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ABSTRACT 
Diophantine equation is known as a polynomial equation with two or more unknowns which only integral solutions 
are sought. In this paper, we concentrate on finding an integral solutions to the Diophantine equation 𝑥ଶ + 2௔ . 7௕ =
𝑦௡ for  (𝑎, 𝑏) = (6,3) and 𝑛 = 3.  From this study, we found that the solutions to the equation are (𝑥, 𝑦) =
(104,32), (392,56), (1176,112)  and (15288,616). 
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INTRODUCTION 
 
The Diophantine equations that related or similar with the form of 𝑥ଶ + 2௔ . 7௕ = 𝑦௡ where 𝑛 is an 
odd prime has been studied in some recent paper for a certain value of 𝑥 and 𝑦. By considering 
some cases, they found that there are infinitely many solutions to the equation. (Refik, 2018) 
proved the Diophantine equation (𝑎௡ − 1)(𝑏௡ − 1) = 𝑥ଶ and found that there is no solution to 
this equation when 𝑛 > 4 for the case 𝑛 is even number and proceed for the case (𝑎, 𝑏) =
 (2, 50), (4, 49), (12, 45), (13, 76), (20, 77), (28, 49)  and  (45,100).  From this study, he found 
that there is no integral solution to the equation for b is even. (I. Naci and G. Soydan, 2013)  proved 
that the Diophantine equation 𝑥ଶ + 2௔. 3௕ = 11௖  for case 𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑛 > 3 and where 𝑥 is 
coprime. They found that this equation has many integral solution for 𝑛 =  3, 4, 5, 6,10. Then, 
(S.Gou and Xi’an, 2012) find all solution to the Diophantine equation 𝑥ଶ + 2௔ . 17௕ = 11௖ for 
values 𝑛 ≥ 3, 𝑎, 𝑏 ≥  0 and 𝑎, 𝑏 ∈  𝑍 and the solution to this equation are  (𝑥, 𝑦, 𝑛, 𝑎, 𝑏)  =
 (5,3,3,1,0), (7,3,4,5,0), (11,5,3,2,0), (8,3,4,0,1), (1087,33,4, 8,1), (5,7,4,7,1), (9,5,4,5,1)  
(47, 9,4,8,1), (47,3,8,8,1) and (495,23, 4,11,1). (G.Soydan and H.L.Zhu, 2012) extend the 
equation in the form of 𝑥ଶ + 2௔. 19௕ =  𝑦௡. They solved for the case 𝑛 = 3, 4, 5 and found many 
solution but they found there is no solution for the case 𝑛 >  5. Next, a-s studied the equation in 
the form of 𝑥ଶ + 5௔. 11௕ =  𝑦௡.  for the case 𝑔𝑐𝑑(𝑥, 𝑦)  =  1 and 𝑛 >  3. They found a unique 
solution when 𝑛 =  6. That is the only integer solution is (𝑎, 𝑏, 𝑥, 𝑦)  =  (1, 1,3,2). If 𝑛 =  5 or 
𝑛 >  7, there is no integer solution for (𝑎, 𝑏, 𝑥, 𝑦). 
 
 

MAIN SECTION 
 

In this section, we discussed on finding an integral solutions to the Diophantin equation 𝑥ଶ +
2௔. 7௕ = 𝑦௡  for 𝑛 =  3 and (𝑎, 𝑏)  =  (6,3). In order to solve this equation, we will consider two 
cases for the parity of  𝑥 and 𝑦.  By looking at the pattern of the solution and considering some 
cases, we obtain the following result. 
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Firstly, we consider for the parity of x and y both are even integers. 

Theorem 1 Let be 𝑎, 𝑏, 𝑥, 𝑦, 𝑛 be positive integers, then an integral solution to Diophantine 
equation 𝑥ଶ + 2௔. 7௕ = 𝑦௡ for (𝑎, 𝑏, 𝑛) = (6,3,3) are (𝑥, 𝑦) =
 (104, 32), (392,56), (1176,112)  and (15288,616). 

Proof: Based on the hypothesis above, we have 
 

Consider the equation  

 xଶ + 2ୟ. 7ୠ  =  y୬ .         (1) 

From the hypothesis, (1) become  
 
       xଶ + 2଺. 7ଷ  =  yଷ          (2) 

 
In order to solve this equation, we will consider a seven cases depend on the possibility of the 
parity of x and y.  
 
