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ABSTRACT 
It is known that the presence of structural breaks and outliers in the data series will distort the analysis in 
many aspects such as estimation and the accuracy of the forecast. Therefore, the present study aims to detect 
outliers and structure breaks simultaneously in simulated volatility data via GARCH model using step 
indicator saturation (SIS). The procedure begins with the detection of outliers in simulated volatility data 
using various significant levels to determine the suitability on the different number of observations. The 
accuracy of the detections is accessed using multiple indicators such as potency, gauge, misclassification 
rate and false discovery proportion. The suitability of significant level is then recommended to be applied 
to the next procedure of the detection of structural break and outliers in the simulated volatility data.  
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INTRODUCTION 
 
Volatility is one of the crucial elements of risk management. It is also being used widely as a basic 
measure of total risk in the financial asset where it plays a vital role in financial asset management. 
For example, trading in stocks by investors. Investors can raise capital, pay off debt as well as 
gaining profit from dividend distributed by involving in stock trading. However, this depends 
solely on the stock market trend. The stock market can be bullish (rising) in a trend or bearish 
(falling) in a trend. A market that experiences a bullish trend attracts more investors which 
indirectly give a positive impact on the direction of the economy. On the other hand, the opposite 
effect happened when the stock market is experiencing a fall. This uncertainty is referred to as the 
volatility of the financial market. 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models are the 
most common model in assessing the volatility in financial time series data (Carapole and Zekokh, 
2019). According to Guesmi et al. (2013), among various types of volatility models, GARCH 
model is yet found to be the best method in modelling the volatility. Despite the popularity of the 
GARCH model, it is often observed that the estimated residuals estimated from their mean 
equation still have excess kurtosis (Baillie and Bollerslev, 1989). Several attempts have been made 
to overcome the problem by allowing the error to follow a conditionally fat-tailed t-distribution 
(Bollerslev, 1987). However, despite using t-distribution to the error terms, the problem of excess 
kurtosis continues to exist. 

The possible cause to the excess kurtosis is the presence of additive outliers that are not 
captured by a GARCH model (Balke and Fomby (1994) and Franses and Ghijsels (1999). The 
additive outliers refer to the situation in which a remarkably large or small value is occurring for 
a single observation (Fox, 1972). In general, it can be interpreted as measurement errors or as an 
impulse effect due to the unexpected events, such as a strike, accident or a breakdown and so forth 
without carry-over to other subsequent values of the time series (Ledolter (1989) and Pena (2000)). 
Carnero and Pena (2006) advised checking if the series containing outliers before fitting the 
GARCH model type. 
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Moreover, some of the researchers also argued that the classical GARCH model could not 
appropriately capture some type of persistence displays by the volatility of financial data. The 
reason for this occurrence is the failure to take into account the structural shift in the model 
(Diebold (1986) and Lamoureux and Lastrapes (1990). As simulated by Andreou and Ghysels 
(2002), strongly-persistent volatility can lead to essential size distortions in structural break tests. 
Neglecting such a break can generate spuriously measured persistence with the sum of the 
estimated autoregressive parameters of the conditional variance heavily biased towards one. 
Lamoureux and Lastrapes (1990) and Fang and Miller (2009) found that high volatility persistence 
measured by the GARCH model disappears by including a dummy variable for the structural break. 

Consequently, it seems rather imperative that the modelling of financial time series using 
the GARCH model should take into account the presence of outliers and structural breaks. The 
two approaches that seem to be focal in the relevant strands of literature are to incorporate breaks 
in the mean and/or volatility dynamics and to identify and correct for the presence of outliers 
before fitting a particular model. Thus, the main objective of this paper is to introduce the step 
indicator saturation (SSI) as a method that can detect outliers and structural breaks when modelling 
using GARCH model being done. However, this paper will focus on simulated data from the 
GARCH model. 
 
 

METHODOLOGY 
 
This section begins with the discussion on the step indicator saturation (SIS). Then a brief 
discussion about the GARCH model will be presented. Finally, the simulation procedure will be 
shown. 
 

Step Indicator Saturation 
 

 
Hendry (1999) introduced the step indicator saturation (SIS) a general-to-specific approach 

for an unknown number of breaks, occurring at unknown times, with unknown durations and 
magnitudes. Step indicators are defined as the accumulation of impulse indicators up to each of 
the next observation. The saturation setting of T-1 step-shift indicator is included in the regression 
model. Step indicators take the form of 𝑖ଵ = (1, 0, 0, … , 0) , 𝑖ଶ = (1, 1, 0, … , 0) ,…,  𝑖்ିଵ =
(1, 1, 1, … , 1, 0). The "T" step of 𝑖் = (1, 1, 1, … , 1, 1) is the intercept.  

