𝑘−1

 (5) 

 𝛽𝑘
𝐻𝑆 =  

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

(𝑔𝑘 − 𝑔𝑘−1)𝑇𝑑𝑘−1 
 (6) 

 

 

 

 

𝛽𝑘
𝐿𝑆 =  

𝑔𝑘
𝑇

 
(𝑔𝑘 

−  𝑔𝑘−1)

𝑑𝑘−1
𝑇 𝑔𝑘−1

 (7) 

 𝛽𝑘
𝐷𝑌 =  

𝑔𝑘
𝑇𝑔𝑘

(𝑔𝑘 − 𝑔𝑘−1)𝑇𝑑𝑘−1
 (8) 
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 𝛽𝑘
𝐶𝐷 =  

𝑔𝑘
𝑇𝑔𝑘

𝑑𝑘−1
𝑇 𝑔𝑘−1

 

 

(9) 

 

 

 

where 𝑔𝑘 = 𝑔(𝑥𝑘). Accordingly, the above method is named the Fletcher-Reeves (FR) approach 

by Fletcher (1987), the Polak-Ribi`ere-Polyak  (PRP)  approach by  Polyak (1969), the Hestenes-

Stiefel (HS) approach by Hestenes et al. (1952), the Liu-Storey (LS) approach by Liu and Storey 

(1991), Dai- Yuan (DY) approach by Dai and Yuan (1999) and the Conjugate Descent (CD) 

approach by Fletcher and Reeves (1964). 

Specifically, the modification of the new parameter,𝛽𝑘  namely, the AIM method formula 

combines the AMRI method developed by Abashar et al. (2014) and the HRM method developed 

by Hamoda et al. (2016). The properties of global convergence are proposed with an exact line 

search, and this reveals that the AIM method holds sufficient conditions for descent as the 

parameter AIM has always been proved to be less than zero. However, the computation stopped 

in certain situations due to the line search inability to locate a positive step length. Thus, it is 

considered a failure. Moreover, the AIM method provides the best results, as it can perfectly solve 

all the test problems. That has been proven when the AIM method is very competitive with the 

AMRI method and HRM method. Combinations demonstrate that it outperforms FR methods in 

terms of iterations and CPU time. 

 

Inexact line search 

Line search, referred to as one-dimensional search, is a functional system for univariable functions. 

There are two types of line search, which are an exact line search (ELS) and an inexact line search 

(ILS). For our research, we will employ an ILS as we need a step length, 𝑎𝑘 to ensure a necessary 

reduction in the function values that induces global convergence properties of the approach. Our 

focus is on Strong Wolfe–Powell conditions, designed to approximate the suitable step length. The 

Strong Wolfe-Powell conditions are introduced as below, 

 

 𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)  ≤ 𝑓(𝑥𝑘) + δ𝛼𝑘𝑔𝑘
𝑇  𝑑𝑘 (10) 

 

 |𝑔(𝑥𝑘 +  𝑎𝑘𝑑𝑘)𝑇𝑑𝑘|  ≤  𝜎|𝑔𝑘
𝑇 𝑑𝑘| (11) 

 

where 0 < 𝛿 < 𝜎 < 1 and 𝑑𝑘  is a search direction. Moreover, the sufficient descent property, 

namely, 

 𝑔𝑘
𝑇𝑑𝑘 ≤  −𝑐||𝑔𝑘||2 (12) 

where 𝑐 > 0, it is important to ensure that the nonlinear conjugate gradient approach converges 

globally with the inexact line search techniques.  

Most applications with thousands or millions of variables give rise to unconstrained 

optimization problems. However, issues of this size can perform productively if the capacity of 

the optimization algorithms is also maintained at an average level. To achieve this goal, various 

large-scale optimization methods have been developed, each of which has been particularly 

successful. 

Previously, the Steepest Descent method also referred to as the Gradient Descent method 

was used to find the nearest local minimum of a function. The convergence properties of the 

Steepest Descent approach with inexact line searches have been analyzed for the selection of 
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stepsize, 𝑎𝑘 under several strategies. However, this method is not widely used in practice due to 

its slow convergence rate. Knowing the convergence properties of this method contributes to a 

better understanding of many of the more advanced optimization methods.While the Newton 

method of finding the roots of the derivative is applied to the derivative 𝑓′ of a twice-differentiable 

function 𝑓 known as the Hessian matrix, the drawback of using the Newton method is that it does 

not always converge to a minimizer, thus if the starting approximation is too far from the solution, 

it may diverge. 