Now, we consider the first case where both x, y are even.  
Suppose x = 2αs and y = 2βr, where (2,s) = (2,r) = 1, ,   1 and r, s ∈ N. By substituting these 
values into (2), we obtain, 
 
        2ଷஒrଷ − 2ଶ஑sଶ = 2଺. 7ଷ      (3) 
 
From (3), we consider six possibilities for the case α and β as in the table below: 

 

 

Case (1) : Consider 𝛽 > 𝛼. Suppose 𝛽 = 1. From equation (3), it becomes, 

2ଷ𝑟ଷ − 2ଶఈ𝑠ଶ = 2଺. 7ଷ 

By simplifying the above equation, we have 
 

rଷ − 2ଶ஑ିଷsଶ = 2ଷ. 7ଷ 

It is contradiction since (2, 𝑟)  =  (2, 𝑠)  =  1 and LHS is odd while RHS is even. 

 

Case (2). Consider 𝛼 >  𝛽 for 𝛽 >  1 and equation (3) becomes, 
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2ଷఉି଺(𝑟ଷ − 2ଶఈିଷఉ𝑠ଶ) = 7ଷ 

The equation above is contradicting since (2; r) = (2; s) = 1 and LHS is even while RHS is odd 
and also 𝛽 > 1. 
 
Case (3). Consider 𝛽 >  𝛼 for 1 <  𝛽 <  4 and equation (3) becomes, 
 

2ଶఈ(2ଷఉିଶఈ𝑟ଷ − 𝑠ଶ) = 2଺. 7ଷ. 

It is contradiction since LHS is odd while RHS is even for all possibilities values of 𝛼 and 𝛽. 
 
Case (4). Consider 𝛽 >  𝛼.  Suppose 𝛽 =  4.  From equation (3), it becomes, 
 

2ଵଶ𝑟ଷ − 2ଶఈ𝑠ଶ = 2଺. 7ଷ.    (4) 

 
Since 𝛽 >  𝛼, the least value of 𝛼 is 3. By substituting these values into (4), we obtain 
 

2଺𝑟ଷ − 𝑠ଶ = 7ଷ .    (5) 

Since RHS=LHS has factor of 7, therefore equation (5) have a solution in the form of 𝑠 =  7𝑤ଵ 
and 𝑟 =  7𝑤ଶ. Substitute these value into (5), we have 
 

64(7𝑤ଶ)ଷ − (7𝑤ଵ)ଶ = 7ଷ .          (6) 

From equation (6), then we have equation, 

(64𝑤ଶ
ଷ − 1) =  𝑤ଵ

ଶ .          (7) 

Since RHS is a square then the above equation have a solution if LHS also in the form of a 
square number. Therefore, 
 

7|64𝑤ଶ
ଷ − 1. .           

It can be written as 
 

64𝑤ଶ
ଷ − 1 ≡ 0 (mod 7). 

 
That is 

𝑤ଶ
ଷ ≡ 1 (mod 7). 

 
Then, factorized the above equation, we obtain 
 

(𝑤ଶ − 1)( 𝑤ଶ
ଶ + 𝑤ଶ + 1) ≡ 0 (mod 7).  (8) 

By solving the equation above we get w2 = 1 in the least residue modulo 7, then substitute in (7) 
we have 

7(63) = 𝑤ଵ
ଶ . 

That is, 𝑤ଵ  =  21. Thus, we have 𝑠 =  147 and r = 7. By substituting these value into 𝑥 and 
𝑦 with 𝛼 =  3 and 𝛽 = 4, we obtain 
 

𝑥 =  1176, 𝑦 =  112 
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If 𝑤ଶ

ଶ
 +  𝑤 ଶ +  1 ≡ 0(mod 7), by completing square, it can be written as 

 
 
 

(
2𝑤ଶ + 1

2
)ଶ +

3

4
≡ 0(mod 7). 

 
Then, 

(2𝑤ଶ + 1)ଶ ≡ 4(mod 7). 
 
 
Let 𝑒 = 2𝑤ଶ + 1, then  

𝑒 ≡ 2(mod 7), 𝑒 ≡ −2(mod 7) 
 
Suppose 𝑒 ≡ 2(mod 7),  it can be written as, then 
 

𝑒 = 2 + 7𝑡 
 

𝑡 =
2𝑤ଶ − 1

7
, 𝑤, 𝑡 > 0 

 
 

Suppose 𝑤ଶ =  1, then 𝑡 =
ଵ

଻
 and it is contradict since 𝑡 >  0 and by back substitution, it is 

contradict. So, there is no solution if 𝑤ଶ
ଶ + 𝑤ଶ + 1 ≡ 0(mod 7). 

