Menemui Matematik (Discovering Mathematics) Vol. 42, No. 2: 67-75 (2020)

On the Diophantine Equation $x^2 + 2^a$. $7^b = y^n$

N. H. Amalulhair¹, S. H. Sapar^{1,2} and M. A. Johari²

¹Institue for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang,, Selangor, Malaysia ²Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang,, Selangor, Malaysia ¹nurhidayah amalulhair@yahoo.com, ²sitihas@upm.edu.my

ABSTRACT

Diophantine equation is known as a polynomial equation with two or more unknowns which only integral solutions are sought. In this paper, we concentrate on finding an integral solutions to the Diophantine equation $x^2 + 2^a \cdot 7^b = y^n$ for (a,b) = (6,3) and n = 3. From this study, we found that the solutions to the equation are (x,y) = (104,32), (392,56), (1176,112) and (15288,616).

Keywords: Diophantine equation, Exponential Diophantine Equation, Parity

INTRODUCTION

The Diophantine equations that related or similar with the form of $x^2 + 2^a \cdot 7^b = y^n$ where n is an odd prime has been studied in some recent paper for a certain value of x and y. By considering some cases, they found that there are infinitely many solutions to the equation. (Refik, 2018) proved the Diophantine equation $(a^n - 1)(b^n - 1) = x^2$ and found that there is no solution to this equation when n > 4 for the case n is even number and proceed for the case (a, b) =(2,50), (4,49), (12,45), (13,76), (20,77), (28,49) and (45,100). From this study, he found that there is no integral solution to the equation for b is even. (I. Naci and G. Soydan, 2013) proved that the Diophantine equation $x^2 + 2^a \cdot 3^b = 11^c$ for case a, b, c, x, y, n > 3 and where x is coprime. They found that this equation has many integral solution for n = 3, 4, 5, 6, 10. Then, (S.Gou and Xi'an, 2012) find all solution to the Diophantine equation $x^2 + 2^a \cdot 17^b = 11^c$ for values $n \ge 3$, $a, b \ge 0$ and $a, b \in Z$ and the solution to this equation are (x, y, n, a, b) =(5,3,3,1,0), (7,3,4,5,0), (11,5,3,2,0), (8,3,4,0,1), (1087,33,4,8,1), (5,7,4,7,1), (9,5,4,5,1)(47, 9, 4, 8, 1), (47, 3, 8, 8, 1) and (495, 23, 4, 11, 1). (G. Soydan and H.L. Zhu, 2012) extend the equation in the form of $x^2 + 2^a$. $19^b = y^n$. They solved for the case n = 3, 4, 5 and found many solution but they found there is no solution for the case n > 5. Next, a-s studied the equation in the form of $x^2 + 5^a$. $11^b = y^n$. for the case gcd(x, y) = 1 and n > 3. They found a unique solution when n = 6. That is the only integer solution is (a, b, x, y) = (1, 1, 3, 2). If n = 5 or n > 7, there is no integer solution for (a, b, x, y).

MAIN SECTION

In this section, we discussed on finding an integral solutions to the Diophantin equation $x^2 + 2^a \cdot 7^b = y^n$ for n = 3 and (a, b) = (6,3). In order to solve this equation, we will consider two cases for the parity of x and y. By looking at the pattern of the solution and considering some cases, we obtain the following result.

Firstly, we consider for the parity of x and y both are even integers.

Theorem 1 Let be a, b, x, y, n be positive integers, then an integral solution to Diophantine equation $x^2 + 2^a \cdot 7^b = y^n$ for (a, b, n) = (6,3,3) are (x, y) = (104,32), (392,56), (1176,112) and (15288,616).

Proof: Based on the hypothesis above, we have

Consider the equation

$$x^2 + 2^a \cdot 7^b = y^n \,. \tag{1}$$

From the hypothesis, (1) become

$$x^2 + 2^6 \cdot 7^3 = y^3 (2)$$

In order to solve this equation, we will consider a seven cases depend on the possibility of the parity of x and y.

Now, we consider the first case where both x, y are even.

