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ABSTRACT 

The transmission of Hantavirus infection is important but not much effort has been carried 
out by researchers to study the transmission of Hantavirus infection. The transmission of 
Hantavirus to humans occurs mainly through rodent bites and scratches of infected rodents. 
In this paper, we develop a model that tracks the dynamics of Hantavirus infection in the 
human and rodent populations. The existence of the disease-free and endemic equilibrium 
points for the uniqueness of the solution to the model is confirmed and the basic reproduction 
number is developed. Several numerical simulations were carried out and the results are 
discussed.   

 
Keywords: Hantavirus infection, transmission dynamics, infectious disease, mathematical model, 
vector-host 

 
INTRODUCTION 

 
Hantaviruses are carried by rodents and can be transmitted via aerosolized excreta to  humans 
beings, causing hemorrhagic fever with renal syndrome or Hantavirus pulmonary syndrome. The 
Hantavirus is transmitted horizontally between rodents through intraspecific aggressive behaviors, 
such as biting and scratching. Horizontal transmission occurs between rodents of the same species 
and spread to human. MacInnis et  al. (2006) states that the horizontal transmission means that all 
rodents are born susceptible in that the infection does not propagate to the offspring through birth. 
The virus does not affect the life-span of the rodent and they are just carriers of the infection. 
 

In 1993, an outbreak of HPS occurred in the South West corner of USA resulting in a high 
mortaility rate. A basic mathematical model was developed by Abramson and Kenkre (2002) to 
simulate the spread of the virus and it was found to be able to replicate some features of the 
infection such as the sporadic disappearance of the infection and the existence of refugias for the 
rodents when environmental conditions are not favourable for the rodents (lack of water, food, and 
shelter). Considerable work has been done on modeling of Hantavirus infection, using simple 
mathematical model based on systems of differential equation can be found in  Abramson et al. 
(2003), Giuggioli et al. (2006), Peixoto and Abramson (2006), Abdul Karim et al. (2009), Goh et 
al. (2009), Yusof et al. (2010), Rida et al. (2012), Yusof et al. (2014) and Yusof et al. (2018a, 
2018b).    

 
As a group, rodents are probably the predominant natural reservoirs for pathogens that cause 

disease in humans (Ostfeld and Mills, 2007). The vector-host infectious diseases, such as 
hemorrhagic fever with renal syndrome (or epidemic nephritis and Hantavirus cardiopulmonary 
syndrome, are transmitted by rodents of several species. Rodents may spread Hantavirus to 
humans if: (1)  a rodent with the virus bites someone, the virus may be spread to that person but 
this transmission is rare (2) they touch something that has been contaminated with rodent urine, 
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droppings, or saliva, and then touch their nose or mouth (3) they eat food contaminated by urine, 
droppings, or saliva from an infected rodent. 

 
Vector-host epidemic diseases such as plague (spread by direct contamination) and these 

mentioned in this paper, have great influence on the health of human beings. Human health can be 
affected by rodents either directly or indirectly through disease transmission. The direct 
transmission category typically includes both the deposition of rodents via bites and scratches and 
deposition into urine and feces of rodents that enter other individuals through mucous membranes 
(e.g., inhalation) (Ostfeld and Mills, 2007).  
 

According to Ostfeld and Mills (2007), the mode transmission zoonotic pathogens (i.e. 
Hantavirus) in human and rodent populations are the same as inhalation of viral aerosols or virus-
contaminated dust. The force of transmission are dependent on the population density (or size) of 
the rodent reservoir, the frequency of infection in the rodent reservoir and the density of infected 
individuals in the reservoir population.  