Since the Newton method is excessively time-intensive, the Quasi-Newton method will be 

replaced by this approach. It does not need to calculate the inverse Hessian iteratively. Thus, the 

various forms of the Quasi-Newton method are strongly dependent on what approximation is used. 

However, the lack of accuracy in the Hessian calculation leads to a slower step by step convergence. 

Consequently, we address the issue in this work using the CG method. However, the CG method 

process deflects the direction of the Steepest Descent approach by adding a positive multiple of 

the direction used in the final step. Therefore, this method is considered one of the best methods 

currently accessible for general purposes in which it is incredibly successful in addressing the 

general objective function. 

 

 

 

 

THE NEW MODIFIED CONJUGATE GRADIENT 

 

An ILS is inexpensive and inherits the same advantage as an exact line search. In addition, the ILS 

will approximate the step length by reducing the function value and direction derivative. The 

Strong Wolfe-Powell (SWP) line-search is the most popular inexact line search, which is designed 

to approximate the suitable step length using equations (10) and (11). 

The modification of the new parameter,  𝛽𝑘 namely, the AIM method, 

 

 
𝛽𝑘

𝐴𝐼𝑀 =

‖𝑔𝑘‖2 −
||𝑔𝑘||

||𝑔𝑘−1||
|𝑔𝑘

𝑇𝑔𝑘−1|

𝜇‖𝑔𝑘−1‖2 + (1 − 𝜇)‖𝑑𝑘−1‖2
. 

(13) 

 

Based on the modification on AMRI method proposed by Abashar et al. (2014), 

 

 
𝛽𝑘

𝐴𝑀𝑅𝐼 =

‖𝑔𝑘‖2 −
||𝑔𝑘||

||𝑔𝑘−1||
|𝑔𝑘

𝑇𝑔𝑘−1|

‖𝑑𝑘−1‖2
 

(14) 

 

and HRM method proposed by Hamoda et al. (2016), 

 

 
𝛽𝑘

𝐻𝑅𝑀 =
𝑔𝑘

𝑇 (𝑔𝑘 −
‖𝑔𝑘‖

‖𝑔𝑘−1‖
𝑔𝑘−1)

𝜇‖𝑔𝑘−1‖2 + (1 − 𝜇)‖𝑑𝑘−1‖2
. 

(15) 

 

Meanwhile, the parameter value µ can be set as 0 < µ < 1. For our beta 𝛽𝑘
𝐴𝐼𝑀 we will take arbitrary 

value 𝜇 = 0.4. With that, we show the algorithm. Then, the numerical has been shown to solve 

unconstrained, large-scale optimization in terms of number of iterations and CPU time. 
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•Step 1: Choose an initial point, 𝑥0 ∈ 𝑅𝑛 and set 𝑘 = 0. 

•Step 2: Compute the parameter 𝛽𝑘 based on a predetermined formula. 

•Step 3: Compute 𝑑𝑘 based on (3). If 𝑔𝑘 = 0, then stop. 

•Step 4: Compute 𝑎𝑘 by an inexact line search. 

•Step 5: Update a new point based on an iterative formula (2). 

            •Step 6: Convergence test and stopping criteria. If 𝑓(𝑥𝑘+1) < 𝑓(𝑥𝑘) and then stop.  

              Otherwise set k = k + 1 go to Step 1. 

 

Properties and Convergence Analysis 

To solve large-scale unconstrained optimization problems, we construct a sufficient descent 

condition. The descent property is important for the iterative method to be global convergent, 

especially for the conjugate gradient method. Sufficient decent condition can be expressed by the 

formula: 

 𝑔𝑘
𝑇

 
𝑑𝑘 

≤ −𝑐||𝑔𝑘||2
       

for 𝑘 ≥  0 (16) 

 

It shows from this theorem that the AIM method with exact line search has the sufficient descent 

condition. 