Suppose $x = 2^{\alpha}s$ and $y = 2^{\beta}r$, where (2,s) = (2,r) = 1, α , $\beta \ge 1$ and $r, s \in \mathbb{N}$. By substituting these values into (2), we obtain,

$$2^{3\beta}r^3 - 2^{2\alpha}s^2 = 2^6.7^3 \tag{3}$$

From (3), we consider six possibilities for the case α and β as in the table below:

Table 1: Possible cases for α , β when α , $\beta > 0$

(1)	$\alpha > \beta$	$\beta = 1$
(2)	$\alpha > \beta$	$\beta > 1$
(3)	$\beta > \alpha$	$1<\beta<4$
(4)	$\beta > \alpha$	$\beta = 4$
(5)	$\beta > \alpha$	$\beta = 5$
(6)	$\beta>\alpha,\alpha\geq 1$	$\beta > 5$
(7)	$\beta = \alpha$	$\alpha, \beta > 0$

Case (1): Consider $\beta > \alpha$. Suppose $\beta = 1$. From equation (3), it becomes,

$$2^3r^3 - 2^{2\alpha}s^2 = 2^6 \cdot 7^3$$

By simplifying the above equation, we have

$$r^3 - 2^{2\alpha - 3}s^2 = 2^3 \cdot 7^3$$

It is contradiction since (2, r) = (2, s) = 1 and LHS is odd while RHS is even.

Case (2). Consider $\alpha > \beta$ for $\beta > 1$ and equation (3) becomes,

$$2^{3\beta-6}(r^3-2^{2\alpha-3\beta}s^2)=7^3$$

The equation above is contradicting since (2; r) = (2; s) = 1 and LHS is even while RHS is odd and also $\beta > 1$.

Case (3). Consider $\beta > \alpha$ for $1 < \beta < 4$ and equation (3) becomes,

$$2^{2\alpha}(2^{3\beta-2\alpha}r^3-s^2)=2^6.7^3.$$

It is contradiction since LHS is odd while RHS is even for all possibilities values of α and β .

Case (4). Consider $\beta > \alpha$. Suppose $\beta = 4$. From equation (3), it becomes,

$$2^{12}r^3 - 2^{2\alpha}s^2 = 2^6.7^3. (4)$$

Since $\beta > \alpha$, the least value of α is 3. By substituting these values into (4), we obtain

$$2^6r^3 - s^2 = 7^3. (5)$$

Since RHS=LHS has factor of 7, therefore equation (5) have a solution in the form of $s = 7w_1$ and $r = 7w_2$. Substitute these value into (5), we have

$$64(7w_2)^3 - (7w_1)^2 = 7^3. (6)$$

From equation (6), then we have equation,

$$(64w_2^3 - 1) = w_1^2. (7)$$

Since RHS is a square then the above equation have a solution if LHS also in the form of a square number. Therefore,

$$7|64w_2^3 - 1...$$

It can be written as

$$64w_2^3 - 1 \equiv 0 \text{ (mod 7)}.$$

That is

$$w_2^3 \equiv 1 \pmod{7}$$
.

Then, factorized the above equation, we obtain

$$(w_2 - 1)(w_2^2 + w_2 + 1) \equiv 0 \pmod{7}.$$
 (8)

By solving the equation above we get w2 = 1 in the least residue modulo 7, then substitute in (7) we have

$$7(63) = w_1^2 .$$

That is, $w_1 = 21$. Thus, we have s = 147 and r = 7. By substituting these value into x and y with $\alpha = 3$ and $\beta = 4$, we obtain

$$x = 1176, y = 112$$

If $w_2^2 + w_2 + 1 \equiv 0 \pmod{7}$, by completing square, it can be written as

$$(\frac{2w_2+1}{2})^2 + \frac{3}{4} \equiv 0 \pmod{7}.$$

Then,

$$(2w_2 + 1)^2 \equiv 4 \pmod{7}$$
.

Let $e = 2w_2 + 1$, then

$$e \equiv 2 \pmod{7}, e \equiv -2 \pmod{7}$$

Suppose $e \equiv 2 \pmod{7}$, it can be written as, then

$$e = 2 + 7t$$

$$t = \frac{2w_2 - 1}{7}, w, t > 0$$

Suppose $w_2 = 1$, then $t = \frac{1}{7}$ and it is contradict since t > 0 and by back substitution, it is contradict. So, there is no solution if $w_2^2 + w_2 + 1 \equiv 0 \pmod{7}$.

