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ABSTRACT 
One of the most common approaches in studying any polynomial is by looking at its factors. Over the 
years, different graph polynomials have been defined for both undirected and directed graphs, including 
the Tutte polynomial, chromatic polynomial, greedoid polynomial and cover polynomial. We consider 
two graph polynomials, one for undirected graphs and one for directed graphs. We first give an overview 
of these two polynomials. We then discuss the factors of these polynomials as well as the information 
that are encapsulated by these factors.  
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INTRODUCTION AND DEFINITIONS 
 
Graph theory is a useful tool in studying the relationships among a set of objects. It is widely used 
in many different disciplines including mathematics, information technology, engineering, 
chemistry and sociology. It can be used to model many aspects in our daily life. 

A graph is a representation of a set of objects where certain pairs of objects are linked. The 
objects are called vertices and the links between the objects are called edges. For undirected graphs 
(graphs), no direction is assigned on the edges. For directed graphs (digraphs), the edges are 
directed from one vertex to another.  

Many graph polynomials have been defined for both undirected and directed graphs. Some 
well known polynomials of undirected graphs include the Tutte polynomial, chromatic polynomial 
and flow polynomial. For directed graphs, the greedoid polynomial, cover polynomial and drop 
polynomial are studied. One important aspect in studying any polynomial is to investigate if the 
polynomial can be factorised. For some graph polynomials, its factors give some insight about the 
structures of the associated graphs. However, the situation is sometimes more complex . We 
discuss two graph polynomials, the Tutte polynomial for undirected graphs and the greedoid 
polynomial for directed graphs. Note that the greedoid polynomial is an analogous of the Tutte 
polynomial. 

The terminology used is mostly standard. We follow the notation and terminology as in Diestel 
(2010). Let 𝐺(𝑉, 𝐸) be a graph where 𝑉 and 𝐸 represent the vertex set and the edge set of 𝐺, 
respectively. The number of vertices and the number of edges of 𝐺 are denoted by |𝑉(𝐺)| and 
|𝐸(𝐺)|, respectively. The number of connected components of 𝐺 is denoted by 𝑘(𝐺). Let 𝑢, 𝑣 ∈
𝑉(𝐺). If there exists an edge between 𝑢 and 𝑣, the edge is incident to both 𝑢 and 𝑣, which is 
written as 𝑢𝑣. In the context of digraphs, 𝑢𝑣 represents an edge that is directed from 𝑢 to 𝑣. Hence, 
𝑢𝑣 ≠ 𝑣𝑢. An edge is a coloop (or bridge) if it is not in any cycle. 

A graph 𝐻 is a subgraph of 𝐺 if 𝐻 is a graph such that 𝑉(𝐻) ⊆ 𝑉(𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺). If 
𝑉(𝐻) = 𝑉(𝐺), then 𝐻 is a spanning subgraph of 𝐺. 
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A cutvertex in a graph 𝐺 is a vertex 𝑣 such that 𝑘(𝐺 − 𝑣) > 𝑘(𝐺). A connected graph 𝐺 is k-
connected if it contains more than 𝑘 ≥ 0 vertices and 𝐺 − 𝑋 is connected for every 𝑋 ⊆ 𝑉(𝐺) 
with |𝑋| < 𝑘. 

A cut is the partition of the vertex set of the graph into two disjoint subsets. A cutset of a cut 
is the set of edges that have one endpoint in each of these subsets. A bond is a minimal non-empty 
cut in a graph. 

A block of a graph is a maximal connected subgraph that contains no cutvertex. A subgraph 
𝐻 of a graph 𝐺 is a block if 𝐻 is either a maximal 2-connected subgraph, a bridge with its two 
endpoints or an isolated vertex. 

Let 𝐺 be a graph. The rank 𝑟(𝑋) of a set of edges 𝑋 ⊆ 𝐸(𝐺) is the number of vertices it meets 
minus the number of connected components of the subgraphs. 

An acyclic graph is a graph that contains no cycles. A forest is an acyclic graph. If a forest is 
connected, then it is a tree. A spanning tree 𝑇 of a graph 𝐺 is a spanning subgraph of 𝐺 that is a 
tree. For every edge 𝑒 ∈ 𝐸(𝐺)\𝐸(𝑇), there is a unique cycle in 𝑇 + 𝑒. The unique cycle is the 
fundamental cycle of 𝑒 with respect to 𝑇. For every edge 𝑓 ∈ 𝐸(𝑇), the forest 𝑇 − 𝑓 has exactly 
two components. The set of edges of 𝐺 between these components is a bond in 𝐺, which is the 
fundamental cutset of 𝑓 with respect to 𝑇. 

