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ABSTRACT 
The objective of this research is to compare the performances of the Log-rank and Wilcoxon non-
parametric tests to test differences in the survival of 3 groups of patients when data is complete, right 
and interval censored.  For interval censored data, midpoint imputation is used to estimate the survival 
time of each individual.  A thorough power study was carried out to assess the performance of the tests 
with various distributions, censoring proportions (𝑐𝑝), sample sizes (𝑛), significance levels (𝛼) and 
effect sizes (Λ).  The results clearly indicate that the Log-rank test performs slightly better than the 
Wilcoxon test when the proportional hazard (PH) assumption is fulfilled.  However, the performance of 
both tests are almost the same, regardless of the PH assumption at larger 𝑛 and Λ.  Finally, the tests were 
applied to real data from an AIDS clinical trial, which involve three treatment groups with both right 
and interval censored data. 
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INTRODUCTION 

In a clinical trial, it is quite impossible to get all information from patients that are recruited in 
the study and data is often interval censored.  Interval censored data consists of failure time that 
lies between two endpoints.  Two commonly known non-parametric procedures, known as Log-
rank and Wilcoxon tests, are designed to compare two or more survival curves when observations 
are censored.  There are many literatures available from previous research on these tests such as 
Gehan [1], Prentice [2], Mantel [3], Cox [4], and Peto & Peto [5].  In the absence of censoring, 
Log-rank and Wilcoxon procedures will be reduced to the Mann-Whitney test for two treatment 
groups and the Kruskal-Wallis test for more than two treatment groups [6]. Since both tests are 
non-parametric in nature, no assumption about distribution of survival data is needed.   

The assessment on performance of Log-rank and Wilcoxon tests begins when Lee et al. [7] 
compare the size and power of the tests using small samples from several types of survival 
distributions with and without censoring.  Following that, the assessment has been studied 
extensively by considering various conditions such as different types of distribution, sample size, 
censoring percentage, Proportional Hazard (PH) assumption and early-or-late hazard differences 
in survival curves.  Authors who have made a contribution include Latta [8], Beltangady and 
Frankowski [9], Leton and Zuluaga [10], Martinez and Naranjo [11], Darilay and Naranjo [12], 
Ramakrishman and Ravanan [13] and Karadeniz and Ercan [14] [15].   
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Most researchers conducted their studies by focusing only on two treatment groups and right 
censored data in assessing the performance of Log-rank and Wilcoxon tests.  The main goal of this 
research is to assess the performance of both tests in comparing more than two treatment groups 
when dealing with interval censored data. 

Section 2 provides a brief description on survivor function estimator and two non-parametric 
tests assessed in this study.  A brief discussion on several conditions tested on assessing the 
performance of Log-rank and Wilcoxon tests can be found in Section 3.  Section 4 discusses the 
power study of both non-parametric tests, as well as the real data analysis that is used for 
illustration purposes on the usage of both non-parametric tests in real life situation.  Finally, the 
performance of both tests will be concluded in the last section. 

 

KAPLAN-MEIER ESTIMATOR AND NON-PARAMETRIC TESTS 

A survivor function,  𝑆(𝑡), is the probability of a random variable 𝑇exceeding the specified 
time, 𝑡.  It is the probability that an individual will survives greater than or equal to time 𝑡.  In 
practical, this function can only be estimated from a sample of survival time, since it is impossible 
to get all information that is related to a study within the specified period of time.  The most popular 
proposed non-parametric methods of estimating a survivor is Kaplan-Meier Product Limit 
(KMPL) estimator which is defined as, 
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Let say death is the event of interest in the study and 𝑘 = 1,2, … , 𝑟 is the number of distinct failure 
time.  Then, 𝑡௞ is a time when at least one death happened, 𝑑௝ is the number of death that happened 
at time 𝑡௞ and 𝑛௞ is the number of individuals who still alive at time 𝑡௞. 

The test statistic for Log-rank and Wilcoxon are almost the same in general.  However, 
Wilcoxon test tend to have more weight on the early-stage of the survivor function.  In general, 
the test statistic for both tests is made up of a division between two terms.  The first term is a vector 
of 𝑔 − 1 components of 𝑈௛, denoted as 𝑼 and the second term is the variance-covariance matrix 
of 𝑉௛௛ᇲ, denoted as 𝑽.  Eq. 2 shows the 𝑈௅௛ components used to obtained the vector 𝑼௅ of Log-
rank test while eq. 3 shows the covariance formula of 𝑈௛ and 𝑈௛ᇲ components that is used to 
obtained the variance-covariance matrix of 𝑽௅, 
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Note that hke  is the expected number of death which is computed as kkhkhk ndne   and ℎ is the 

number of treatment groups involve in the study where ℎ,ℎᇱ=1,2,…, 1g , which gives