Case (5). Now from Table 1, we consider for the case $\beta > \alpha$ and $\beta = 5$. From equation (3), we have

$$2^{2\alpha}(2^{15-2\alpha}r^3 - s^2) = 2^6.7^3.$$

By comparing both sides and since LHS=RHS, we obtain $\alpha = 3$, and

$$2^9r^3 - s^2 = 7^3 (9)$$

That is,

$$s^2 = -7^3 + 2^9 r^3$$

It can be written as,

$$s^2 \equiv 169 \pmod{512}$$
.

By solving the congruence equation above, we have

$$s = 13$$
; $s = 13$.

Suppose s = 13 + 512k, and substitute in (9), we obtain

$$512r^3 = (13 + 512k)^2 + 343.$$

By expanding and simplifying the equation above, we get

$$r^3 = 1 + 2(13k + 256k^2).$$

That is,

$$r^3 \equiv 1 \pmod{2}$$
.

Then.

$$(r-1)(r^2+r+1) \equiv 0 \pmod{2}$$
.

By solving the congruence equation above, we obtain r=1 in the least modulo 2 and by back substitution for all values of α , β , r and s we have

$$x = 104, y = 32.$$

If $r^2 + r + 1 \equiv 0 \pmod{2}$. by completing square, it can be written as

$$(\frac{2r+1}{2})^2 + \frac{3}{4} \equiv 0 \pmod{2}.$$

Then,

$$(2r+1)^2 \equiv 4 \pmod{2}.$$

Let e = 2r + 1, then

$$e \equiv 2 \pmod{2}, e \equiv 5 \pmod{2}$$

Suppose $e \equiv 2 \pmod{2}$, it can be written as, then

$$e = 2 + 2t, t \ge$$

$$t = \frac{2r-1}{2}, r, t \ge 0$$

Suppose r=1, then $t=\frac{1}{2}$ and it is contradict since t>0 and by back substitution, it is contradict. So, there is no solution if $r^2+r+1\equiv 0 \pmod{2}$. Suppose s=499 in the least residue 512. By using the same argument, we will obtain the same answer for x and y.

Case (6). Now from Table 1, we consider for the case $\beta > \alpha$, $\alpha \ge 1$ and $\beta > 5$. From equation (3), we have

$$2^{3\beta}r^3 - 2^2s^2 = 2^6.7^3$$
.

It can be written as,

It is contradiction since LHS is odd while RHS is even for all possibilities values of α and β .

$$2^{3\beta-2}r^3-2^2s^2=2^4.7^3$$
.

Then, contradiction occurs since (2,r)=(2,s)=1 and LHS is odd while RHS is even. **Case (7).** Consider $\alpha=\beta$ for $\alpha,\beta>0$. Then equation (3) becomes

$$2^{2\alpha}(2^{\alpha}r^3 - s^2) = 2^6.7^3.$$

By comparing both sides and since LHS=RHS, the above equation holds if $\alpha=3$ and it can be written as,

$$8r^3 - s^2 = 7^3. (10)$$

Since RHS=LHS and have factor of 7, therefore equation (10) have a solution in the form of $s=7w_1$ and $r=7w_2$. Substitute these values in (10), we have

$$8(7w_2)^3 - (7w_1)^2 = 7^3. (11)$$

From equation (11), and simplify the equation, we obtain

$$7(8w_2^3 - 1) = w_1^2. (12)$$

The above equation have a solution if RHS is in the form of square number. Therefore,

$$7|8w_2^3-1.$$

It can be written as,

$$w_2^3 - 1 \equiv 0 \pmod{7}$$

By factoring the equation above, we obtain

$$(w_2 - 1)(w_2^2 + w_2 + 1) \equiv 0 \pmod{7}.$$
 (13)

We will consider two cases. The first case is when $w_2^3 - 1 \equiv 0 \pmod{7}$. That is $w_2 = 1 + 7t$, $t \in \mathbb{Z}$. Then we choose $w_2 = 1$ in the least residue modulo 7 and substitute in (12), we will have $w_1 = 7$. By back substitution to all value of α , β , r and r, we have

$$x = 392, y = 56.$$

For the second case, by completing the square and simplifying the equation, we get

$$(\frac{2w_2+1}{2})^2 + \frac{3}{4} \equiv 0 \pmod{7}.$$

Then,

$$(2w_2 + 1)^2 \equiv 4 \pmod{7}$$
.