Let 𝐷 be a digraph with a distinguished vertex 𝑣. We call 𝑣 the root of 𝐷, and 𝐷 a digraph 
rooted at 𝑣. 

An arborescence (Tutte, 1973) is a directed tree rooted at a vertex 𝑣 such that every edge that 
is incident with 𝑣 is an outgoing edge, and exactly one edge is directed into each of the other 
vertices. 

Let 𝐷 be a rooted digraph. A subdigraph 𝐹 of 𝐷 is feasible if 𝐹 is an arborescence. We call 
the edge set of 𝐹 a feasible set. The rank of a subset 𝑋 ⊆ 𝐸(𝐷) is defined as 𝑟(𝑋) = max {|𝐴|: 𝐴 ⊆
𝑋, 𝐴 is feasible}. 

Let 𝐷, 𝐷ଵ and 𝐷ଶ be rooted digraphs, and 𝐸(𝐷ଵ), 𝐸(𝐷ଶ) ⊆ 𝐸(𝐷). The digraph 𝐷 is the direct 
sum 𝐷 = 𝐷ଵ⨁𝐷ଶ of 𝐷ଵ and 𝐷ଶ, if 𝐸(𝐷ଵ) ∪ 𝐸(𝐷ଶ) = 𝐸(𝐷), 𝐸(𝐷ଵ) ∩ 𝐸(𝐷ଶ) ≠ ∅ and the feasible 
sets of 𝐷 are precisely the unions of the feasible sets of 𝐷ଵ and 𝐷ଶ. 

A matroid (Welsh, 1976; Oxley, 2011) over a finite ground set 𝐸 is an order pair (𝐸, ℐ) where 
ℐ ⊆ 2ா is a collection of subsets of 𝐸 satisfying the following three properties: 

(M1) ∅ ∉ ℐ. 
(M2) If 𝑋 ∈ ℐ and 𝑌 ⊆ 𝑋, then 𝑌 ∈ ℐ. 
(M3) If 𝑋, 𝑌 ∈ ℐ and |𝑋| < |𝑌|, then there is an element 𝑦 ∈ 𝑌 − 𝑋 such that 𝑋 ∪ {𝑦} ∈ ℐ. 
Greedoids (Korte and Lovász, 1981) are a generalisation of matroids. A greedoid over a finite 

set 𝐸 is a pair (𝐸, 𝐹) where 𝐹 ⊆ 2ா  is a non-empty collection of subsets of 𝐸 satisfying: 
(G1) For every non-empty 𝑋 ∈ 𝐹, there is an element 𝑥 ∈ 𝑋 such that 𝑋 − {𝑥} ∈ 𝐹. 
(G2) For 𝑋, 𝑌 ∈ 𝐹 with |𝑋| < |𝑌|, then there is an element 𝑦 ∈ 𝑌 − 𝑋 such that 𝑋 ∪ {𝑦} ∈ 𝐹. 

 
 
 

THE TUTTE POLYNOMIAL 
 

The Tutte polynomial (Tutte, 1954; Tutte, 1967; Tutte, 1974; Welsh, 1993; Welsh, 1999) is a two-
variable polynomial that is defined for every undirected graph. It contains a variety of information 
about other polynomials including the chromatic polynomial, flow polynomial and reliability 
polynomial. The Tutte polynomial also specialises to the partition functions of the Potts model and 
Ising model in statistical physics. 
 The Tutte polynomial of a graph G can be defined using three different ways: by the (i) 
state sum expansion, (ii) deletion-contraction recurrence and (iii) notion of basis activities. 
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i) State sum expansion: 
 𝑇(𝐺; 𝑥, 𝑦) = ෍ (𝑥 − 1)௥(ா)ି௥(௑)

௑⊆ா(ீ)

(𝑦 − 1)|௑|ି௥(௑). (1) 

The Tutte polynomial is closely related to a two-variable polynomial, namely the Whitney-rank 
generating function (Whitney, 1932) 
 𝑅(𝐺; 𝑥, 𝑦) = ෍ 𝑥௥(ா)ି௥(௑)

௑⊆ா(ீ)

𝑦|௑|ି௥(௑). (2) 

By performing coordinate transformation between (1) and (2), it is easy to see that 
 𝑇(𝐺; 𝑥, 𝑦) = 𝑅(𝐺; 𝑥 − 1, 𝑦 − 1).  

 
ii) Deletion-contraction recurrence: 

 

𝑇(𝐺; 𝑥, 𝑦) ൞

1,
𝑥 ∙ 𝑇(𝐺\𝑒; 𝑥, 𝑦),

𝑦 ∙ 𝑇(𝐺\𝑒; 𝑥, 𝑦),

𝑇(𝐺/𝑒; 𝑥, 𝑦) + 𝑇(𝐺\𝑒; 𝑥, 𝑦),

 

if 𝐺 is empty, 
if 𝑒 is a bridge, 
if 𝑒 is a loop, 
otherwise. 

