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ABSTRACT 
Rayleigh-Logarithmic distribution is used in survival analysis. The main objective of this study is to 

determine the best estimator for the parameters of this distribution. Estimation methods proposed are 

Lindley's method under Bayesian framework with two different loss functions; squared error loss 

function (SELF) and linear exponential loss (LINEX) function and maximum likelihood estimation 

(MLE). Through a simulation study, the performance of the proposed estimators is compared with 

respect to their corresponding root mean square error (RMSE). Estimator under SELF is found to be 

performing better than the estimator under LINEX loss function and the MLE estimators. In conclusion, 

the estimated parameter under squared error loss function (SELF) is comparatively the best compared 

to linear exponential (LINEX) loss function and maximum likelihood estimation (MLE).  

 
Keywords: Bayesian estimation, linear exponential (LINEX), Lindley approximation, squared 

error loss function.  

 

 

INTRODUCTION 

 

Rayleigh-Logarithmic distribution was introduced by Bugatekin (2017). The paper also discussed 

the statistical properties of the distribution and proposed a maximum likelihood estimator. This 

two-parameter mix distribution is useful in survival analysis and reliability theory. The two 

parameters of Rayleigh-Logarithmic distribution are the shape parameter (p) and the scale 

parameter (σ^2). Hameed and Alwan (2020) had conducted a study of the reliability and hazard 

function of this distribution.  

 

This study proposed Bayesian estimation of the parameters. Estimating two-parameters 

under Bayesian estimation framework would requires multiple integrations and is complicated to 

solve.  Hence, Lindley approximation is used to solve such cases. Soliman et al. (2010) compared 

maximum likelihood and Bayesian estimators of the inverse Rayleigh distribution. Similar work 

can be found in Restogi and Merovci (2018) where Lindley’s approximation was used as the 

estimator for parameters a three-parameters Weibull Rayleigh distribution. 

 

 In this study, estimation methods considered are the maximum likelihood method and 

Bayesian estimation with square error loss function and linear exponential loss function (Zellner, 

1986). 

 

The rest of the paper is organized as follows: The model and the maximum likelihood 

estimation is discussed in the next section, followed by the Lindley approximation method in the 

following section.  A simulation study is performed using proposed methods and results of their 
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corresponding root mean square error is used to investigate their performances. The results and 

discussions are given in the remaining sections. 

 

 

METHODOLOGIES 

 

Maximum Likelihood Estimation 

Maximum likelihood estimation (MLE) is a technique that defines values for the parameters of a 

model of a given distribution. The probability density function and cumulative distribution 

function for the two-parameters Rayleigh-Logarithmic distribution are:  

 

𝑓(𝑥, 𝜃) = −
𝑥

𝜎2 ln(1 − 𝑝)
𝑒

−𝑥2
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−1

 , 𝜎2 > 0, 0 < 𝑝 < 1 
(1) 

 

           𝐹(𝑥, 𝜃) = 1 −

ln (1 − 𝑒
−𝑥2

2𝜎2 𝑝)

ln(1 − 𝑝)
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where 𝜃 = (𝜎2, 𝑝). 

 

The likelihood function of Rayleigh-Logarithmic is: 
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(3) 

 

Taking logarithm of Equation 3, we obtained,  

ℓ(𝑥, 𝜃) = ∑ ln(𝑥𝑡)
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(4) 

Maximum likelihood estimators for parameters 𝜎2  and 𝑝 are obtained by maximizing Equation 4 

with respect to 𝜎2   and 𝑝 respectively, such that;  
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(6) 

Therefore, 𝜎2̂ and 𝑝̂ can be obtained by solving Equations 9 and 10 iteratively. 

 

Bayesian Estimation 

Defining a prior distribution is crucial in Bayesian framework. Guure et al. (2012) state that in 

Bayesian analysis, non-informative prior can be used if the prior knowledge about the parameter 

is not available. Since there is no knowledge of the parameters, the extension of Jeffreys' prior is 

used. Jeffrey’s prior is derived using the Fisher information matrix; 

𝑢(𝜎2, 𝑝) ∝ (
1

𝜎2𝑝
) 

 

Since the Bayes estimators cannot be obtained in closed form, Lindley’s approximation is 

used to calculate the Bayesian posterior estimates. Besides prior, defining loss function is also 

important. Loss function is a function of a difference between estimated and true values of data. 

