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ABSTRACT
In this work, we are concerned with a coupled nonlinear viscoelastic Kirchhoff system with
distributed delay terms and source terms. Under suitable conditions, we prove the exponential growth
of solutions.
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INTRODUCTION

In this paper, we investigate the following viscoelastic Kirchhoff system with distributed delay
terms and source terms:

u, —M (||Vu||2)Au +J: g(t—s)Au(s)ds+ u, (x,t)
+J': 1 (6)|u (xt=¢)dg = f,(u,v), (x,t)eQxR,,
v, —M (||VV||2)AV+I;h(t—S)AV(S)dS+y3Vt (x.t)
[l (v (xt=6)de = f,(uv), (xt)eQxR,, (1)
u(x,t)=0, v(x,t)=0, x €9,
u (x,—t) = fo(x,1), v (x,—t) =k, (x,1), (x,t)eQx(0,7,),

u(x,0)=uy(x), u (x,0)=u,(x), xeQ,
V(X,0) =V, (), v{(x,0)=v,(x), x e,

where Q is a bounded domain in R", with a smooth boundary 6Q. x4, 1, >0, 7,, 7, are the
time delay with 0<7, <7,, u,, p,are L” functions, and g, h are differential functions. M (s)
is a C*' nonnegative function on R* defined as M (s)=m, +as” with m; >0, >0 and >0,
to simplify our calculations we take M (s) =1+5s"in the problem ().

From mathematically point of view, ’Growth’’ phenomenon gives us importance knowledge to
understand the asymptotic behaviour of the equation when time arrives at infinity. In recent years,
there has been published much work concerning the wave equation with time delay or time
varying delay. Our aim is to study the exponential growth of solutions for viscoelastic Kirchhoff
system with distributed delay terms.
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The viscous materials are the converse of elastic materials that possess the ability to dissipate
and store mechanical energy. Because of the mechanical properties of these viscous substances
are of great significance when they seem in many applications of natural sciences [14].

Time delays often appear in many practical problems such as thermal, economic phenomena,
biological, chemical and physical. The authors, in [2], indicated that a small delay in a boundary
control could turn a well-behave hyperbolic system into a wild one, hence, delay becomes a
source of instability. Besides, sometimes it can also be improved the performance of the system.
Rahmoune et al. [14], considered the following Klein-Gordon system with strong damping,
nonlinear source and distributed delay terms:

u, +mu’® — AU — m,AU, +I;g (t—s)Au(s)ds+ sy,
+'[: 1, (5)|u (xt=¢)dg = f,(u,v), (xt)eQxR,,
V,, + MV2 — AV — @,Av, +I;h(t —S)AV(s)ds+ sV,

(o) (xt=6)dg = £, (uv), (xt)eQxR,

where m;, m,, @, @, >0. The authors investigated the exponential growth of solutions for the
problem (2) under suitable conditions.
The viscoelastic wave equation of the form:

U, —Au+ [ g (t-z)au(z)dz+h(u,) = f (u), xeQ, 0, 3)

has been investigated extensively by some authors (see [3], [6], [7], [15], and references therein).
In [4], Mezouar proved the global existence and decay properties of solutions for the following
viscoelastic Kirchhoff equation:

[u] u—M (||Vu||2)Au —Au, +j;h(t —s)Au(s)ds

+au +,ulgl(ut(x,t))+,uzgz(ut(x,t—r(t))) (4)
=0.
Moreover, in [5], she established the global existence and exponential decay of solutions for
generalized coupled Kirchhoff system with a time varying delay term.

In [12], Piskin considered the following system of viscoelastic wave equations with weak
damping terms:

()

U, —Au+L: g,(t—7)Au(z)dz+u, = f,(u,v)

t ()
V, —AV+J.0 g, (t—7)av(z)dz+v, = f,(u,v).

He obtained the global nonexistence of solutions for the problem (5). Moreover, in [11], Piskin
proved the blow up of solutions for coupled nonlinear Klein-Gordon equations with weak
damping terms. Also, Piskin, in [13], established the decay estimates of the solution by using
Nakao’s inequality and proved the blow up of solution in a finite time with negative initial
energy.