 
Recently there has been some effort in the mathematical modeling of the vector-host epidemic 

transmission dynamics. Li et al. (2011) develop the simple vector-host model for the transmission 
dynamics of the vector-host disease and obtained the basic reproductive number, 0R . They 

estimated the basic reproductive number, 0R , of the vector-host model using the next-generation 

method. Kong et al. (2011) introduce a vector-host epidemic model to investigate the effect of two 
different control strategies (i.e. medical treatment and pesticide) on the transmission of the vector-
host diseases. They discuss the sensitivity of the reproduction number 0R  with respect to the 

model parameters which determines the model robustness to the parameter values. The results 
showed that the basic reproduction number is most sensitive to the biting rate of the mosquitoes 
so personal protection or mosquitos’ reduction would be more effective measures. 

 
In a real ecosystem, rodents share the environment with others species. Rodents can cause 

illness in human population through bites and scratches. Each bites and scratches of rodents that 
occur assist the spread of the infection to humans. The humans can become sick if they are bitten 
and scratched by an infected rodent. Generally, when the population of rodent falls the spread of 
Hantavirus disease will drop in the human population and the increase in rodent population will 
cause the disease to rapidly grow in the human population. The issue aimed to study is the effect 
if the host is a human population. In this paper, the influence of bites and scratches of infected 
rodent on Hantavirus transmission to human population are investigated.  

 
In this paper, a basic vector-host model with direct and vector transmissions is developed and 

analyzed. The host dynamics is described by susceptible-infected-susceptible (SIS) model while 
the vector dynamics is described by susceptible-infected (SI) model (Cai and Li, 2010). According 
to Mackean (1995), a host is an organism  in which pathogens live and reproduce. A vector is the 
transmitter of disease-causing organisms that carry the pathogens from one host to another 
(Jovanović and Krstić, 2012) and it picks up the infection from an organism in the reservoir (Green 
et al., 1990). It is assumed that there is no immunity in the vector and host populations.  

 
The first objective of this study is to develop a mathematical model of the transmission 

dynamics i.e. human infection model and conduct an analysis. The second objective is to conduct 
numerical experiments on the transmission dynamic model that has been developed. 
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MODEL FORMULATION 
 

The basic model of Abramson and Kenkre (2002) proposed a single rodent species without 
movement. Here the total population rodents are divided into two groups, one is susceptible and 
another is infected. The model is: 

 s s
s s i

dr r r
br cr ar r

dt k
      

 i i
i s i

dr r r
cr ar r

dt k
        

where sr  and ir  are the populations of susceptible and infected rodents, respectively, where   

     trtrtr is   is the total population of rodents. We shall refer to this model as the basic AK 

model. 
 

The value br  represents the births of rodents, all of them born vulnerable to the infection at 
a rate proportional to the total population assuming that all rodents contribute equally to the 
reproduction process. The value c  represents the natural death rate. The infection does not cause 

deaths among rodents. The value  
k

rrs  or 
k

rri   represents a limitation process in the rodent 

population growth due to competition for resources shared between sr  and ir .  In the basic model, 

parameter k depends on time and is a “environmental parameter”. Higher values of the 
environmental parameter k represents higher availability of water, food, shelter and other resources 
for the rodents’ use to thrive. According to Campbell et al. (2008), k is the maximum number of 
rodents which can be accommodated within a defined space or habitat and environment that can 
support them over an indefinite period of time. It is determined by the availability of nutrients, 
water, shelter and breeding sites. If k is increased the number of the population tends to increase 
to take advantage. s iar r  represents the number of susceptible rodents that get infected  due to an 

encounter with an infected rodent (e.g. bites from fights) at a rate a (assumed constant). The value 
a is known as the “aggression parameter”. Kenkre et al. (2007) states that rodents do not die, nor 
are impaired, from contraction of the virus. There is no “vertical transmission” of the disease, i.e., 
there are no rodents are born infected from parents who are infected. Further, humans get the virus 
from the rodent but, in turn, have no feedback effects on the rodent in the infection process. 
 