 '', hhIhh  .  The, the test statistic for Log-rank test is defined as, 

 2
1~'  gLLLL UVUW  . (4) 

Similarly, the test statistic for Wilcoxon test are made up of two terms constructed with the same 
component as in eq. 2 and 3.  The only difference is that there exist a weight of kn  inside both 

components as stated in eq. 5 and 6, 
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Similar to Log-rank test, the test statistic for Wilcoxon test will be 
 2

1~'  gWWWW UVUW  . (7) 

 

DESIGN OF EXPERIMENT 

Many imputation methods have been employed to deal with interval censored data.  Among 
them are left, interval and right imputation method.  This study only implements the midpoint 
imputation since this method has been proven to provide a better result compared to the other two 
methods [16].  Let say the exact failure time lies between an interval of  ii RL ,  where iL  and iR  

are the left and right endpoints of survival times, respectively.  By using midpoint imputation, the 
exact failure time can be estimated by, 
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In this research, the performance of Log-rank and Wilcoxon tests are assessed using three 
different treatment groups only with uncensored data, followed by right censored data and finally 
with right and interval censored data.  There are five conditions considered in the assessments 
which are believed to affect the performance of Log-rank and Wilcoxon tests.  Among them are 
type of sample distribution, sample sizes (𝑛), censoring proportions (𝑐𝑝), significance levels (𝛼) 
and effect sizes (Λ).  These data were simulated from three different distributions namely 
Exponential, Weibull and Gompertz.  The survival times, it , were generated using the inverse 

transform method where 𝑡௜ = 𝐹ିଵ(𝑢௜) and 𝑢௜ is a pseudo-random number generated from a 
Uniform distribution.  The data is simulated such that the PH assumption is always fulfilled. 

In this research, treatment group with equal size of 𝑛 of 20, 30, 40 and 60 and significance 
levels of 𝛼 = 0.05 and 𝛼 = 0.10 is used.  For right and interval censoring cases, the assessment 
of both tests is carried out under censoring percentage of 10%, 15%, 20%, and 25% in each 
treatment groups.  Interestingly for this case, the censoring percentage of both right and interval 
censored observations will be equal.  If survival data consists of 10% censored observations, 5% 
of them will be right censored and another 5% will be interval censored. 

An effect size is determined by transforming the hazard ratio (HR) into a standardized mean 
difference and takes the absolute value of it [17].  It is defined as small, medium or large when 

2.0 , 5.0  and 8.0 .  These values are used based on the correction made by Azuero 
[17] who simplified some algebra on HR so that it is comparable with Cohen’s d difference.  Let 
say  th1  and  th2  be the hazard rate of Group 1 and Group 2, respectively.  Then the hazard ratio 
of Group 2 over Group 1 is defined as 
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and the effect size,  , can be obtained by 
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The performance of Log-rank and Wilcoxon tests are assessed by using empirical power which 
ranges from 0 to 1.  It is the probability that the test will reject a false 𝐻଴ where under 𝐻଴, there is 
no difference in survival between two or more independent groups.  An empirical power is used 
to measure the ability of both tests to detect any differences in probability of surviving among 
treatments groups.  Higher empirical power indicates that the test is more reliable under certain 
conditions.  General simulation study procedures are provided as follows, 

1. Generate survival times of 3 treatment groups, independently, from a desired continuous 
distribution, 𝑛, 𝑐𝑝, andΛ. 

2. Specify the desired 𝛼, then, perform the Log-rank and Wilcoxon tests on generated survival 
data. 

3. Check either the tests are significant or not by comparing the 𝑝-value and 𝛼. 
4. Replicate the procedure 5000 times and compute the empirical power. 
 

RESULTS 

Power Study of Log-rank and Wilcoxon Tests 

In this section, the results of empirical power for Log-rank and Wilcoxon tests are divided into 
two parts.  The first part discusses the performance of both test when incorporating with complete 
and right censored data while the second part discusses the performance of tests when dealing with 
right and interval censored data.  The assessment is carried out under several conditions as 
mentioned in section 3. 

Results for Complete and Right Censored Data 

Figure 1 shows empirical power graph of Log-rank and Wilcoxon tests for survival data with 
uncensored and right censored observations under different distribution, sample size, level of 
significance, censoring percentage, and effect size.  Based on graph (a) and (d) for Exponential 
distributions, the power of both tests tend to converge to a value of 0.05 and 0.10 respectively as 
the sample size increase regardless of their censoring percentage.  This is because the effect size 
used is small, which make the tests less powerful to detect any differences between the survivor 
functions.  In other words, both tests provide large Type I error when the effect size used is small.  
Similar discussion can be implemented for Weibull and Gompertz distributions.   

