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ABSTRACT 
This paper will consider a block method for solving delay differential equations (DDEs) using variable step size and 
order. The coupled block method consists of two and three point block method in a single code presented as in the 
simple Adams Moulton type. The code will compute the numerical solutions at two and three new values 
simultaneously at each of the integration step. The approximation of the delay term is estimated using the divided 
difference interpolation. The P-stability and Q-stability regions are also illustrated. The numerical results for the 
coupled block method were superior compared to the existing block method.  It is clearly shown that the code is 
able to produce good results for solving DDEs.  
 
Key words: block method; variable step size and order; delay differential equations.  

 
 

INTRODUCTION 
 
For many years, researchers are interested in the study of numerical treatment of DDEs in order 
to developed efficient numerical methods for solving DDEs. Generally, DDEs involved the 
evolution of the system at a certain time, depends on the state of the system at an earlier time. 
DDEs have been used in many applications in science and engineering.  

In this paper, we considered the development of the code for solving single-delay scalar 
DDEs of the form 

    , , ,  y x f x y y x a x b      

    ,  y x x x a        (1) 

 
where  x  is the initial function,   ,x y x  is called the delay,   xyxx ,  is called the delay 

argument and the value of    xyxxy ,  is the solution of the delay term. The delay is called 
constant delay if it is a constant, it is called time dependent delay if the delay is function of time 
x and the delay is known as state dependent delay if it is a function of time x and  y x . 

Most of the methods used for solving DDEs are commonly adapted from the existing 
numerical methods for solving ODEs. Ismail et al. (2002) and Oberle and Pesch (1981), the 
authors developed different type of Runge-Kutta methods for solving DDEs and approximated 
the delay term using appropriate Hermite interpolation. Numerical methods for solving DDEs 
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using variable step size and order algorithm have been proposed by several researchers such as 
Ishak et al. (2008), Jackiewicz (1987), Radzi et al. (2011) and; Suleiman and Ishak (2010). Ishak 
et al. (2008) proposed a two point predictor-corrector block method in divided difference form 
for solving DDEs. The application of two point block method can simultaneously produces two 
new points within a block. While the numerical methods described in Ismail et al. (2002), 
Jackiewicz (1987), Oberle and Pesch (1981) and; Suleiman and Ishak (2010) will only estimated 
the numerical solutions at one point sequentially. In Ishak et al. (2010), the authors developed 
two point implicit block method for solving DDEs using variable step size strategy. The delay 
term is calculated using six points Lagrange interpolation.  

The objective of this paper is to implement a coupled block method that consists of two 
point and three point block methods for solving (1) using variable step size and order. The 
coupled block method is adapted from the code proposed by San et al. (2011) for solving first 
order ODEs. The propose method is expected to be suitable for solving DDEs.  

 
FORMULATION OF THE METHOD 

 
The coupled block method CB(6,8) proposed by San et al. (2011) consists of two point three step 
block method (2P3S) of order six and three point four step block method (3P4S) of order eight. 
The derivation of those methods can be found in San et al. (2011).  
 
Two point three step block method (2P3S)  

In Figure 1, the solutions of 1ny   and 2ny   with step size h are simultaneously computed in a 

block by considering the previous three steps with step size 2rh and qh.  
 

 
Figure 1: Two point three step block method. 

 
The corrector formula of the two point three step block method were derived using 

Lagrange interpolation polynomial and the interpolation points involved are 
   2233 ,,,,  nnnn fxfx  . The two values of 1ny   and 2ny   can be obtained by integrating over 

the interval  1, nn xx  and  2, nn xx  respectively using MAPLE and the corrector formula in 
terms of r and q can be obtained.  

The choices for the next step size will be limited to half, double or the same as the current 
step size in order to minimize the storage of the formula. For example, in case of successful step 
size, the possible ratios for the next constant step size are (r=1, q=1), when the step size is double 
the possible ratio is (r=0.5, q=0.5) and in case of step size failure, the possible value is (r=2, 
q=2). The corrector formula will be simplified by substituting the values of r and q. The two 
point three step block method is the combination of predictor of order five and corrector of order 
six.  
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Three point four step block method (3P4S)  
 

In Figure 2, the three point four step block method will compute three points simultaneously in a 
block by considering the previous four steps with step size 2rh, qh and ph. The corrector formula 
of the three point four step block method in Figure 2 were derived using Lagrange interpolation 
polynomial and the interpolation points involved are    3344 ,,,,  nnnn fxfx  . 