According to Dey (2012), estimation and prediction of loss function might be a problem because 

there is no specific analytical procedure to identify the appropriate loss function. In this study, we 

take into account symmetric and asymmetric loss functions i.e., squared error loss function (SELF) 

and linear exponential loss function (LINEX) (Varian, 1975) respectively.  

 

The squared error loss function is given by 𝐿(𝜃, 𝜃) = (𝜃 − 𝜃)2 where 𝜃 is the estimator of 

𝜃. The LINEX loss function is defined as 𝐿(∆) = 𝑒𝑎∆ − 𝑎∆ − 1,   𝑎 ≠ 0 where ∆= 𝜃 − 𝜃 and 𝜃 

is the estimator of 𝜃 and 𝑎 is the slope of the loss function.  

 

According to Guure and Ibrahim (2014), Bayes estimator with SELF, 𝑢̂𝐵𝑆 is the posterior 

mean. 𝑢̂𝐵𝑆  is a function 𝑢 = (𝜎2, 𝑝)  of the unknown parameters 𝜎2  and 𝑝.  Therefore, with 

Lindley approximation the SELF-Bayes estimator is defined as 

𝜃𝐵𝑆̂ = 𝑢 +
1

2
[(𝑢11𝜎11 + 𝑢22𝜎22)] + 𝑢1𝑝1𝜎11 + 𝑢2𝑝2𝜎22 

                                    +
1

2
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2 ) + (𝐿03𝑢2𝜎22
2 )] 
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where,  
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1
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 , 𝑝2 = −
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Posterior expectation of the LINEX loss function is given by 

𝐸𝜃𝐿(∆) = 𝑏[𝑒𝑎𝜃̂𝐸𝜃𝑒−𝑎𝜃 − 𝑎(𝜃 − 𝐸𝜃𝜃) − 1]. (7) 

 

By minimizing Equation 7, the value of the posterior mean is: 

𝜃𝐵𝐿̂ = −
1

𝑎
ln 𝐸𝜃(𝑒−𝑎𝜃) 

 

The LINEX loss function is obtained by using the same Lindley procedure. 

𝑢𝐵𝐿̂ = 𝑢 +
1
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When 𝑢 = 𝑒−𝑎𝑝, 

𝑢1 =
𝛿𝑢

𝛿𝜎2
= 0, 𝑢11 =

𝛿2𝑢

(𝛿𝜎2)2
= 0 
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Simulation Study 

To compare the maximum likelihood estimators of the parameters of the Rayleigh-Logarithmic 

distribution, 𝜎2̂
𝑀𝐿 𝑎𝑛𝑑 𝑝̂𝑀𝐿 with the Bayesian estimators, 𝜎2̂

𝑀𝐿 𝑎𝑛𝑑 𝑝̂𝑀𝐿  we run a simulation 

study. We considered 𝜎2 = 0.5, 1.0, 1.5 and 𝑝 = 0.5, 0.1, 0.9 . With LINEX loss function, 𝑎 =
0.6  and −0.6  are used. Data of size 𝑛 = 25, 50, and100  is generated from the Rayleigh-

Logarithmic distribution using the inverse transform technique. The sample size is chosen to 

represent small, medium and large data sets. MLE and Lindley approximation were performed on 

these data sets for 5000 iterations. Comparison between the estimators is made using root mean 

square error (RMSE). Conclusions are given regarding the behavior of the estimators. 

 

RESULTS AND DISCUSSION 

Table 1 summaries the values of root mean square error (RMSE) calculated for the Bayesian 

estimators with squared error loss function and LINEX loss function and the maximum likelihood 

estimator.  

 

 In every case, the Bayes estimator under SELF of the scale parameter, 𝜎2̂  produces the 

lowest RMSE in comparison to when using LINEX loss function and maximum likelihood 

estimation indicating that this estimator performs better than others. Note that with LINEX loss 

function, the RMSE values are similar for 𝑎 = 0.6 and 𝑎 = −0.6. This result supports our finding 

that an asymmetrical loss function is a better choice. 