Meanwhile, graph (b) and (e) show that when the effect size between survivor functions is 
medium, the Log-rank provides more power under different censoring percentage compared to 
Wilcoxon since most of the Log-rank lines situated above the Wilcoxon lines.  However, the 
performances for both tests are much better when survival data consists of complete observations 
rather than censored data for all type of distributions. 

As the sample size used is 40 and above, the performances of both tests are almost similar, 
where they provide good empirical powers.  So, regardless of the satisfactory for PH assumption, 
the performance of both tests will be similarly great under medium effect size if only if the sample 
size used is large enough.  Other than that, the empirical power of these tests will be higher if the 
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significance level used is large.  This claim can be supported by the lines of both tests in graph (e) 
under all conditions where these lines plotted at higher empirical power compared to lines in graph 
(b).  Unlike in Exponential and Weibull distribution, the power of Log-rank is far way better 
compared to Wilcoxon when analyzing survival data that follow Gompertz distribution.   

Graph (c) and (f) for Exponential and Gompertz distributions show that both tests provide 
similar power regardless of the sample size, significance level and censoring percentage as long 
as the effect size between survivor functions are large enough.  Contradict to these two 
distributions, graph (c) and (f) for Weibull distribution show that Log-rank and Wilcoxon tests 
have similar performance if and only if more than 40 samples are used in each treatment group. 

 
 

 
 

 

Figure 1: Empirical Power Graph of Log-rank & Wilcoxon test for 3 different distributions with 
uncensored & right censored data under different 𝒏, 𝜶, 𝒄𝒑 and 𝚲. 

Results for Right and Interval Censored Data 

Figure 2 shows the empirical power graph of Log-rank and Wilcoxon tests for survival data 
with right and interval censored observations which follow Exponential, Weibull and Gompertz 
distribution under different sample sizes, level of significance, censoring percentage, and effect 
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size.  Based on graph (a) and (d) for all distributions, the power of both tests tend to converge to a 
value of 0.05 and 0.10 respectively as the sample size increase regardless of their censoring 
percentage.  Log-rank still performs better than Wilcoxon just like in the previous discussion for 
complete and right censored data because the PH assumption is satisfied for all distributions.  
Graph (b) and (e) in Exponential and Gompertz distributions show almost similar empirical power 
pattern.  However, both tests perform better when survival data follow Exponential distribution 
compared to Gompertz.  Surprisingly, Log-rank and Wilcoxon have low performance if the sample 
size used is less than 30 although the effect size between the survivor functions is medium when 
survival data follow Weibull distribution.  This claim is supported by comparing graph (b) and (e) 
in Weibull with those in Exponential and Gompertz distributions.  Nevertheless, as the sample size 
used is 40 and above with medium and large effect sizes, the performance of both tests are almost 
the same, where both tests provide good empirical powers under different censoring percentage, 
significance level and type of distribution.  Similar to the previous discussion in section A, when 
larger significance level and effect size are used, the performance of both tests will be better 
similarly great. 
 

 

 

Figure 2: Empirical Power Graph of Log-rank & Wilcoxon test for 3 different distributions with 
right & interval censored data under different 𝒏, 𝜶, 𝒄𝒑 and 𝚲. 
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Analysis of Real Life Data 

A real-life data analysis was conducted for illustration purposes of Log-rank and Wilcoxon tests 
usage.  Datasets of an AIDS clinical trial designed to study the benefits of Zidovudine therapy in 
patients in the early stage of HIV infection (illut3 obtained from FHtest package in R software) 
consists of 1607 observations with three different treatment groups known as Deferred Therapy 
(G1), 500mg/day Dosage (G2) and 1500mg/day Dosage (G3).  In general, there are 541 patients 
in G1, 538 patients in G2 and 528 patients in G3.  About 46.58% of observations in G1, 50.37% 
in G2 and 56.44% in G3 are censored where both right and interval censoring involve.  A 
goodness-of fit test was conducted to determine the type of distribution that fits the AIDS survival 
data well.  The accuracy criterion used in this project is Akaike Criterion Information (AIC).  
Results in Table 1 show that Gompertz distribution with the shape and scale parameters of 𝜆 =
0.0377  and 𝑘 =  −0.0188 is a good model to describe the data compared to the other two 
distributions as it provides the smallest AIC.  