The study of SIS is first developed by Doornik (2012) to consider the step-indicator 
saturation to capture the breaks. Using Monte Carlo simulation study, he provides the evidence of 
the feasibility of SIS in detecting breaks on various aspects such as the accuracy of detection when 
location shifts occur and improving in accepting frequency compared to the impulse indicator 
saturation (IIS). Then he compares to Chow (1960) tests. 

This paper utilized SIS with only constant, c as a regressor following the work of the Castle 
et al. (2012). Let t ty c    where 𝜀௧ is normally and independently distributed with zero mean and 
variance as 2 . Equation 1 shows the augmented block of impulse indicators. 

 

                                                          𝑦௧ = 𝑐 + ∑ 𝛿௟௞𝑆௧(𝑘)
೅

మ
௞ୀଵ + 𝜀௧.                                                                      (1) 

 
Using the split-half approach, equation 1 contains the first T/2 parameter to be analyzes. 

Any indicator, 𝑆௧  with t-value less than the critical value   is deleted. In the second step, the 
remaining half of the step indicator, 𝑆௧ are estimated and eliminated. The selected step indicator, 
𝑆௧  from the terminal model are then combined and re-estimated to give the final model. SIS 
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procedure distinguishes structural breaks as a segment of step indicators, 𝑆௧ with the same sign 
and magnitudes. Large outliers are detected with the step indicator, 𝑆௧with different sign. 

 
 

GARCH Model 
 

Generalized autoregressive conditionally heteroscedastic (GARCH) models were introduced by 
Bollerslev (1986) as an extension of autoregressive conditionally heteroscedastic (ARCH) models 
by Engle (1982). An extensive discussion on both models can be found in the monograph by 
Francq and Zakoian (2019) and Xekalaki and Degiannakis (2010). The fundamental concept of 
the GARCH model is the conditional variance which is the variance conditional on the past. This 
paper employed the GARCH (1,1) as a benchmark for the volatility data. The reasons for using 
GARCH (1,1) because of its superiority predictive ability as reported by Hansen and Lunde (2005). 
The GARCH (1,1) allows the conditional variance to be dependent on its lags and given as below: 
 

t tr ,    (2) 
 

2 2 2
1 1 1 1t t t ,          (3) 

                                                                                                                                                                                      
where t t t    ,   is the conditional mean, t  is independent and identically distributed with 
N(0,1), 2

1t   denotes the ARCH term, 2
t   is the conditional variance, 2

1t   is the GARCH parameter 
where 0  , 1 0    and 1 0  . The process is stationary if 1 1 1   . The persistence of volatility 
is measured as the sum of α and β. 
 

Monte Carlo Simulation 
 

The simulation procedure begins with simulating data for GARCH (1,1) under Gaussian 
distributions. The simulation setting for this study are as follows; 

1. Parameters 1 0 1.  , 1 0 8.    and 1 11     . 
2. Sample sizes, 500 1000 2000 3000T , , ,  observations. 
3. Significance levels, α = 0.05, 0.025, 0.01. 
4. Error distributions: Gaussian distribution 
5. Multiple additive outliers (AO) of different magnitude (3, 5, 10 and 15 standard deviations) 

are placed randomly in simulated return series in both positive and negative magnitude. 
 

The restriction 0 < 𝛼ොଵ + 𝛽መଵ ≤ 1 and 𝛼ො଴ > 0 are imposed in the estimation procedure. The 
parameter chosen is similar to the study by Carnero et al. (2012) and Marczak and Proietti (2016). 
In this study, the simulations are carried out using four different sample sizes; T = 500, 1000, 2000 
and 3000 to reflect the standard sample sizes for financial time series data. The sample size of 
3000 corresponds to more than ten years of daily data and usually considered enough to understand 
the variability of the data.  