 
Case (5). Now from Table 1, we consider for the case 𝛽 >  𝛼 and 𝛽 = 5. . From equation (3), we 
have 
 

2ଶఈ(2ଵହିଶఈ𝑟ଷ − 𝑠ଶ) = 2଺. 7ଷ. 

 
 
By comparing both sides and since LHS=RHS, we obtain 𝛼 = 3, and 
 

2ଽ𝑟ଷ − 𝑠ଶ = 7ଷ     (9) 
 
 
That is,  

𝑠ଶ = −7ଷ + 2ଽ𝑟ଷ 
 
 
It can be written as, 
 

𝑠ଶ ≡ 169(mod 512). 
 
By solving the congruence equation above, we have 
 

 
𝑠 =  13;  𝑠 =  13. 
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Suppose 𝑠 =  13 +  512𝑘, and substitute in (9), we obtain 
 

512𝑟ଷ = (13 + 512𝑘)ଶ + 343. 
 
By expanding and simplifying the equation above, we get 
 

𝑟ଷ = 1 + 2(13𝑘 + 256𝑘ଶ). 
 
That is, 
 

𝑟ଷ ≡ 1(mod 2). 
 
 
Then,  
 

(𝑟 − 1)( 𝑟ଶ + 𝑟 + 1) ≡ 0 (mod 2). 
 
By solving the  congruence equation above, we obtain 𝑟 =  1 in the least modulo 2 and by back 
substitution for all values of 𝛼, 𝛽, 𝑟 and 𝑠 we have 
 

𝑥 =  104, 𝑦 =  32. 
 

If 𝑟ଶ + 𝑟 + 1 ≡ 0 (mod 2).by completing square, it can be written as 
 
 

(
2𝑟 + 1

2
)ଶ +

3

4
≡ 0(mod  2). 

 
Then,  
 

(2𝑟 + 1)ଶ ≡ 4(mod 2). 
 
 
Let 𝑒 = 2𝑟 + 1, then  

𝑒 ≡ 2(mod 2), 𝑒 ≡ 5(mod 2) 
 
Suppose 𝑒 ≡ 2(mod 2),  it can be written as, then 
 

𝑒 = 2 + 2𝑡, 𝑡 ≥ 
 

𝑡 =
2𝑟 − 1

2
, 𝑟, 𝑡 ≥ 0 

 
 

Suppose 𝑟 =  1, then 𝑡 =
ଵ

ଶ
 and it is contradict since 𝑡 >  0 and by back substitution, it is 

contradict. So, there is no solution if 𝑟ଶ + 𝑟 + 1 ≡ 0(mod 2). Suppose 𝑠 =  499 in the least 
residue 512.  By using the same argument, we will obtain the same answer for 𝑥 and 𝑦.  
 
 
Case (6). Now from Table 1, we consider for the case 𝛽 >  𝛼, 𝛼 ≥ 1 and 𝛽 > 5. . From equation 
(3), we have 
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2ଷఉ𝑟ଷ − 2ଶ𝑠ଶ = 2଺. 7ଷ. 

It can be written as, 

 

It is contradiction since LHS is odd while RHS is even for all possibilities values of 𝛼 and 𝛽. 
 
 

2ଷఉିଶ𝑟ଷ − 2ଶ𝑠ଶ = 2ସ. 7ଷ. 

 
Then, contradiction occurs since (2, 𝑟)  =  (2, 𝑠)  =  1 and LHS is odd while RHS is even. 
Case (7). Consider 𝛼 =  𝛽 for 𝛼, 𝛽 >  0. Then equation (3) becomes 
 

2ଶఈ(2ఈ𝑟ଷ − 𝑠ଶ) = 2଺. 7ଷ. 

 
 
By comparing both sides and since LHS=RHS, the above equation holds if 𝛼 =  3 and it can be written 
as, 
 

8𝑟ଷ − 𝑠ଶ = 7ଷ.     (10) 

 
 
Since RHS=LHS and have factor of 7, therefore equation (10) have a solution in the form of 𝑠 =  7𝑤1 and 
𝑟 =  7𝑤2. Substitute these values in (10), we have 
 

8(7𝑤ଶ)ଷ − (7𝑤ଵ)ଶ = 7ଷ.            (11) 

 
From equation (11), and simplify the equation, we obtain 
 

7(8𝑤ଶ
ଷ − 1) = 𝑤ଵ

ଶ.            (12) 

 
The above equation have a solution if RHS is in the form of square number. Therefore, 
 

7|8𝑤ଶ
ଷ − 1. 