Motivated by previous works, we prove the exponential growth of solutions of the system (1)

both Kirchhoff term ( M(||Vu||2)) that depends on (||Vu||2 ) and viscoelastic term

( j; g(t—s)Au(s)ds) with distributed delay terms ([ |, (5)|u, (x,t—¢)dg) in the system, and

in a similar way, we benefit from the study of [14]. We investigated that the solutions of system
(1) grows exponentially under suitable conditions.
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The content of this paper is organized as follows: In section 2, we provide some assumptions and
lemmas that will be used later. In section 3, we prove our main result that we will get the growth

result for the system (1).
PRELIMINARIES
In this part, we give some assumptions and lemmas which will be used throught this work.
Firstly, we make the following assumptions:
(A1) g, h: R, > R, are differential decreasing functions such that

g(t)=0, 1-Iwg(s )ds=1, >0,
(6)
h(t)>0, 1-["g(s)ds=1,>0.

(A2) There exist constants &, &, such that

g9'(t)<-&g(t), t=0,
{h'(t)s—@h(t), t>0. 7

(A3) b, p,:[7,7,] >R are L* functions so that, for all 5>%

22
Sa
2
Concerning the functions f,(u,v) and f,(u,v), we take the source terms as follows:
f(uv)=a,fu+v] (p+) (u+v)+b | ulv)™?,
{f (u,v)=a,u +v| (P (u +v)+by v v|u]”?,

‘dg<,ul,

(8)
4 (¢)|dg < .

9)

where a,, b, >0.

We have the following lemmas.

Lemma 1 ([14]) There exists a function F(u,v) such that
—[Ufl(U,V)-I-sz (uv)]

F(uv)= 200+2)

_ 1 p+2
- 2(p+2)[a1|u +v| +2b |uv] J (10)

>0,

where

oF

F_ f.(u,v), o f, (u,v),

ou
taking a, =b, =1 for convenience.
Lemma 2 ([8]) There exist two positive constants ¢, and ¢, such that

C, 2(p+2) 2(p+2) C p+2) 2(p+2)
2(ID+2)(|U| v )gF(u,v)gz(p+ )(|u| ) (11)

Lemma 3 ([10]) For ¢, w €C'(R,,R) we have
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Jugrwwidx== (Ol (O +5@=0) 05 5 @) O-( Lol @2

where

(¢ow)(t)=[,4(t=5)lw () -w (s)] s

GROWTH RESULT
In this part, we prove the exponential growth of solutions of the problem (1). In order to do so,
we first introduce, as in [9], the new variables:

y(x, p6,t)=u (X, t-gp),

z(x pct)=v (xt—gp),
thus we have,

sy (%P6 )+Y, (X p61)=0,

y(x.0,6,t)=u,(xt), (13)

and
sz, (X, p.cit)+2,(X p,5,t) =0,

2(x,0,5,t) =V, (x,1). (14)

Hence, problem (1) is equivalent to
-M (||Vu||2)Au +J§ g(t—s)Au(s)ds+ zqu, (x,t)

+J.T:2‘y2(g)‘y(x,l,g,t)dg=fl( V), XeQ, t>0,
v)

Ve =M (V[ ) Av-+ [ (t=s)av(s)ds-+ gy, (x.t) (15)
+.[:‘”4(§)‘Z(Xalyg,t)dg: f,(u,

sy (X o6, t)+y, (X p,61)=0,
gzt(X,p,g,t)+zp(x,p,g,t):O,
with the initial and boundary condition
u(x,t)=0, v(x,t)=0, x € 0Q,
y(%2,6,0)= f,(%60), (X p0.6,0) =K, (X, gp),
u(x,0)=u,(x), u (x,0)=u(x),
V(%,0) =V, (x), v, (x,0)=v;(x),

(X,p,g,t) eQx(O,l)x(rl,rz)x(O,oo).
We define the functional space H as
H = H (Q)x L (©)x Hy (Q)x L (Q)x L (2x(0,1))x(7, 7,)
xL2(©2x(0,1))x(7,7,).
Theorem 4 ([14]) Suppose that (6), (7) and (8) hold. Let us

, XeQ, t>0,

o

(16)

where

4—-n
-l<p<——, n=3,
P n-2 a7)

p=>-1 n=1.2.
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Then, for any initial data, (u,, U,, vy, vy, f,, K,)€H, the problem (15) has a unique solution, in
C([0,T];H) for some T >0.