 

Theorem 

Suppose 𝑥𝑘 and 𝑑𝑘 are generated by the method (2) and (3) and (14) as well as by the step size 

𝑎𝑘 > 0 determined by the exact line search, then the condition (16) holds for all k > 0 

 

Proof 

By using induction, we prove the theorem. The condition (3.4) is true if k = 0, then 𝑔0
𝑇𝑑0 =

−𝐶‖𝑔0‖2.  For condition (16) holds, we need to show that k ≥ 1. Multiply (3) by 𝑔𝑘+1
𝑇  then 

 𝑔𝑘+1
𝑇 𝑑𝑘+1 = 𝑔𝑘+1

𝑇 (−𝑔𝑘+1 + 𝛽𝑘+1𝑑𝑘) = −‖𝑔𝑘+1‖2 + 𝛽𝑘+1𝑔𝑘+1
𝑇 𝑑𝑘. (17) 

We know that 𝑔𝑘+1
𝑇 𝑑𝑘 = 0 for exact line search. Thus, 

 𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖2. (18) 

This condition holds for 𝑘 + 1. Hence, the proof is completed. 

 

Global Convergence Properties 

To study the new algorithm’s properties and convergence, in the following, we assume that 𝑔𝑘 =

0. For all 𝑘, for otherwise, a stationary point has been found. Therefore, the parameter of AIM has 

to be proven to be not less than zero. 

𝛽𝑘
𝐴𝐼𝑀 =

‖𝑔𝑘+1‖2 −
||𝑔𝑘+1||

||𝑔𝑘||
|𝑔𝑘+1

𝑇 𝑔𝑘|

𝜇‖𝑔𝑘‖2 + (1 − 𝜇)‖𝑑𝑘‖2
 

 

 𝛽𝑘
𝐴𝐼𝑀 =

‖𝑔𝑘+1‖2 −
||𝑔𝑘+1||

||𝑔𝑘||
|𝑔𝑘+1

𝑇 𝑔𝑘|

𝜇‖𝑔𝑘‖2 + (1 − 𝜇)‖𝑑𝑘‖2
 ≥  

‖𝑔𝑘‖2 −
||𝑔𝑘||

||𝑔𝑘−1||
‖𝑔𝑘

𝑇‖‖𝑔𝑘−1‖

𝜇‖𝑔𝑘‖2 + (1 − 𝜇)‖𝑑𝑘‖2
= 0 

(19) 
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By exact line search, we know that 𝑔𝑘+1
𝑇 𝑑𝑘 = 0 so 𝑔𝑘+1

𝑇 𝑑𝑘 = −‖𝑔𝑘+1‖2. Therefore, we obtain 

𝛽𝑘
𝐴𝐼𝑀 ≥ 0, 

𝛽𝑘+1
𝐴𝐼𝑀 =

‖𝑔𝑘+1‖2−
‖𝑔𝑘+1‖

‖𝑔𝑘‖
|𝑔𝑘+1

𝑇 𝑔𝑘|

𝜇‖𝑔𝑘‖2+(1−𝜇)‖𝑑𝑘‖2
≤

‖𝑔𝑘+1‖2−
‖𝑔𝑘+1‖

‖𝑔𝑘‖
‖𝑔𝑘+1

𝑇 ‖‖𝑔𝑘‖

𝜇‖𝑔𝑘‖2+(1−𝜇)‖𝑑𝑘‖2
≤

‖𝑔𝑘+1‖2

𝜇‖𝑔𝑘‖2+(1−𝜇)‖𝑑𝑘‖2
 . 

Hence, we obtain 

0 ≤ 𝛽
𝑘+1

𝐴𝐼𝑀
≤

‖𝑔𝑘+1‖
2

𝜇‖𝑔𝑘‖
2

+ (1 − 𝜇)‖𝑑𝑘‖2
. 

 

By using exact line search, 

 

 𝑓(𝑥𝑘 + 𝑎𝑘𝑑𝑘) = min
𝑎≥0

𝑓(𝑥𝑘 + 𝑎𝑑𝑘) (20) 

 

and (19), we assume µ = 0.4. Then, we simplify 𝛽𝑘+1
𝐴𝐼𝑀, 

 

 
0 ≤ 𝛽𝑘+1

𝐴𝐼𝑀 ≤
‖𝑔𝑘+1‖2

0.4‖𝑔𝑘‖2 + (1 − 0.4)‖𝑑𝑘‖2
, 

 

(21) 

 

 |𝛽𝑘+1
𝐴𝐼𝑀𝑔𝑘+1

𝑇 𝑑𝑘| ≤
‖𝑔𝑘+1‖2

0.4‖𝑔𝑘‖2 + 0.6‖𝑑𝑘‖2
𝜎‖𝑔𝑘

𝑇𝑑𝑘‖.  