 

 
Figure 2: Three point four step block method 

 

The three values of 1 2,n ny y   and 3ny   can be obtained by integrating over the interval 

   1 2, , ,n n n nx x x x   and  3,n nx x   respectively and the corrector formula in terms of r, q and p 

can be obtained. The choices of r, q and p will varies as the step size changing to double, half 
or remain constant. The predictor is order seven and the corrector is order eight. 
 
 

IMPLEMENTATION AND NUMERICAL TREATMENTS OF DDES 
 

Implementation of the method 
 

The code will be implemented in PE(CE)s mode. The P and C denote the application of predictor 
and corrector respectively while E denotes the evaluation of function f. The local error for two 
point block method at 2nx   can be estimated as    
 

   1221   kykyT nn                (2) 
 

where  2ny k  is the corrector formula of order k  and  2 1ny k   is a similar corrector 

formula of order 1k  . Similarly, we could estimate the local error for three point block method 
at 3nx  as   
 

   12 332   kykyT nn .                   (3) 
 

Suppose that the local error test T TOL is accepted in the integration step. The next order can 
be choose from one of the methods of order k and 2k  if the estimates step size on the next 
integration is the maximum. Having available 1T  and 2T , the maximum step size are as follows:  
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k

old T

TOL
hh

1

1
1 0.2 










                  (4) 

and  

        
2

1

2
2 0.2














k

old T

TOL
hh                             (5)  

where oldh  is the step size from the previous block. The order which give the maximum step size 

maxh  in Eqn. (4)-(5) will be the order on the next step. Therefore, the approximation of values y 
can be simultaneously computed using two point or three point block methods on the new step. 
In the code, to consider raising the order only can be done after having enough points for the 
higher order method to be used in the next step.  

After a successful step, the new step size is given by  
 

maxhChnew     
if  oldnew hh  2  then oldnew hh  2                 (6) 
else oldnew hh   
 

where 0.8C   is a safety factor. Whenever the step failure occurs, the step size is  
 

oldnew hh  5.0                     (7) 
 

and the order remain unchanged. The strategy propose in the code will allow the block methods 
to varies the step size and subsequently allow to change the order for the next step.  
 
Numerical Treatments of DDEs 
 

Generally, the 2P3S and 3P4S can be implemented to solve (1) as follows.  
For 2P3S,  

 
5

2 2 2
0

, , ,  1,2n m n j n j n j n j
j

y y h f x y z m      


    

 
and for 3P4S, 

 
7

3 3 3
0

, , ,  1, 2,3n m n j n j n j n j
j

y y h f x y z m      


    

where   ,  2,3n i j n i jz y x i      .  

 

Now, we described how the calculation of  y   where   xyxx ,   is being carried 

out. The location of  is sought because the calculation of the delay term depends on this 
location. We should use the interpolation method which has either the same or higher order  
than the integration method in order to preserve the desired order of accuracy. Here the delay 
term is approximated using seven points divided difference interpolation if values of mny   is 
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obtained by 2P3S. Otherwise, nine points divided difference interpolation is applied if values of 

mny   is obtained by 3P4S. In divided difference form, the interpolating polynomial can be 
written as 

       
    
     

0 0 0 1

0 1 0 1 2

0 1 0 1

,

, ,

, , ,

n

n n

P x y x x x y x x

x x x x y x x x

x x x x y x x x

  

   

  



 

               

   (8) 
where 
 

     1 2 0 1 1
0 1

0

, , , , , ,
, , , .n n

n
n

y x x x y x x x
y x x x

x x





 
  

 
 

P-AND Q-STABILITY 
 
In the development of the numerical methods, it is of practical importance to study the stability 
region for those methods. All the stability regions in this paper were obtained using MAPLE. 
The common test equations are 
 

      0,  ,y x y x y x x x        

    0,  ,y x x x x                       (9) 

and  
    0,  ,y x y x x x      

    0,  ,y x x x x                    (10) 

 
where   and   are complex numbers. We consider h to be a fixed step size such that 

nhxxn  0  and mh  , m I  . Let 1H h  and 2H h , we have the following definitions of 

P- and Q-stability regions which are proposed by Al-Mutib (1984) and adopted by Ishak et al. 
(2010).  
 