 

Note that the deletion and contraction operations commute. Hence this recurrence generates the 
same polynomial for any given graph, regardless of the edge-ordering. 
 

iii) Notion of basis activities: 
Let 𝑇 be a spanning tree of 𝐺 and < be a total order on 𝐸(𝐺). An edge 𝑒 ∈ 𝐸(𝑇) is internally 
active if 𝑒  has the maximum order by the ordering of < in the fundamental cutset in 𝑇 . The 
internal activity int(𝑇) of 𝑇 is the number of edges that are internally active in 𝑇. An edge 𝑒 ∈
𝐸(𝐺)\𝐸(𝑇)  is externally active if 𝑒  has the maximum order by the ordering of <  in the 
fundamental cycle in 𝑇 . The external activity ext(𝑇)  of 𝑇  is the number of edges that are 
externally active in 𝑇. Suppose 𝒯(𝐺) be the set of spanning trees of 𝐺. Then  
 𝑇(𝐺; 𝑥, 𝑦) = ෍ 𝑥୧୬୲(்)

்⊆𝒯(ீ)

𝑦ୣ୶୲(்). (3) 

Note that (3) is independent of the choice of < (Tutte, 1954). For a graph 𝐺  that has 𝑘 > 1 
components 𝐺ଵ, 𝐺ଶ, ⋯ , 𝐺௞, 
 

𝑇(𝐺; 𝑥, 𝑦) = ෑ 𝑇(𝐺௜ ; 𝑥, 𝑦)

௞

௜ୀଵ

.  

The Tutte polynomial is also a counting function that gives a variety of information about 
a graph, by substituting appropriate values for both variables 𝑥 and 𝑦. For instance, 

 𝑇(𝐺; 1,1) counts the number of spanning trees of a connected graph 𝐺. 
 𝑇(𝐺; 1,2) counts the number of spanning subgraphs of 𝐺. 
 𝑇(𝐺; 2,1) counts the number of forests of 𝐺. 

 
Example: Suppose the Tutte polynomial of the graph 𝐺 that is shown in Figure 1, is determined 
by using the state sum expansion. 

 
Figure 1: A graph 𝐺 with the edge set {𝑎, 𝑏, 𝑐} 
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Since |𝐸(𝐺)| = 3, there exist 8 possible subsets of the edges of 𝐺. By determining the rank of each 
subset and using (1), we can easily see that 
 𝑇(𝐺; 𝑥, 𝑦) = 𝑥ଶ + 𝑥 + 𝑦. (4) 

By substituting 𝑥 = 1 and 𝑦 = 1 into (4), we have 𝑇(𝐺; 1,1) = 3. This implies that 𝐺 contains 3 
spanning trees, which are {𝑎, 𝑏}, {𝑏, 𝑐} and {𝑎. 𝑐}. 
 

Tutte proved one interesting property about the Tutte polynomial in the following theorem 
(Tutte, 1954).  

 
Theorem 1. If a graph 𝐺 consists of two connected graphs 𝐻ଵ and 𝐻ଶ having just one vertex in 
common, then 
 𝑇(𝐺; 𝑥, 𝑦) = 𝑇(𝐻ଵ; 𝑥, 𝑦) ∙ 𝑇(𝐻ଶ; 𝑥, 𝑦). 

 
An analogous result to Theorem 1 holds for matroids. 

Suppose 𝑀, 𝑀ଵ and 𝑀ଶ are matroids. Merino et al. (2001) proved that if 
 𝑇(𝑀; 𝑥, 𝑦) = 𝑇(𝑀ଵ; 𝑥, 𝑦) ∙ 𝑇(𝑀; 𝑥, 𝑦), 

then 𝑀 is the direct sum of 𝑀ଵ and 𝑀ଶ. Their proof verified a conjecture by Brylawski (1972). 
This concludes that the Tutte polynomial of a matroid (respectively, graph) factorises if and only 
if the matroid (respectively, graph) is a direct sum. Hence, factorisation of the Tutte polynomial 
of a graph reflects the structures of the graph. 
 