 

By (3), we have 𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘+1𝑑𝑘, 

 

 

𝑔𝑘+1𝑑𝑘+1

‖𝑔𝑘+1‖2 = −1 + 𝛽𝑘+1
𝑔𝑘+1𝑑𝑘

‖𝑔𝑘+1‖2.   

 
(22) 

Using induction part, we prove the descent property of 𝑑𝑘. Since 𝑔0
𝑇𝑑0 = −‖𝑔0‖2 < 0, if 

𝑔0 ≠ 0. 

Suppose that 𝑑𝑖, 𝑖 = 1,2, … , 𝑘, are all decent directions, which 𝑔𝑖
𝑇𝑑𝑖 < 0.  By (21), we get, 

 

 
‖𝑔𝑘+1‖2

0.4‖𝑔𝑘‖2+0.6‖𝑑𝑘‖2 𝜎‖𝑔𝑘
𝑇𝑑𝑘‖ ≤ 𝛽𝑘+1

𝐴𝐼𝑀𝑔𝑘+1
𝑇 𝑑𝑘 ≤ −

‖𝑔𝑘+1‖2

0.4‖𝑔𝑘‖2+0.6‖𝑑𝑘‖2 𝜎‖𝑔𝑘
𝑇𝑑𝑘‖.  (23) 

 

We deduce (22) and (23) to obtain, 

 

 −1 +
𝜎‖𝑔𝑘

𝑇𝑑𝑘‖

0.4‖𝑔𝑘‖2 + 0.6‖𝑑𝑘‖2
≤

𝑔𝑘+1
𝑇 𝑑𝑘+1

‖𝑔𝑘+1‖2
≤ −1 −

𝜎‖𝑔𝑘
𝑇𝑑𝑘‖

0.4‖𝑔𝑘‖2 + 0.6‖𝑑𝑘‖2
. (24) 

 

From the equation, it implies that the sufficient condition holds. The proof is complete. 

 

 

RESULTS AND DISCUSSION 

 

We selected 15 different functions with different variables and initial points in the present 

numerical experiment, as shown in Table 4.1. We ran this numerical experiment on MATLAB 

R2018a, 64-bit (win64), to test the efficiency of our method by using the parameter, 𝛽𝑘
𝐴𝐼𝑀. The 
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same PC and CPU processor were used to run all the numerical experiments, an Intel® Core™ i5-

8250 CPU @ 1.60GHz 1.80GHz with RAM of 4GB. In order to verify our method’s reliability, 

we performed a comparison with the well-known classical CG method, which includes the Fletcher 

Reeves (FR) method. We considered ε = 10−6 and the gradient values ‖𝑔𝑘‖ ≤ 𝜀 as the stopping 

criteria based on work Hillstrom (1977) suggested it. 

Hilstrom (1977) recommended four points for each test function problem based on Table 

4.1. By using a performance profile introduced by Dolan and Moré (2002), the performance results 

are shown in Figures 4.1 and 4.2, respectively. From the figure, we denoted AIM with inexact line 

search as AIM (ILS), AIM with exact line search as AIM (ELS), FR with inexact line search as 

FR (ILS) and FR with exact line search as FR (ELS). Referring to Figure 4.1, which shows the 

number of iterations, it is shown that the AIM (ILS) method is very competitive with the AIM 

(ELS) method at the beginning of the performance profile, but then, at a certain point, the AIM 

(ILS) method becomes better than the AIM (ELS) method. Compared with the FR (ILS) method 

and the FR (ELS) method, our proposed method, AIM (ILS), obviously shows a better 

performance profile because the AIM (ILS) method has a lower number of iterations. 

In Figure 4.2, which shows the CPU time, we can easily recognize that the AIM (ILS) 

method shows the best performance profile compared to other methods because the AIM (ILS) 

method has the shortest CPU time. Therefore, we can say that our proposed method, AIM (ILS), 

has shown the best performance compared to other methods. 

We will discuss the performance of our proposed method in this section, which is the AIM 

(ILS) method with comparison to the AIM (ELS) method and the existing CG method, which are 

the FR (ILS) and FR (ELS) methods. As indicated by the performance profile, the comparison is 

demonstrated based on the number of iterations and CPU times in seconds by the values of 𝑚 and 

𝑛 which depend on the functions' initial point and variables. 