According to Abramson and Kenkre (2002), there is a critical value of the environmental 

parameter  









cba

b
kc  that separates two distinctive regimes. If the environmental parameter 

k is smaller than ck , ir  tends to zero and the infection dies away. If ckk  , the infection thrives 

since there is an increase in resources. As the environmental parameter will vary with time, the 
system will undergo transitions from one state to another.  

 
Our model is developed based on the following vector-host model introduced by Li et al. 

(2011)  

      vc
dt

dv
 1  

     h
dt

dh    

where v and h are the total population of vector and host, respectively,       tvtvtv is   is the 

total population of vector and      ththth is   is the total population of host. The meaning of 

terms of Li et al. (2011) model is as follows: 
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The parameter   represents the host birth,   represents the host death rate,   represents the host 
recovery rate and c is the vector birth and death rate. 
 

The model of vector-host model developed Li et al. (2011) is of the form:  
                  

isvs
s hvcvc

dt

dv
s

                          

iisv
i cvhv

dt

dv
s

   

ishis
s vhhh

dt

dh
s

                           

  iish
i hvh

dt

dh
s

   

 
where sv , iv , sh  and iv  are proportions of susceptible vectors, infected vectors, susceptible hosts 

and infected hosts, respectively and 
sv  and 

sh  are disease transmission terms. Wonham et al. 

(2006) states that the disease-transmission term represents the contact between host individuals in 
directly transmitted diseases, or between host and vector individuals in host-vector diseases.  
 

According to Li et al. (2011), there is a disease basic reproductive number 

  




















c
R ss hv

0  that separates two distinctive regimes where the basic reproductive number,

0R , is defined as the average number of secondary infections that single infectious host can 

generate in a totally susceptible population of hosts and vectors. If 10 R ,  the virus is cleared and 

the disease dies out whereas if 10 R , the virus persists in the host. 0R  is often used as a measure 

of disease strength to estimate the effectiveness of control measures (Li et al., 2011). 
 

In our present paper, the model of Li et al. (2011) is extended by assuming that the host is a 
human population and the rodent population is a vector. Numerical experiments are conducted and 
the results analysed. 

 
HUMAN INFECTION 

 
Our model is developed based on the following basic vector-host model introduced by Li et al. 
(2011)  

 vc
dt

dv
 1  

 h
dt

dh    

where v  and h  are populations of vectors and hosts, respectively. For the population of vector, c 
is the vector birth and death rate, and      tvtvtv is   is the total population of vector. 
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Meanwhile for the host population,   is the host birth,   is the host death rate and 

     ththth is   is the total population of host. 

 
From Li et al. model, the host population is maintained and the host is a human population 

is assumed. Further, the population of the vector is modified by replacing with the Abramson and 
Kenkre model. In this model, the disease spread occurs through contacts between humans and the 
infection between humans and infected rodents are considered. The rodent is identified by the 
variable r, and the human population by h. Therefore, the result is the human infection model as 
follows 

 
k

r
rcb

dt

dr 2

   

  h
dt

dh    

 
where b is birth rate, c is the natural death rate, k is the environmental parameter, r is the population 
of rodents, h is the population of human, the parameter   represents the human birth and   is the 
human death rate.  

 
Suppose an internal classification of the rodent model is used where sr  is the susceptible 

rodent, ir  is the infected rodent and that r is the total rodent population 

 
     trtrtr is  . 

 
while sh  is the susceptible human, ih  is the infected human and that h is the total human 

population 
 

     ththth is   

 
The model of human infection is given by 
 

                

  























      

 

      

isi
i

siis
s

is
i

i
i

is
s

s
s

hhr
dt

dh

hβrhh
dt

dh

har
k

rr
cr

dt

dr

har
k

rr
crbr

dt

dr




            …(1) 

 
where sr  and ir  are the population of susceptible and infected rodents, respectively, sh  and ih  

represent the population of  susceptible and infected humans, respectively at any time t and 
     trtrtr is   is the total population of rodents. The parameter a is the transmission rate from 

rodents to humans,   represents the human birth,   represents the human death rate,   
represents the human recovery rate and    is the transmission rate from humans to rodents. 
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MODEL ANALYSIS 
 