 

For the shape parameter, 𝑝 the smallest RMSE are obtained from Bayesian estimation 

under SELF. This suggest that this estimator provides better estimates compared to Bayes 

estimator with LINEX loss function and the maximum likelihood estimator. It is also found that 

the RMSE values decrease as the sample sizes increase. 
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Table 1. Root mean square error (RMSE) of parameter estimates 𝜎2̂ and 𝑝̂ , with respect to Bayes 

estimator with SELF, LINEX loss function and maximum likelihood estimator (MLE) at 𝑛 =
 25, 50 and 100. 

      SELF LINEX  LINEX  MLE 

    [𝑎 = 0.6] [𝑎 = −0.6]  

𝑛 𝜎2 𝑝 𝜎 2̂ 𝑝̂ 𝜎 2̂ 𝑝̂ 𝜎 2̂ 𝑝̂ 𝜎 2̂ 𝑝̂ 

25 0.5 0.1 0.0042 0.0004 0.0061 0.0005 0.0060 0.0005 0.0261 0.4129 

  0.5 0.0047 0.0183 0.0062 0.0204 0.0061 0.0206 0.0233 0.2297 

  0.9 0.0038 0.0161 0.0050 0.0165 0.0050 0.0167 0.0209 0.0582 

 1.0 0.1 0.0060 0.0004 0.0115 0.0005 0.0114 0.0005 0.0379 0.3006 

  0.5 0.0064 0.0183 0.0114 0.0206 0.0113 0.0206 0.0338 0.1665 

  0.9 0.0053 0.0161 0.0093 0.0167 0.0093 0.0167 0.0300 0.0418 

 1.5 0.1 0.0080 0.0004 0.0182 0.0005 0.0180 0.0005 0.0470 0.2486 

  0.5 0.0144 0.0183 0.0225 0.0204 0.0218 0.0206 0.0417 0.1374 

  0.9 0.0166 0.0161 0.0228 0.0165 0.0216 0.0167 0.0369 0.0344 

50 0.5 0.1 0.0020 0.0002 0.0029 0.0002 0.0029 0.0002 0.0125 0.1900 

  0.5 0.0022 0.0091 0.0030 0.0102 0.0030 0.0103 0.0112 0.1054 

  0.9 0.0018 0.0079 0.0025 0.0081 0.0025 0.0081 0.0101 0.0263 

 
1.0 0.1 0.0028 0.0002 0.0056 0.0002 0.0056 0.0002 0.0182 0.1386 

  0.5 0.0029 0.0091 0.0056 0.0102 0.0056 0.0103 0.0162 0.0764 

  0.9 0.0026 0.0079 0.0048 0.0081 0.0047 0.0081 0.0144 0.0189 

 1.5 0.1 0.0035 0.0002 0.0088 0.0002 0.0087 0.0002 0.0226 0.1147 

  0.5 0.0047 0.0091 0.0094 0.0102 0.0093 0.0103 0.0201 0.0631 

  0.9 0.0052 0.0079 0.0089 0.0081 0.0088 0.0081 0.0177 0.0155 

100 0.5 0.1 0.0010 0.0001 0.0014 0.0001 0.0014 0.0001 0.0099 0.1475 

  0.5 0.0010 0.0046 0.0015 0.0051 0.0015 0.0051 0.0088 0.0812 

  0.9 0.0009 0.0039 0.0013 0.0040 0.0013 0.0040 0.0079 0.0201 

 1.0 0.1 0.0013 0.0001 0.0028 0.0001 0.0028 0.0001 0.0141 0.1056 

  0.5 0.0014 0.0046 0.0028 0.0051 0.0028 0.0051 0.0126 0.0580 

  0.9 0.0013 0.0039 0.0025 0.0040 0.0025 0.0040 0.0112 0.0143 

 1.5 0.1 0.0017 0.0001 0.0043 0.0001 0.0043 0.0001 0.0174 0.0867 

  0.5 0.0019 0.0046 0.0044 0.0051 0.0044 0.0051 0.0155 0.0476 

    0.9 0.0020 0.0039 0.0042 0.0040 0.0041 0.0040 0.0137  0.0117 

           

CONCLUSION 

 As a conclusion, for the shape and scale parameters of Rayleigh Logarithmic distribution, 

the Bayes estimators under squared error loss function is the best compared to when using LINEX 

loss function and the maximum likelihood estimator. The estimators also perform better with larger 

sample size, 𝑛.  
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