Definition 1: 
For a fixed step size h and R,  in (9), the region PR  in the 21 HH   plane is called the 

P-stability region if for any   PRHH  21 , the numerical solution of (10) vanishes as nx  . 

 
Definition 2: 
For a fixed step size h and C   in (10), the region QR  in the complex 2H  plane is called the 

Q-stability region if for any 2 QH R , the numerical solution of (10) vanishes as nx  . 

 
In this paper, the stability regions are analyzed for each of the method at step the size ratios. For 
instance, the 2P3S with step size ratio of r and q can be described in the following matrix form  
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


 
2

0
1122

i
iNiNN FBhYAYA               (11) 

where  

1 1
2 1 2 1

2

1 0 0 1
, , , ,

0 1 0 1
n n

N N
n n

y y
A A Y Y

y y
 

 


      
         
       

1 1 3
2 1

2 2

, ,n n n
N N N

n n n

f f f
F F F

f f f
  

 
 

     
       
     

. 

 
For 10 , BB  and 2B , the elements of the matrices are the integration coefficients of 2P3S for 
various step size ratio of r. For example, the elements of 10 , BB  and 2B  for  5.0,5.0  qr  are 
as follows where 
 

2 1

4669 129 9856 14525

12600 12600 12600 12600, ,
348 67 288 125

225 225 225 225

B B

       
    
         






















225

160

225

32
12600

4095

12600

704

0B . 

 
The method in (11) is applied to test equation (9) and (10) respectively in order to obtained the 
P-stability and Q-stabiliy polynomials. The P-stability polynomial of 2P3S is given by  
 

     
2

2 1
2 3 , 1 2 2 1 2 1 1 1 1 0 2

0

, ; det[ ]m m m i
P S m i

i

H H t A H B t A H B t H B t H B t  



        

 
and the Q-stability polynomial of 2P3S is given by 
 

 











 




2

0

2
1

1
2

22,32 det;
i

i
i

mm
mSP tBHtAtAtH . 

 
By solving   0;, 211,32  tHHSP

 and   0;21,32  tHSP , we obtained the following P-stability and 

Q-stability regions of 2P3S for various step size ratio of  qr,  in Figure 3 - 5.  
 

 
Figure 3: P-stability and Q-stability region for 2P3S when  1, 1r q   
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Figure 4: P-stability and Q-stability region for 2P3S when  2, 2r q   

 

 
Figure 5: P-stability and Q-stability region for 2P3S when ( 0.5, 0.5)r q   

 
On the other hand, the P-stability and Q-stability regions of 3P4S can be obtained by 

using the similar technique as illustrated for obtaining the stability regions for 2P3S as above. 
The following Figure 6 - 8 shows the stability regions of 3P4S.  

 

 
Figure 6: P-stability and Q- stability region for 3P4S when  1, 1, 1r q p    

 

 
Figure 7: P-stability and Q-stability region for 2P3S when  2, 2, 2r q p    
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Figure 8: P-stability and Q-stability region for 2P3S when ( 0.5, 0.5, 0.5)r q p   . 

 
The P-stability and Q-stability regions for 2P3S and 3P4S are illustrated in Figure 3-8. The 

shaded area indicates the stability region for each of the block method. It is clearly showed that 
the stability region for each of the proposed method is a closed region.  

 
 

RESULT AND DISCUSSIONS 
 

We test the efficiency of the developed codes at different tolerance (TOL). The code was 
written in C language.  
 
Problem 1:  
 

  ,  0 10
2

y x y x x
       

 
 

   sin ,  0y x x x   

 
Exact Solution:    sin ,  0y x x x  . 