In this analysis we follow the approach of Mukherjee (2012), Cai and Li (2010), Cai et al. (2013), 
Wonham et al. (2006) and Xiao and  Chen (2002). The equilibrium values for susceptible rodent, 
infected rodent, susceptible human and infected human populations, sr , ir , sh  and ih  respectively, 

are obtained by letting 0
dt

drs , 0
dt

dri , 0
dt

dhs  and 0
dt

dhi  in human infection model of the 

model (1). Then, the result are two equilibrium of the model (1), namely  0 *, ,0 *,0 HRE  where 

 cbkR *  and 



*H  and  **, *, *,1 isis hhrrE  where 



 ** is hh  , 

   
 







*

*
*

i

i
s h

h
cbkr  and 

 
 







*

*
*

i

i
i h

h
r . 

 
Next the dynamics of model (1) in the neighborhood of each equilibrium are considered. The 

Jacobian matrix of model (1) at the equilibrium  * *, *, *,1 isis hhrrE  is given by 

 

 

 

 

  






























 **0

**0

*0*2*
1

*
*

*0
*

***2
1

 

**,*,*,




is

is

sisi
i

s
s

iis

isis

rh

rh

arrr
k

car
k

r

ar
k

r
bahrr

k
cb

hhrrJ  

 
When   00 *, ,0 *, HRJ , then the Jacobian matrix of model (1) at 0E  takes the form of   
 

   

  






























 0*0

*0

*0
*

0

*0
**2

 

0 *, ,0 *,




s

s

s
s

s
ss

h

h

ar
k

r
c

ar
k

r
b

k

r
cb

HRJ  

 
The characteristic equation of the disease-free equilibrium 0E of the model (1) is  

           
0112 







 



 cbadk

kbkckbkcbcb . There are 

four eigenvalues of the corresponding characteristic equation to equilibrium 0E . Two of the 

eigenvalues  cb   and   have negative real part.  
 
The other two eigenvalues can be obtained by solving the quadratic equation 
 

  02  BA  
where     kbkcA 1  
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               


 cbadk
kbkcB


 1 . 

 
Both roots of this quadratic equation have negative real parts if and only if its coefficients are 
positive ( 0A  and 0B ). So, all of the eigenvalues of the characteristic equation are negative 

real parts if     1
1

kc
k

b  and 
 

   1



 k
k

ccbad
b




. Therefore, the disease-free 

equilibrium 0E  of the model (1) is locally asymptotically stable. 

 
Theorem 1.1: If  10 R , the disease-free equilibrium point  0 *, ,0 *,0 HRE  of the model (1) is 

globally asymptotically stable. 
 
Proof: We define a Lyapunov function as follows 
 

    









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





 


 i
s

sisis r
R
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*
log**

*
 , , ,


 

                   i
s

s h
H

h
HHh 







 
*

log**  

 
By directly calculating the derivative of W along the solution of model (1), we obtain 
 

      
 

dt

dh

dt

dh

h

H

dt

dr

dt

dr

r

R

aR

b

dt
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s

is

s









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
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
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*
1

*
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
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s
har

k

rr
crbr

r

R

aR

b

dt

dW *
1

*


     

 
   


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H
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1 

*
 

              isi hhr    

 
Using si hhh  , rR *  and hH * , we have 
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




 










 ss

s
s

s
hhar

k

rr
crbr

r

r

ar

b

dt

dW
1


 

  
    






 


 ss

i
i hhar

k

rr
cr

ar

b 
 

             







 siss

s
hβrhhh

h

h 1  

    ssi hhhr    

         
      ss

s

ss
s

s

s hhar
r

rr

ar

b

k

rr
crbr

r

rr

ar

b








 






 






 



 

  
      