 
 

THE GREEDOID POLYNOMIAL 
 
Gordon and McMahon (1989) defined a two-variable greedoid polynomial 
 𝑓(𝐺; 𝑡, 𝑧) = ෍ 𝑡௥(ா)ି௥(஺)

஺⊆ா(ீ)

𝑧|஺|ି௥(஺)  

for any greedoid 𝐺. The two-variable greedoid polynomial generalises the one-variable greedoid 
polynomial 𝜆(𝐺; 𝑡)  given by Björner and Ziegler (1992). We call the two-variable greedoid 
polynomial the greedoid polynomial. Important classes of greedoids are those associated with 
rooted graphs (branching greedoids) and rooted digraphs (directed branching greedoids). 
 Gordon and McMahon (1989) investigated greedoid polynomials for branching greedoids 
and directed branching greedoids. They showed that 𝑓(𝐷; 𝑡, 𝑧) can be used to determine if a rooted 
digraph 𝐷  us a rooted arborescence. This result however does not extend to unrooted trees 
(Eisenstat and Gordon, 2006). 

Gordon and McMahon proved that the greedoid polynomials of rooted digraphs have the 
multiplicative direct sum property, that is, if a digraph 𝐷 = 𝐷ଵ ⊕ 𝐷ଶ, then 
 𝑓(𝐷; 𝑡, 𝑧) = 𝑓(𝐷ଵ; 𝑡, 𝑧) ∙ 𝑓(𝐷ଶ; 𝑡, 𝑧).  

Note that there is an analogous result for the c-Tutte invariant of alternating dimaps (see Yow et 
al. (2018a) or Yow (2019)).  
 Let 𝐷 be a rooted digraph. Gordon and McMahon (1989) introduced a recurrence formula 
to compute  𝑓(𝐷; 𝑡, 𝑧), which involves the usual deletion-contraction operations. 
 
Proposition 2. Let 𝐷 be a digraph rooted at a vertex 𝑣, and 𝑒 be an outgoing edge of 𝑣. Then 
 𝑓(𝐷; 𝑡, 𝑧) = 𝑓(𝐷/𝑒; 𝑡, 𝑧) + 𝑡௥(஽)ି௥(஽\௘)𝑓(𝐷\𝑒; 𝑡, 𝑧). 
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A greedoid loop in a rooted graph or a rooted digraph is an edge that is in no feasible set. 
It is either an ordinary (directed) loop, or an edge that belongs to no (directed) path from the root 
node. 

Factorisation of greedoid polynomials behaves differently compared to the Tutte 
polynomial. Gordon and McMahon showed that the greedoid polynomial of a rooted digraph that 
is not necessarily a direct sum has 1 + 𝑧 among its factors under certain conditions (McMahon, 
1993; Gordon and McMahon, 1997). 
 Yow at el. (2018b) addressed more general types of factorisation for greedoid polynomials 
of rooted digraphs, by computing the greedoid polynomials for all rooted digraphs up to order six. 
They studied the factorability of greedoid polynomials of rooted digraphs, particularly those that 
are not divisible by 1 + 𝑧. 
 Two rooted digraphs are GM-equivalent if they both have the same greedoid polynomial. 
If a rooted digraph is a direct sum, then it is separable. Otherwise, it is non-separable. 
 A greedoid polynomial 𝑓(𝐷) if a rooted digraph 𝐷 of order 𝑛 GM-factorises if 𝑓(𝐷) =
𝑓(𝐺) ∙ 𝑓(𝐻) such that 𝐺  and 𝐻 are rooted digraphs of order at most 𝑛 and 𝑓(𝐺), 𝑓(𝐻) ≠ 1. A 
rooted digraph GM-factorises if its greedoid polynomial GM-factorises. 

A GM-factor of a rooted digraph 𝐷 is a polynomial 𝑃 where 𝑃 divides 𝑓(𝐷) and 𝑃 ≠ 1. 
An irreducible GM-factor is basic if the GM-factor is either 1 + 𝑡  or 1 + 𝑧 . Otherwise, the 
irreducible GM-factor is nonbasic. 
 The numbers of various types of rooted digraphs up to order six are given in Table 1 (Yow 
et al., 2018b), where T represents the number of labelled rooted digraphs, T-ISO represents the 
number of rooted digraphs, S represents the number of separable digraphs, NS represents the 
number of non-separable digraphs and NSE represents the number of non-separable digraphs of 
order 𝑛 that are GM-equivalent to some separable digraph of order at most 𝑛. 