Let $e = 2w_2 + 1$, then

$$e \equiv 2 \pmod{7}, e \equiv 5 \pmod{7}$$

Suppose $e \equiv 2 \pmod{7}$, it can be written as, then

$$e = 2 + 7t$$
, $t > 0$

Then,

$$t = \frac{2w_2 - 1}{7}, w, t > 0$$

The smallest positive value of w2 such that the equation has solution is w2 = 11 and t = 3. Then by back substitution for all values of α , β , r and s, we have

$$x = 15288, y = 616.$$

Suppose $e \equiv 5 \pmod{7}$, by using the same argument, we will obtain the same answer for x and y. Therefore, from all cases the solutions are (a, b, n) = (6,3,3) are (x, y) = (104,32), (392,56), (1176,112) and (15288,616).

Secondly, we consider for the parity of x and y both are odd integers.

Theorem 2 Let be a, b, x, y, n be positive integers, there is no integral solution to Diophantine equation $x^2 + 2^a$. $7^b = y^n$ for (a, b, n) = (6,3,3).

Proof: Based on the hypothesis above, we have

Suppose $x = 2^{\gamma}k + 1$ and $y = 2^{\delta}j + 1$, with (2,k)=1 and (2,j)=1 where $\gamma \ge 1$, $\delta \ge 1$ and $k, j \in \mathbb{N}$.

From (3), we have

$$(2^{\delta}j + 1)^3 - (2^{\gamma}k + 1)^2 = 2^6.7^3. \tag{15}$$

In order to solve (15), we will consider the possibilities of γ and δ . That is, either $\gamma = \delta$, $\gamma > \delta$ or $\gamma < \delta$.

Now, we consider the first case where $\gamma = \delta = 1$. Then substitute these values in (24), we have $(2j+1)^3 - (2k+1)^2 = 2^6 \cdot 7^3$

By expanding and simplifying the equation above, we obtain

$$2^{2}j^{3} + 3 \cdot 2j^{2} + 3j - 2k^{2} - 2k = 2^{5} \cdot 7^{3}$$

Since (2,k), (2,j)=1, then we obtain LHS is odd and RHS is even. Thus, contradiction occurs. That is, LHS \neq RHS. By using the same method and arguments, contradiction also occurs for the case $\gamma > \delta$ and $\gamma < \delta$.

CONCLUSION

From this study, we found that the integral solution for positive integers x and y to the equation

 $x^{2} + 2^{a} \cdot 7^{b} = y^{n}$ are (a, b, n) = (6,3,3) are (x, y) (104, 32), (392,56), (1176,112) and (15288,616).

ACKNOWLEDGMENT

The authors would like to thank Universiti Putra Malaysia for the Putra Grant UPM/700-2/1/GBP/2017/9597900 for supporting this research

REFERENCES

G.Soydan, M. and H.L.Zh. (2012), On the Diophantine equation $x^2 + 2^a \cdot 19^b = y^n$ Indian J. Pure Appl. Math, 43(3):251–261.

I.Naci, Cangul, M. D. I. F. L. and G.Soydan. (2013), On the diophantine equation $x^2 + 2^a \cdot 3^b \cdot 11^c = y^n$. arXiv:1201.0730v1 [math.NT], **63(3):**647–659.

Refik, (2018), A note on the exponential diophantine equation $(a^n - 1)((b^n - 1) = x^2$. arXiv.1801.04717v1.

S. Gou, T. W. and Xi'an. (2012), The diophantine equation $x^2 + 2^a \cdot 17^b = y^n \cdot Czechoslovak$ Mathematical Journal, 62(137):645–654.