 


   hhar

ar

b

k

rr
cr

ar

b
ss

i
i


 



 
 

Modeling the Transmission Dynamics on the Spread of Hantavirus Infection  

 

Menemui Matematik Vol. 41 (2) 2019                                                           103 

 

 

                  ssisi
s

s
ss

s

s hhhrhβr
h

hh
hhh

h

hh








 








 
  

              






 
 

s

s
iss

s h

hh
rhhhh

h
2  

             
     






 






 
hhr

r

b

k

rr
crbr

r

rr

ar

b
ss

s
s

s

s 
 

                
  i

si r
b

arh
c

ar

b

k

r

a

b
























  

                






 
 

s

s
iss

s h

hh
rhhhh

h
2  

               
    






 






 
hh

r

b

k

rr
crbr

r

rr

ar

b
s

s
s

s

s 
 

               
   

  i
si r

b

arh

car

cb

k

r

a

b






























 1

1  

      






 
 

s

s
iss

s h

hh
rhhhh

h
2  

     
    






 






 
hh

r

b

k

rr
crbr

r

rr

ar

b
s

s
s

s

s 
 

                
   

0
1

1 





 










i
i rR

car

cb

k

r

a

b   

 

where  




b

arh
R  is threshold parameter and the quantity RR 0  is called the a disease basic 

reproductive number. If the disease-free equilibrium (DFE) is   







 0 , ,0 ,

μ
cbk


, then the disease 

basic reproductive number is 
 

 γμb

cbkβa







. 

Following the work of Vargas-De-León and Castro Hernández (2008), the proof of Theorem 1.1 
is completed. 

 
Then, a disease basic reproductive number 0R  is calculated as follows: 

The infected equations ir  and ih  can be rewritten in matrix form, separating new infections terms 

 f   from vital dynamics term  v : 
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Calculating the respective linearized matrices at the disease-free equilibrium (DFE) gives: 
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The disease-free equilibrium (DFE) is   




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
 0 , ,0 ,

μ
cbk
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. The result of the matrices is 
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and the next generation matrix is  
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Finally, a disease basic reproductive number 0R   is given as the dominant eigenvalue of 1FV : 
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The coexistent steady value 1E  is studied.  The corresponding characteristic equation of 

the above variational matrix is  
 

  0234  DCBA   
 
where  44332211 aaaaA  , 

  4224443344223322441133112211 aaaaaaaaaaaaaaB  , 
 443322443311442211332211423324422411 aaaaaaaaaaaaaaaaaaC  ,         

42332411433421124332211444332211 aaaaaaaaaaaaaaaaD   

  ***2
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k

r
ba s *
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r
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1

22 is rr
k

ca  , 023 a , *24 sara  , *031 a ,  * 32 sha  , * 33 ira   , 

34a , 041 a ,  * 42 sha  , * 43 ira  ,   44a . 
 

Following the work of Lashari and Zaman (2011), the equilibrium 1E  is locally asymptotically 
stable if all roots of characteristic equation of model (1) have negative real parts. If the parameter
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0A , 0B , 0C , 0D  and DACABC 22   are chosen, then the equilibrium 1E  is 
locally asymptotically stable. 
 
Theorem 1.2: If  10 R , the endemic equilibrium point  **, *, *,1 isis hhrrE  is globally 

asymptotically stable. 
 
Proof: We define a Lyapunov function as follows 
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where 1C , 2C , 3C  and 4C  are positive constants to be chosen later. 

 
Differentiating L with respect to t along the solutions of model (7.1), we get 
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where H.O.T. stands for terms that are higher than quadratic. 
Since the arithmetic mean is greater than or equal to the geometric mean, we have 
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Thus, we have 
 

 0
dt

dL
. 

 
Following the work of Vargas-De-León and Castro Hernández (2008) and Cai and Li (2010), we 
complete the proof of Theorem 1.2. 