Lemma 5 Suppose that (6), (7), (8) and (17) hold, let (u,v,y,z) be a solution of (15), then E (t)
IS nonincreasing,

1
E (1) =5 ulf + S +
L[V + v+ (goVu) (hon)+%M(y,z) (18)

—IQ

<)|y? (x,l,g,t)dgdx+IQJ':V:2 (¢)2% (X,l,g,t)dgdx}
<0,

S vl +

;/+l
y+1) 2(;/+1) ” ”

satisfies

()< <, {Juf + v’

(19)

where
M (y,z)= IQISI sl ()Y (% 2.6 1) +]aaa ()| 2° (X, 16 ) Jd s pdx, (20)

Proof. We multiply the first and the second equation in (15) respectively by u,, v, and
integrating over Q, we obtain

df1, 2 1, o 1 ), (o1
—J= = v
LR e A M e Ll
d{ ||Vu|| I||Vv||2+1(goVu)+l(hon)—J' F(u v)dx}
dt [2° ? 2 2 o M

=TH ||ut||2 _J- utr

~a ] -

g)‘y(x,l,g,t)dgdx

(21)

(x,16,t)dgdx
+5<g-ovu>——g<t>nvun2

+2(h'ow) (O’

and by using the initial and boundary conditions in (15), we have
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¢l (€)Y (% oy t)dgd pdx

azhlle
=3 lLL

g)‘ y*(x,0,¢,t)dgdx

14, (5)| vy, ded pdx

(22)
g)‘ y?(x,1¢,t)dgdx
1 72
([ () de Juf
1 2
=5 JoJ, T ()] y* (%L, ) dax
and

TR

:——I J..[: 1, (¢)| 22,d5d pdx

= (x,0,¢,t)dgdx

(23)
(x,1,¢,t)dgdx
1 2
=5(J m(g)dg)nvtu
__I J'Tz ()2 (x.1,¢,t)dgdx,
then
d
m E(t)=—z|u, || —.[ I y(x,.1¢,t)dgdx+= (g ovu)
——g(t)IIWII +—(J m(g)dg)nutnz
(x,1¢,t)dgdx

(24)
— 15|V, || —'[I Z(x,1,¢,t)dgdx+= (h'oVu)
——h(t>||vv|| +—(J m(g)dg)nvtn

(x,1,¢,t)dgdx.

From (21)-(23), we obtain (1 8). Moreover, ut111z1ng Young’s inequality, (6), (7) and (8) in (24),
we get (19).
Next, we define the functional
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1 1
() =€ ()= uf - -
_ 1
2(y+1)

_%(goVu)—%(hon)—%M (v,2)
1 2(p+2) 2(p+2)
TCreTILIAC R I st |
Theorem 6 Suppose that (6)-(8) and (17) hold. Suppose further that E (0) <0, then the solution

of problem (15) grows exponentially.
Proof. By (18), we have

7+l
ol

) 1
-2l -2

(25)

E(t) < E(0) <0. (26)
Hence,
H'(t)=—-E'(t)
>, (||ut||2 g)‘ y? (x,l,g,t)dgdx) (27)
(||v I (xL./t)dsdx).
Therefore

H'(t)>c, max{J'QJ‘T:2|u2(g)| y? (%1 ¢,t)dgdx, u:|ﬂ4(g)|zz (x,1¢,t)dgdx }zo (28)

and
0<H(0)<H(t)

<3001 2)[”u i 2l | (29)
2oy M+ S |
We set
K(t)=H (t)Jrng(uut +Wt)dX+gIQ(,LLlU2 +,usv2)dx (30)

where ¢ >0to be given later.
We multiply the first and second equations on (15) respectively by u, v and with a derivative of

(30), we obtain
K(t)=H (O)+&(Jul +wl" )=z (Ivul’ +[vv)
—gL}”Vu”zy vul dx—gJ.Q||Vv||2y vv[ dx
+g.[ Vu.[tg t—s)Vu(s)dsdx+gI ijth (t—s)Vv(s)dsdx (31)
—gj.j |, ()| uy (%, 1,5, t)dgx — gII |, ()| vz (x,L g, t) dgax

v Juvies + 2l |

By using Young’s inequality, we obtain
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uy (x,1¢,t)dgdx

S€51( LI g |dg)||u||2 (32)

¢)|y? (xLg,t)dgdx.

Therefore

vz x,1,¢,t)dgdx

3.952([ |,u4 ¢) |dg)||v||2 (33)

(x,1,¢,t)dgdx.