 
Table 1: Numbers of various types of rooted digraphs 

𝑛 T T-ISO S NS NSE 
1 1 1 0 1 0 
2 6 4 0 4 0 
3 48 36 6 30 7 
4 872 752 88 664 200 
5 48040 45960 2404 43556 10641 
6 9245664 9133760 150066 8983694 1453437 

 
Yow et al. (2018b) showed that there exist non-separable rooted digraphs that can be GM-
factorised. One such example is shown in Figure 2 where its greedoid polynomial is (1 + 𝑡)(1 +
𝑧). 

 
Figure 2: A non-separable rooted digraph of order 3 

 
They also found non-separable rooted digraphs that GM-factorise and contains no basic factor. 
The rooted digraph 𝐷 in Figure 3 is non-separable and its greedoid polynomial is 

𝑓(𝐷) = (1 + 𝑡 + 𝑡ଶ + 𝑡ଶ𝑧)(2 + 2𝑡 + 𝑡ଶ + 𝑡ଷ + 𝑧 + 𝑡𝑧 + 𝑡ଶ𝑧 + 3𝑡ଷ𝑧 + 3𝑡ଷ𝑧ଶ + 𝑡ଷ𝑧ଷ). 
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Figure 3: A non-separable rooted digraph of order 6 that contains no basic factor 

 
Note also that both nonbasic factors (1 + 𝑡 + 𝑡ଶ + 𝑡ଶ𝑧) and (2 + 2𝑡 + 𝑡ଶ + 𝑡ଷ + 𝑧 + 𝑡𝑧 + 𝑡ଶ𝑧 +
3𝑡ଷ𝑧 + 3𝑡ଷ𝑧ଶ + 𝑡ଷ𝑧ଷ) are greedoid polynomials of rooted digraphs of smaller order. However, 
the rooted digraph 𝐷 is non-separable and hence is not a direct sum of other rooted digraphs. 
 Let 𝑃௠,௩బ

 be a directed path 𝑣଴𝑣ଵ ⋯ 𝑣௠ of size 𝑚 ≥ 0 rooted at 𝑣଴, and 𝐶௠,௩బ
 be a directed 

cycle 𝑣଴𝑣ଵ ⋯ 𝑣௠ିଵ𝑣଴ of size 𝑚 ≥ 1 rooted at 𝑣଴. We usually write 𝑃௠ for 𝑃௠,௩బ
 and 𝐶௠ for 𝐶௠,௩బ

. 
 Yow et al. (2018b) characterised the greedoid polynomials for 𝑃௠  and 𝐶௠ . They then 
proved that there exists an infinite family of non-separable digraphs where their greedoid 
polynomials factorise into at least two nonbasic GM-factors, in the following theorem. 
 
Theorem 3. There exists an infinite family of non-separable digraphs 𝐷 that have at least two 
nonbasic GM-factors, where 

𝑓(𝐷) = 𝑓(𝑃௞ାଵ) ቌ𝑓(𝐶௞ାଵ) + 𝑓(𝑃௞ାଵ) +
𝑡௞ାଶ(1 + 𝑧)௞ାଶ ቀ1 − ൫𝑡(1 + 𝑧)൯

௟
ቁ

1 − 𝑡(1 + 𝑧)
ቍ , 𝑓𝑜𝑟 𝑘, 𝑙 ≥ 1. 

  
Figure 3: The digraph 𝐷 in the proof of Theorem 3 

 
They also gave an infinite family of rooted digraphs where each greedoid polynomial of these 
digraphs is a nonbasic GM-factor of the greedoid polynomial of some non-separable digraph. 
 
Theorem 4. For any digraph 𝐺 that has a directed path of length at least two, there exists a non-
separable digraph 𝐷 where 𝑓(𝐷) has 𝑓(𝐺) as a nonbasic GM-factor. 

  
Figure 4: An illustration of the digraph 𝐷 in Theorem 4 where 𝐺′ is a copy of 𝐺 
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These findings show that factorisation of the greedoid polynomials of rooted digraphs do not 
reflect the structures of the associated rooted digraphs.  There are some other factors that determine 
if the greedoid polynomials of rooted digraph can be factorised, which can be seen from the above 
counterexamples. 

 
 

CONCLUSION 
 
Factorisation of the greedoid polynomial of rooted digraphs is more complex compared to the 
factorisation of  the Tutte polynomial of undirected graphs. In the former, the multiplicative direct 
sum property, the existence of greedoid loops and the directed cycles, are not the only 
characteristics that determine if greedoid polynomials of rooted digraphs can be factorised. In the 
latter, the Tutte polynomial of a graph factorises if and only if the graph is a direct sum. Although 
the greedoid polynomial is an analogous of the Tutte polynomial, more work is needed in order to 
characterise the factorability of greedoid polynomials of rooted digraphs, which may provide some 
other useful information about the associated rooted digraphs. 
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