 
There are two equilibrium of human infection model, namely  0 *, ,0 *,0 HRE  and

 **, *, *,1 isis hhrrE . In an environment free of the disease, the disease-free equilibrium is 

 0 *, ,0 *,0 HRE  when 10 R . For 10 R , there is an additional equilibrium 

 **, *, *,1 isis hhrrE  which is called endemic equilibrium, where all population survive. It is clear 

that the disease will always persist in the environment. The most sensitive parameter for *ih  and 

*ir  are environmental parameter, k. Change in the value of k is directly related to change in *ih  

and *ir . With higher values for environmental parameter k, the spread of disease in human 

population increases. 
 
 

NUMERICAL EXPERIMENTS AND DISCUSSION OF RESULTS 
 
In this paper, the human infection model is solved using Runge-Kutta fourth order scheme. The 
parameter 1.0a , 0.1b , 5.0c  are chosen as they were used by Abramson and Kenkre 
(2002). Note the ck  will then be 20ck . Meanwhile the model parameters used by Li et al. (2011) 

were used in the experiments, viz. 75.6 , 15.0 , 03.0 , 075.3 . The value 10k , 
which means the environmental condition is adverse, will eliminate the infection. Nevertheless, 
the value of 800k  is used which implies the environmental condition is favourable and thus the 
infection will thrive. The value of environmental condition,  800 k , chosen is very high to ensure 
the competition for resources shared between  susceptible and infected rodents are low when 
higher resources are available. The duration of the simulation results is 20 years. We now study 
what happens the human and rodent populations for different environmental parameter  k  in our 
model of human infection. 
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Figures 1 shows the rodent and human populations for the case of adverse environmental 
conditions  10k  when the human infection model is solved using the same initial values  50  

for sr , ir ,  sh  and ih . 

 
 
 
 
 
 
             
              
                                  

 
   
 
 
 
 
 
 
 
 
Figure 1: Values of sr , ir , sh  and ih  for human infection model with initial  values 50sr ,  

50ir , 50sh  and 50ih .   

 
Figure 1 shows that when resources such as water and food is low   ckk  10  and 

  146.00 R , the population of the infected rodents ir  and infected humans ih  will reduce to 

zero regardless of the initial values and both the infected populations phase are unstable. Both 
infected rodents and human populations does not survive, spurring a rapid growth in the 
susceptible human sh  due to the disease-free situation. The population of susceptible human sh  

increases sharply initially and reaches a certain maximum before reducing and stabilizing at a 
steady value of 48. Since the infection does not survive, this reduces the population of susceptible 
rodents significantly before rising slightly and approaching a stable value when the infected rodent 
goes to extinction. Meanwhile, the susceptible rodent sr  will stabilize at a steady value of 5. The 

steady state values of susceptible human sh  is always higher than that the value of susceptible 

rodent sr . Thus, the infection will die away in the ecosystem. If we consider the model (1) with 

parameters  1.0a , 0.1b , 5.0c , 75.6 , 15.0 , 03.0  and 075.3 , the disease-

free equilibrium point 0E  is  0 48, ,0 ,5 . Consequently, the disease-free equilibrium point 0E  of 

the model (1) is globally asymptotically stable, which can be seen in Figure 1. 
 
Figures 2 shows the rodent and human populations for the case of favourable environmental 
conditions  800k  when human infection model is solved using the same initial values  50  

for sr , ir , sh  and ih . 
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Figure 2: Values of sr , ir , sh  and ih  for human infection model with initial  values 50sr ,  

50ir , 50sh  and 50ih .    

  
The graph of susceptible rodent sr ,  infected rodent ir , susceptible human sh  and infected 

human ih  over time with 800k   ckk   and   109.40 R  is as given in Figure 2. Now, the 

population of the infected rodent ir  and infected human ih  will gradually increase and approach 

an equilibrium stable value for large value of environmental conditions  800k  and 

  146.00 R . The infected rodent ir  will approach a stable value of 312. Since the infection was 

thriving, this has the affect of reducing the population of susceptible rodents sr  and susceptible 

human sh  drastically and approaches a stable value when the infected numbers starts to stabilize. 