 
It can be written as, 

𝑤ଶ
ଷ − 1.≡ 0(mod 7) 

 
 
By factoring the equation above, we obtain 
 

(𝑤ଶ − 1)( 𝑤ଶ
ଶ + 𝑤ଶ + 1) ≡ 0 (mod 7).   (13) 
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We will consider two cases. The first case is when 𝑤ଶ
ଷ − 1.≡ 0(mod 7). That is 𝑤2 = 1 +  7𝑡, 

𝑡 ∈ 𝑍. Then we choose 𝑤2 =  1 in the least residue modulo 7 and substitute in (12), we will have 
𝑤1 =  7. By back substitution to all value of 𝛼, 𝛽,r and 𝑠, we have 

 
𝑥 =  392, 𝑦 =  56. 

 
For the second case, by completing the square and simplifying the equation, we get 
 
 

(
2𝑤ଶ + 1

2
)ଶ +

3

4
≡ 0(mod 7). 

 
Then, 

(2𝑤ଶ + 1)ଶ ≡ 4(mod 7). 
 
 
Let 𝑒 = 2𝑤ଶ + 1, then  

𝑒 ≡ 2(mod 7), 𝑒 ≡ 5(mod 7) 
 
Suppose 𝑒 ≡ 2(mod 7),  it can be written as, then 
 

𝑒 = 2 + 7𝑡, 𝑡 ≥ 0 
Then, 
 

𝑡 =
2𝑤ଶ − 1

7
, 𝑤, 𝑡 > 0 

The smallest positive value of w2 such that the equation has solution is 𝑤2 =  11 and 𝑡 =  3. 
Then by back substitution for all values of 𝛼, 𝛽,r and 𝑠, we have 
 

𝑥 =  15288, 𝑦 =  616. 
 
Suppose 𝑒 ≡ 5(mod 7), by using the same argument, we will obtain the same answer for 𝑥 and y. 
Therefore, from all cases the solutions are (𝑎, 𝑏, 𝑛) = (6,3,3) are (𝑥, 𝑦) =
 (104, 32), (392,56), (1176,112)  and (15288,616).          ∎ 
 
 
 
 

Secondly, we consider for the parity of x and y both are odd integers. 

Theorem 2 Let be 𝑎, 𝑏, 𝑥, 𝑦, 𝑛 be positive integers, there is no  integral solution to Diophantine 
equation 𝑥ଶ + 2௔. 7௕ = 𝑦௡ for (𝑎, 𝑏, 𝑛) = (6,3,3) . 

Proof: Based on the hypothesis above, we have 
 
Suppose 𝑥 = 2ఊ𝑘 + 1 and 𝑦 = 2ఋ𝑗 + 1, with (2,k)=1 and (2,j) = 1 where 𝛾 ≥ 1 , 𝛿 ≥ 1 and  
k, j ∈ ℕ .  
From (3), we have  
 

(2ఋ𝑗 + 1)ଷ − (2ఊ𝑘 + 1)ଶ = 2଺. 7ଷ.   (15) 
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In order to solve (15), we will consider the possibilities of   and . That is, either  = ,  >  
or  <.      
 
Now, we consider the first case where  = =1. Then substitute these values in (24), we have 

(2𝑗 + 1)ଷ − (2𝑘 + 1)ଶ = 2଺. 7ଷ 
By expanding and simplifying the equation above, we obtain  

 
2ଶ𝑗ଷ + 3 ∙ 2𝑗ଶ + 3𝑗 − 2𝑘ଶ − 2𝑘 = 2ହ ∙ 7ଷ 

Since (2, k), (2, j)  = 1, then we obtain LHS is odd and RHS is even. Thus, contradiction occurs. 
That is, LHS ≠ RHS. By using the same method and arguments, contradiction also occurs for the 
case  >   and  < .              ∎ 

 
 
 
 

CONCLUSION 
 
From this study, we found that the integral solution for positive integers x and y to the  
equation  
𝑥ଶ + 2௔. 7௕ = 𝑦௡ are (𝑎, 𝑏, 𝑛) = (6,3,3) are (𝑥, 𝑦) (104, 32), (392,56), (1176,112)  and 
(15288,616).   
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