The simulation study intends to understand the suitable significance level to be used based 
on the number of sample size. The study carried out using three significance levels, α = 0.05, 0.025 
and 0.01. The smaller the value of significance level, the chance of retaining irrelevant indicator 
variables is relatively lower. The performance of the SIS approach in detecting outliers is assessed 
using the concept of gauge, potency, misclassification and false discovery rate using the confusion 
matrix as proposed by Marczak and Proietti (2016). The confusion matrix can be illustrated using 
the following table; 
 

Table 1: Confusion matrix 
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Actual Decision Total 
 No outlier Outlier 

No outlier A B T-n 
Outlier C D n 
Total A+C B+D T 

 
A and D denote numbers of correct decisions in the cases of no outlier and one outlier (at a 
particular observation), respectively. B and C, on the other hand, summarize all false decisions 
when no outlier is present, and when there is an outlier (at a particular observation), respectively. 
The potency is then defined as the ratio D/n, which is known as the true positive rate (also called 
the hit rate, recall or sensitivity) in the classification literature. The gauge is given by the ratio 
B/[(T−n)], the so-called false positive rate (or false alarm rate). The misclassification rate is 
(B+C)/(n) and B/(B+D) is the false discovery proportion. 

After finding the prefer significance level, the simulation continues in discovering 
structural breaks and outliers in the conditional variance. The design of the simulation study 
follows that of Hillebrand and Setala (2005) on the effects of neglecting parameter changes (α and 
β) in the estimation of the GARCH (1,1) model. This study only focuses on the correct detection 
of the timing of single structural breaks where one break happens in the middle of the simulated 
data. In terms of the sample size, this study will use the similar number with those reported in the 
previous outlier’s simulation procedure (T= 500, 1000, 2000 and 3000) as it reflects the typical 
sample size in the financial time series analysis 

For single breaks, the breaks are placed starting in the middle (0.50T)+1 of the sample for 
each sample size under study (T = 500, 1000, 2000 and 3000). In terms of parameter value for the 
GARCH (1,1) model, the parameter of the conditional mean equation is fixed at µ = 0 and ø = 0.7. 
From Table 2, the first half of the simulated data (0.50T) will follow the initial GARCH (1,1) 
model without breaks (Setting 1). In contrast, the second half of the simulated data (0.50T +1) will 
obey model with Setting 2, 3 or 4.  
 

Table 2: The initial parameter values and parameter switches 
Setting 
number 

σ ω α β λ 

1 1.00 0.20 0.10 0.70 0.80 
2 1.73 0.26 0.15 0.70 0.85 
3 2.83 0.34 0.18 0.70 0.88 
4 4.20 0.42 0.20 0.70 0.90 

Notes: ω is constant of the conditional variance for the GARCH (1,1) model. ω, α and β are chosen 
to generate the column of the table, holding other parameters fixed. λ is the sum of α and β. 

 
RESULTS AND DISCUSSION 

 
Figure 1 presents the simulated data for the different number of observations (T=500, 1000, 2000 
and 3000) of GARCH (1,1) with the Gaussian error distribution. While Table 3 represents the 
outliers’ location according to its size and magnitude. Then, the outliers are replaced at the random 
location, as stated in Table 3, where Figure 2 presents the data series contaminated by outliers. 
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Figure 1: Simulated data series under Gaussian GARCH (1,1) 

 
Table 3: Outliers and random location for Gaussian GARCH (1,1) 

Number of 
observations 

Outliers 
size 

Outliers 
(value) 

Random 
location 

(+ve) 

Random 
location 

(-ve) 
500 ±3𝜎௬ ±3.0780 254 188 

 ±5𝜎௬ ±5.1300 441 232 
 ±10𝜎௬ ±10.2600 34 22 
 ±15𝜎௬ ±15.3900 259 500 

1000 ±3𝜎௬ ±2.9196 520 201 
 ±5𝜎௬ ±4.8655 307 316 
 ±10𝜎௬ ±10.3200 669 870 
 ±15𝜎௬ ±15.4800 104 50 

2000 ±3𝜎௬ ±3.1371 1661 868 
 ±5𝜎௬ ±5.2285 262 127 
 ±10𝜎௬ ±10.4570 1837 1862 
 ±15𝜎௬ ±15.6855 1457 885 

3000 ±3𝜎௬ ±2.9756 1960 1063 
 ±5𝜎௬ ±4.9594 364 1640 
 ±10𝜎௬ ±9.9188 2006 2897 
 ±15𝜎௬ ±14.8782 2382 1145 
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Figure 2: Contaminated simulation data series 

 
Figure 3 to 6 summarize the simulation result on a various significance level for each performance 
indicator. The most suitable significance level is then recommended based on the sample size. The 
recommendation will provide a guideline for researchers in order to choose the correct significance 
level when using the SIS approach depending on their sample size. Figure 3 illustrates the 
summary of the potency rate for each number of simulated sample size. As the number of sample 
size increase, the potency rate for α = 0.05 and α = 0.025 increase substantially to 100%. The 
similar increasing pattern also recorded for α = 0.01 but reaching its maximum level at only 70% 
at the sample size of 3000. 
 