 
Problem 2: 
 

 1 1 ,  10
2 2

y x y x x
        

 
 

 2 2 ,  10
2 2

y x y x x
        

 
 

   1 sin ,  
2

y x x x


  ,    2 cos ,  
2

y x x x


   

 

Exact Solution:    1 sin ,  
2

y x x x


  ,    2 cos ,  
2

y x x x


  . 

 
The notations used in the tables are as follows: 
 
TS    Total steps taken 
FS    Total failure steps 
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MAXE   Magnitude of the maximum error 
AVEERR  Magnitude of the average error 
CB(6,8)  Implementation of coupled block method that consists of 2P2S of order 

six and 3P2S of order eight. 
2PBVS  Implementation of two point block method in variable step size 

technique by Ishak et al. (2010). 
 
 

Table 1:  Comparison between CB(6,8) and 2PBVS for Solving Problem 1 
TOL Method TS FS MAXE AVERR 
10-2 2PBVS 

CB(6,8) 
30 
20 

0 
0 

8.23212(-4) 
2.29552(-4) 

8.77240(-5) 
1.95274(-5) 

10-4 2PBVS 
CB(6,8) 

49 
28 

2 
0 

7.48264(-5) 
3.58248(-7) 

9.91393(-6) 
5.17767(-8) 

10-6 2PBVS 
CB(6,8) 

83 
38 

3 
0 

1.74082(-6) 
2.38519(-9) 

4.25114(-7) 
5.16375(-10) 

10-8 2PBVS 
CB(6,8) 

168 
70 

5 
0 

1.65845(-8) 
8.73552(-10) 

4.80588(-9) 
1.84701(-10) 

10-10 2PBVS 
CB(6,8) 

362 
86 

5 
0 

2.02207(-10) 
8.64521(-10) 

6.87281(-11) 
2.03400(-10) 

 
 

Table 2:  Comparison between CB(6,8) and 2PBVS for Solving Problem 2 
TOL Method TS FS MAXE AVERR 
10-2 2PBVS 

CB(6,8) 
29 
19 

0 
0 

4.94421(-4) 
1.59708(-5) 

4.51542(-5) 
1.35850(-6) 

10-4 2PBVS 
CB(6,8) 

45 
28 

0 
0 

6.64739(-6) 
2.80670(-7) 

8.31195(-7) 
5.72088(-8) 

10-6 2PBVS 
CB(6,8) 

80 
38 

0 
0 

7.37809(-8) 
2.26106(-9) 

1.34880(-8) 
3.60828(-10) 

10-8 2PBVS 
CB(6,8) 

161 
63 

0 
0 

7.98472(-10) 
7.76393(-10) 

1.79650(-10) 
1.59609(-10) 

10-10 2PBVS 
CB(6,8) 

358 
77 

0 
0 

8.25396(-12) 
7.77750(-10) 

2.09949(-12) 
1.61642(-10) 
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Figure 9: Comparison of maximum error and total step for Problem 1 

 
Figure 10: Comparison of maximum error and total step for Problem 2 
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The numerical results in Table 1-2 clearly showed that the total number of steps taken by 
CB(6,8) is less than the total number of steps taken by 2PBVS at all tolerances. It is obvious that 
CB(6,8) has greater reduction in the total number of steps compared to 2PBVS at smaller 
tolerances in all the given problems. This is expected since the variable step size and order 
strategy is employed in CB(6,8) code, where the code is allowed to move using two or three 
points for the next step. We also observed that there is no failure steps in CB(6,8) compared to 
2PBVS in Problem 1.  

It can be observed that at most of the tolerances, the maximum error and average error of 
CB(6,8) are superior than 2PBVS for solving the given problems. This is because of CB(6,8) is a 
combination of block method of order six and eight, while 2PBVS is a block method of order 
five only. Figure 9-10 display the comparison of the maximum errors versus the total steps for 
solving Problem 1-2. 

 
 

CONCLUSION 
 
In this paper, we have presented a variable step size and order code for the numerical solution of 
DDEs using coupled block method. Hence, we can conclude that the proposed code is efficient 
and accurate for solving DDEs.  
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