Meanwhile the susceptible rodent sr  decrease sharply initially and reaches a certain minimum 

before showing signs of a very fast increase. This is due to the fact that both infected and 
susceptible rodents breed susceptible rodent. The susceptible rodent sr  will eventually stabilize at 

a steady value of 87. When ir  is very high, the virus can persist between new generations of 

susceptible rodent and human population. Humans could get infection from bites and scratches of 
infected rodent ir  and susceptible rodent sr  could acquire the disease from infected rodent ir  via 

fights. The infected human ih  will eventually stabilize at a steady value of 36. The susceptible 

human sh will gradually disappear regardless of the initial values. The susceptible human sh  will 

approach a steady value of 12. The steady state values of infected rodent ir  is always higher than 

that the value of human and susceptible rodent sr . When the environmental condition   ckk 800  

is very high, Hantavirus can thrive between new generations of susceptible rodents and rodent 
populations breeding infected rodents. Consequences from the bites and scratches of infected 
rodent increased to allow the spread of infection from rodents to humans. These are the reasons 
that leads to infected rodents to increase in the population. In addition, the competition is very low 
between rodent population and the disease will persist in the human population when ckk  and 

10 R . The frequency of fighting decreased when the environment parameter is too high causing 

overcrowded population of rodent. The chronic infection occurs in rodent that do not die and 
infected rodent that do not heal. As a result the population spread infection in humans. This could 
be due to an increased frequency of bites and scratches when the population of infected rodent ir  
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is too high and these infected rodents ir  transmit the disease to the human population.  In case 

ckk  and 10 R , Figure 2 shows that the stability of endemic equilibrium 1E . The system 

converges to the equilibrium  36 12, ,312 ,871 E  where all four species coexist in the ecosystem. 

The endemic equilibrium 1E  of the model (1) is globally asymptotically stable. 

 
Figure 3. Bifurcation diagram of the rodent and human populations as a function of the 
environmental parameter (k). Model parameters are the same as in Figure 1 and Figure 2.  
 

The bifurcation diagram (Figure 3) clearly demonstrates how the human infection model 
behaves with the increasing environmental parameter (k). From the figure, the result of the model 
show the rodents and infected human populations increase linearly while the susceptible human 
will gradually decreases linearly. 

 
CONCLUSION 

 
The focus in this paper has been to study the effect of human infection on the direct transmission 
of the spread of the Hantavirus infection. For such a situation, disease elimination would depend 
on the environmental parameter k of the ecosystem of the model. However, humans can become 
sick if they are bitten and scratched from an infected rodent.  
 

The disease basic reproductive number of the human infection model 
 

 

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
b

cbka
R

 
0  

has been obtained. Then, the result of human infection model showed that the population of 
susceptible rodent sr ,  infected rodent ir , susceptible human sh  and infected human ih  will 
emerge to a stable point after a certain time interval. The infected human population does not 
survive below a critical environmental condition  ckk   and 10 R  and hence the disease does 
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not spread in human population. When the environmental condition is favourable  ckk   and 

10 R , the disease persists in the human population. The result implies that an efficient way to 

halt the spread of rodent epidemic is by taking steps to reduce the environmental condition of the 
environment for the rodent population.   

 
 The stability of the model (1) is analysed for the disease-free and the endemic equilibrium 
(i.e. all population coexist). When ckk  , the disease-free equilibrium for the human infection 

model is globally asymptotically stable so that the disease always dies out. This model predicts 
Hantavirus infection persists and the unique endemic equilibrium is globally asymptotically stable 
and the disease never dies out if ckk  . Thus, the population size at the equilibrium state was 

much higher than it would have been in the presence of infection which indicates that the virus 
was able to control the rodent and human populations.  
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