The result shown in Figure 4.1 is based on the performance profile in terms of the number 

of iterations. It is clear that our CG method, the AIM (ILS) method, achieves good performance 

compared to the AIM (ELS) method and the existing method, which are the FR (ILS) and FR (ELS) 

methods. We show that our proposed method is better when compared with the FR (ILS) method, 

which solves 83% of the test problems, and the FR (ELS) method, which solves 85% of the test 

problems. Although the AIM (ELS) method is competitive with our proposed method, the AIM 

(ILS) method, at some points, the AIM (ELS) method shows a bit slower performance after that. 

On the other hand, the AIM (ELS) method can only solve 85% of test problems. Hence, we rate 

that our CG method, the AIM (ILS) method is the best since it can solve all the test problem 

functions. 

 

 

 

Table 4.1: A List of Problem Function 

NO. FUNCTION VARIABLE INITIAL POINT 

1 Ex-tridiagonal1 function 2 (1,1),(4,4),(8,8),(10,10) 

2 Diagonal 4 function 2 (1,1),(4,4),(8,8),(10,10) 

3 Ex-himmelblau function 2 (1,1),(4,4),(8,8),(10,10) 

4 Extended Denschnb function 2 (1,1),(4,4),(8,8),(10,10) 

5 Extended quadratic penalty 2 (1,1),(4,4),(8,8),(10,10) 

6 Ex Penalty 2 (1,1),(4,4),(8,8),(10,10) 
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7 Hager function 2 (1,1),(4,4),(8,8),(10,10) 

8 Booth function 2 (1,1),(4,4),(8,8),(10,10) 

9 Shalow function 2 (1,1),(4,4),(8,8),(10,10) 

10 Quadrtic QF2 2 (1,1),(4,4),(8,8),(10,10) 

11 Generalized tridiagonal 1 2 (1,1),(4,4),(8,8),(10,10) 

12 Quadratic QF1 2 (1,1),(4,4),(8,8),(10,10) 

13 Matyas function 2 (1,1),(4,4),(8,8),(10,10) 

14 Sum Squares function 2 (1,1),(4,4),(8,8),(10,10) 

15 Perturbed Quadratic function 2 (1,1),(4,4),(8,8),(10,10) 

 

 

 

 
Figure 4.1: Performance profile relative to the iteration time of inexact and exact line search. 
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Figure 4.2: Performance profile relative to the CPU time of inexact and exact line search. 

 

 

Meanwhile, in terms of CPU time, the duration includes the time required to generate the search 

direction to perform inexact and exact line search and convergence tests. Usually, the performance 

profiles plotted on the top right show the best performance compared to other methods. 

The result shown in Figure 4.2 based on the performance profile in terms of CPU times has 

shown that our proposed method, the AIM (ILS) method, achieves good performance by giving 

the shortest time taken compared to the AIM (ELS), FR (ILS) and FR (ELS) methods. It is seen 

that we can conclude from Figure 4.2 that 100% of the test problems can be solved by our AIM 

(ILS) method compared to the AIM (ELS) method, which can only solve 85% of the test problems. 

The FR (ILS) method can only solve 83% of test problems, and the FR (ELS) method can solve 

85% of test problems. Overall, our proposed AIM (ILS) method successfully solves all the test 

problems, and it is competitive with the AIM (ELS) method. 

From this, we can show that the performance profile of our AIM (ILS) method is improved 

depending on the number of iterations as well as the CPU times compared to the AIM (ELS), FR 

(ILS) and FR (ELS) methods. 

 

 

CONCLUSION 

 

A great deal of study has been done on the CG method, which has resulted in the development of 

numerous CG methods. As a result, we can conclude that the AIM (ILS) technique is more efficient 

than the AIM (ELS) method in terms of the number of iterations required and the amount of CPU 

time required. It is also more efficient when compared to the existing CG approach, the Fletcher 

Reeves (FR) method, in terms of the number of iterations and the amount of CPU time required to 

complete the computation. The AIM (ILS) technique, as the last step, is demonstrated to solve the 

large-scale unconstrained optimization problem for a stable dynamic system with improved 

convergence qualities. 
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