 
Figure 3: Summary of potency rate of GARCH (1,1)-Gaussian 

 
Figure 4 summarizes the gauge rate for each significance level. It is interesting to note that the 
gauge rate is zero for the sample size of 500 and 1000. The gauge rate is zero at the smallest 
significance level, α = 0.01. It reflects the ability of SIS to identify the correct outliers with the 
minimum gauge rate. While Figure 5 presents the misclassification rate for each significance level 
on a different number of sample sizes. The result reveals that for the sample size of 500 and 1000, 
the smallest percentage of misclassification rates are recorded at α = 0.05. On the other hand, the 
minimum misclassification rate for the sample size of 2000 is recorded at α = 0.025. For the sample 
size of 3000, it is suggested that α = 0.01 should be applied to minimize the misclassification rate 
of outliers’ detection. 
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Figure 4: Summary of gauge of GARCH (1,1)-Gaussian 

 

 
Figure 5: Summary of the misclassification rate of GARCH (1,1)-Gaussian 

 
In the context of false discovery proportion, remarkable result with zero false discovery proportion 
is detected for the sample size of 500 and 1000. It is also interesting to discover that the remarkable 
performance of α = 0.01 was discovered with zero false discovery proportion throughout all sample 
sizes. Figure 6 provides a summary of the false discovery proportion of GARCH (1,1)-Gaussian 
under different level of significance. 
 

 
Figure 6: Summary of false discovery proportion of GARCH (1,1)-Gaussian 

 
Based on four performance indicators, the study provides the recommended significance 

level based on the sample size. The recommendation will provide a guideline for researchers to 
choose the most suitable significance level when using the SSI on GARCH (1,1)-Gaussian 
depending on their sample size. The significance level, α = 0.05 is recommended for the sample 
size of 500, α = 0.025 for sample size of 2000 and α = 0.01 for the sample size of 3000. From 
previous simulation finding, the study continues with a similar setting in term of a sample size to 
show the performance of SIS in detecting structural breaks in GARCH (1,1) simulated data. The 
setting is based on the discussion in the earlier section. Figure 7 displays the simulation data of the 
single break of GARCH (1,1) for the sample size of 500, 1000, 2000 and 3000 and the dashed line 
represent the unconditional variance change in the data series for three different models setting 
(refer to Table 2). 
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Figure 7: Single break of GARCH (1,1) under model setting (1,2), (1,3) (1,4) 

 
Table 4: Results in detecting structural breaks and outliers 

Sample size Model 
setting 

Num. of 
breaks 

Location of 
breaks 

Num. of 
outliers 

500 (1,2) 1 283 15 
 (1,3) 1 268 17 
 (1,4) 1 258 20 
     
1000 (1,2) 1 394 34 
 (1,3) 1 483 27 
 (1,4) 1 497 40 
     
2000 (1,2) 1 1104 32 
 (1,3) 1 1072 51 
 (1,4) 1 1079 57 
     
3000 (1,2) 1 1567 26 
 (1,3) 1 1560 40 
 (1,4) 1 1502 48 

 
Table 4 tabulates the results of the SIS in detecting structural breaks and outliers for volatility data 
from GARCH (1,1). It is interesting to note that SIS detected one structural break consistent with 
our setting of one break in the simulated volatility data. Furthermore, as the sample size increases, 
the location of the breaks is near to the prespecifies location that is 251 for sample 500, 501 for 
sample 1000, 1001 for sample 2000 and 1501 for sample 3000. A similar pattern is also shown by 
model setting from setting (1,2) to (1,4). The number of outliers detected also increases as the 
sample size increases. 
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CONCLUSION 

 
This study aims to present the performance of step indicator saturation (SIS) in detecting structural 
breaks and outliers in simulated volatility data from GARCH (1,1) model. The first stage of 
simulation study recommended a significant level to be used in detecting outliers in the data series. 
It will serve as a guideline for the researcher to pick the suitable significant according to the 
number of observations. While the second stage simulation study, show that SSI manages to detect 
single break as pre-assign for the simulated data. Moreover, the sample size and model 
specification affect the accuracy of the location detection of the structural break. Further research 
will focus on non-Gaussian GARCH model and using real data. 
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