 
Table 1: AIC value for Exponential, Weibull and Gompertz distribution. 

Distribution Parameters Estimate SE 95% LCI 95% UCI AIC 
Exponential   0.0267 0.0016 0.0238 0.0299 7608.446 

Weibull 
k  0.8759 0.0257 0.8268 0.9278 

7588.901   38.2728 2.5812 33.5339 43.6814 

Gompertz 
k  -0.0188 0.0023 -0.0234 -0.0143 

7537.207   0.0377 0.0026 0.0329 0.0432 
 

 
Kaplan-Meier estimator is used to estimate and plot the survivor function for each treatment 

group as in Figure 3.  Based on the plots, the probability of surviving for patients in G3 is the 
highest, followed by G1 and G2.  Also, the black dashes lines which indicate the median survival 
time shows that G3 has the highest median survival time compared to G2 and G1 which means 
that patients who receive 1500mg dosage per day has better chances of surviving than patients who 
received 500mg/day Dosage and Deferred Therapy.  However, the medians of G1 and G2 are quite 
far compared to G2 and G3.  This means that those who received 500mg/day Dosage also have 
better chances of surviving compared to patients who just received Deferred Therapy.  Further 
evidence as in Figure 4 shows the hazard rate of G1 is higher compared to G2 and G3, which 
means that patients who received Deferred Therapy has higher risk of death compared to those 
who received 500mg and 1500mg dosage per day.   

Before performing the Log-rank and Wilcoxon tests, the PH assumption is assessed first by 
using cox.zph function from survival package to obtain both individual and global p-value.  G1 is 
used as the reference category for this assessment.  Figure 5 shows the graphs of the scaled 
Schoenfeld residuals against the survival time.  When the proportional hazards assumption holds, 
the Schoenfeld residuals will be close to zero.  The plots show that the smoothed point wise 
confidence bands are all around 0, which confirms that there is no obvious evidence against the 
PH assumption. 
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Figure 3: Survival plot and risk table for 

Deferred Therapy, 500mg/day Dosage and 
1500mg/day Dosage. 

Figure 4: Cumulative hazard plot for Deferred 
Therapy, 500mg/day Dosage and 1500mg/day 

Dosage. 
 

 
Figure 5. Schoenfeld residuals for treatment groups against survival time plot. 

 
Log-rank and Wilcoxon tests are used to assess the significance difference between several 

survivor functions.  Under null hypothesis, there is no difference in probability of surviving 
between all three treatment groups.  Based on the results in Table 2, Log-rank provide smaller p-
value compared to Wilcoxon because these survival data satisfy the PH assumption as mentioned 
previously.  Log-rank test will perform better on detecting the significance different between 
survivor functions when PH assumption is satisfied compared to Wilcoxon.  Hence, for this data, 
there is sufficient evidence to conclude that there is a significance difference in probability of 
surviving between patients who received Deferred Therapy, 500mg dosage/day and 1500mg 
dosage/day. 

 
Table 2: Non-parametric tests for comparing three survivor functions. 

 Non-parametric 
test 

𝜒ଶ
ଶ 𝑝-value  

 Log-rank 18.6 0.00009  
 Wilcoxon 17.3 0.00020  
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5. CONCLUSION & RECOMMENDATION 

Overall, there is not much difference in the performance of Log-rank and Wilcoxon tests when 
dealing with survival data having right censored data alone, or right and interval censored data.  
This is because both censored data still contribute some information to the analysis although the 
exact failure time cannot be observed precisely.  The only difference between these two data is in 
interval censored data, the two endpoint where the failure time lies is known, whereas for right 
censored, there is only the left endpoint exists.   

Based on this study, Log-rank and Wilcoxon tests performs well regardless of type of 
distributions, censoring percentage, and significance level, as long as the effect size between the 
survivor functions is large and the sample size used is more than 40 samples for each group.  The 
analysis of real data shows that Gompertz distribution is a good parametric model to describe the 
AIDS survival data.  The real data also satisfied the PH assumption.  Thus, it was expected that 
Log-rank would perform brighter compared to Wilcoxon test. 

Future works may be employed by extending this power study in analyzing other non-
parametric tests for survivor functions comparison.  Other than that, this analysis can be extended 
by allowing for unequal sample size, and censoring percentage in each treatment group.  Stratified 
tests are also suggested if there exist variables which may affect the survival times.  Instead of 
comparing whether there is significance difference between the survivor functions, a trend test for 
more than two survivor functions may be performed too.  This is because when dealing with an 
ordinal grouping variable, a trend test may be, actually, of greater relevance than the g-sample test. 
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