Moreover,
gﬁ g(t-s) dsIQVuVu (s)dxds

=z[ g(t-s)ds| Vu(Vu(s)-Vu(t))dxds
+o([, 9 (9)ds Vol

=2(fro(s )os |vuf -2 (govu),

(34)

hence
gﬁ h(t-s) dsJ'Q VVVv(s)dxds

= ¢[ h(t=s)ds[ Vv(Vv(s)-Vv(t))dxds
+3(I; g (s)ds)||Vv||2
=] Jon(s)ds) v’ -2 (gow)

(35)

By (31),

KO(t)2 H () + & (Ju -+l )2 (Ivul™ ™ oy
_g&l_% [ (s)ds]”wnz {1—% ) h(s)dstIVVIlzj
-l

()|y* (xL6,t)dgdx

_551( Tz H,

(36)

(x,1¢,t)dgdx

+e[||u +vn +2||uv||2 e
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Thus by choosing J,, J, such that ! ! :g and by using (28) in (36), we obtain

46,¢c, 45 C;

KO (1) = [1-ax H (0)+ 2 (ol + w[) -2 (Ivul™ ™ + v )
_8[(1__'[9(5 ﬂ”Vu”Z—8{(1—%J‘gh(5)d3ﬂ||v"”2
s (6t o =5 00 e
—g%( : Hy (g

+e| Jusviie s + 2l |

—&

e I £ (hovv)

By (25) and for 0 <a <1, we have
| Jurvlies + 2 |

p+2 p+2

=zalu Ve + 2 |
+2e(p+ 2)(1— a)H(t)

vé(p+2)(1-a)Julf +u[)

e (T

va p+2)(1—a)(1— [lg (s)ds)||Vu||2

+e (39)

Substituting in (37), we obtain
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K (t)2 [L-ex]H (1) + [ (p+2)(L-a) +1](Ju [ +Iw[)

ool BB o o)

(r+1)
oo (9 2)a-a)f- Lo(ers -{o- 2o e
o] (pr2a-aa- L1 e v
o { [ T e It o
+e(p+2)(1-a)M (y,z)+g[(p+2)(1—a)—ﬂ((govu)Jf(hovu))

+ga[||u L RO z||uv||§§g1§;] +2¢(p+2)(1-a)H(t).

Utilizing Poincare’s inequality, we get
K (t) 2 [1-ex]H (1) + £ (p+2) (1) +2](Ju ] + )

+{—(p+2)(1‘a)—1}(nwn gl

(7+1)

+ecoa[||u||§ M |

39
+28(p+2)(1 a) (t) (39)
Here, by taking a >0 small enough which gives
p+2)(1-a
a,=(p+2)(1-a)-1>0 and (%_]}>0
also we suppose that
max{jowg(s)ds, Iowh(s)d5}< (p+2)(1—a)—i _ o - (40)
(p+2)(1-a)-5 &+

Choosing « so large that
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-((p+2)-2)-1)-[0(5)65{(p+2)1-2); |

oo =((p+2)0-2)-1)- [ s)s{ (p+2)(1-0) -2

el (o)

After fixing « and a, we assign & small enough such that
a, =1-¢ex>0,

and

p+2) 2(p+2)
K02 3, LM 3 | (41)
Therefore, for some g >0, the estimate (39) becomes
K1) 2 B{H ()4 Ju |+ vl + [Vulf + [ov]f + [+ o)

(p+2) (42)
+5{(g0vu)-+(hovv)+ M (y,2)+[Jul 7y + e )
From (11), for some g, >0,
K (t)2 A H O+ ulf +wl” +[vul? vy +||VU||2 v .
+5, {(goVu)+ (hoVv)+M (y,z)+ [”u +v|| + 2||uv|| Ez }}
and
K(t)>K(0)>0, t>0. (44)
Now, we use Young’s and Poincare’s inequalities, hence from (30), we obtain
&
K(t) :(H (t)+g_|-9(uut +Wt)dX+EIQ(MU2 +y3v2)dxj
<{H (1) ][, (wu, +w ) o] vl +||w||2}
<l H()-+Julf + [+ [Vulf + [V + a2 o | (45)

IA

e H(0) ]+l + VUl + vl + [+ fov

+{ (govu)-+ (nowv) +ulf > + M2 |
for some ¢ > 0. Utilizing the inequalities in (42) and (45) we get the differential inequality
K'(t)= AK (1), (46)

where A >0, depending only on g and c.
A simple integration of (46) gives us

K(t)=K(0)e* forany t>0. (47)
From (41) and (47), we obtain
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Julies +[Vlor > Ce™, vt >0,

Hence, we completed the proof.
CONCLUSION

In recent years, there has been published much work concerning the wave equation with constant
delay or time-varying delay. However, to the best of our knowledge, there was no growth of
solutions for the coupled viscoelastic Kirchhoff system with distributed delay terms. We have
been proved the growth of solutions for problem (1) under the sufficient conditions. This
improves and extends many results in the literature.
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