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ABSTRACT 

We have revisited the paper of Ahmed and Yaacob [Menemui Matematik 35, 21-29, 2013] if indeed a better 
solution is found. In fact, in solving the heat equation by the method of lines (MOLs) with five point central 
difference formula, the assumption used by them at the end points in the case of inhomogeneous boundary 
constraints due to Hicks and Wei [Journal of the Association for Computing Machinery 14, 549-562, 1967] may 
invite unrealistic solutions. The problem may be rectified considering the boundaries as sinks. The system of 
ordinary differential equations (ODEs) having mild stiffness obtained by the mentioned MOLs approach is then 
solved with four sophisticated ODE solvers. The obtained results in coordination with the Dormand-Prince fourth 
and fifth order embedded Runge Kutta (RK45) method are found to be in good agreement with the analytical results 
and found to be more suitable with regard to the central processing unit time, RMSE accuracies, relative error and 
stability. The new approach is found to be better and efficient in solving one-dimensional heat equation subject to 
both homogeneous and inhomogeneous boundary conditions. 
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INTRODUCTION 

According to Tadmor (2012), partial differential equations (PDEs) provide a quantitative 
description for many central models in physical, biological and social sciences. Several methods 
have been developed for solving these PDEs analytically and numerically. Great attention has 
been paid to the later one due to John Von Neumann since 1940. The heat equation which 
governs the temperature distribution in an object at any time is a parabolic type PDE having a 
great importance in mathematical physics. In recent years, several tools such as finite difference 
method, Runge-Kutta method, finite element method, finite volume method, Laplace transform 
method, Fourier transform method, first recursive marching method, method of lines (MOLs) are 
developed to solve PDEs numerically. Now a days, in solving PDEs, the MOLs turns attention of 
researchers for its flexibility on discretization, greater accuracy, less computational cost and 
stability (see Hicks and Wei, 1967; Schiesser and Griffiths, 2009; Bakodah, 2011 and Paul et. al., 
2014). 
 
Typically, the MOLs is a semi-analytic technique, based on the finite difference approximation, 
to convert PDEs with auxiliary conditions into ordinary differential equations (ODEs) of initial 
valued discretizing all the variables leaving one continuous (see Hicks and Wei, 1967). The idea 
of this method was first applied by Erich Rothe in 1930 to parabolic type equations and was 
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further developed by other investigators (see Pregla, 1987; Pregla and Pascher, 1989; Sadiku and 
Obiozor, 2000). 
Traditionally, in the case of the MOLs, 3-point forward, central and backward finite difference 
approximations are used to discretize the spatial variables of the PDEs. To get an efficient result, 
5, 7 and higher point finite difference approximations can be used (see Bakodah, 2011; Ahmad 
and Yaacob, 2013). But when discretizations are made with higher point central difference 
approximations, some assumptions must be imposed at some initial points. As for example, in 
solving heat equation by the MOLs with 5-point central difference approximation, assumption 
must be adopted at the initiation of first and last lines. In Ahmad and Yaacob (2013), the values 
were specified at the initial points of the first and last lines through the assumption proposed in 
Hicks (1967), but that is valid for homogeneous boundary conditions which yield symmetric heat 
distribution. Our main concentration is to develop a more accurate process to specify the values 
at the starting point for the end lines to make the solution much more realistic. With this vision, 
boundaries are treated as sinks, which is possible as they are maintained at the respective 
temperature of the boundaries. That means the points outside the boundaries will be retained at 
the corresponding boundary temperature.  On the other hand, the ODEs obtained through the 5-
point, 7-point or higher point formulae have eigenvalues with negative real parts (see Ahmad and 
Yaacob, 2013) that ensure the stiffness of the ODEs, which makes an importance to select ODE 
solvers. But in real observation of numerical procedure, we find the system of ODEs developed 
from the PDEs through the 5-point central difference approximation is not highly stiff (see 
Ahmad and Yaacob, 2013). This is also valid for 7-point, 9-point or other higher point finite 
difference approximations. This gives one the permission to solve the developed equations by the 
solvers capable of solving both the stiff and non-stiff system. Comparing the obtained results, as 
will see later, RK45 (Dormand-Prince embedded Runge Kutta) method can be found to work 
relatively well. 
 

MATERIALS AND METHODS 

Problem statement 

The one-dimensional heat equation with auxiliary conditions presented in Ahmad and Yaacob 
(2013) can be put to the form: 
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subject to the initial condition 
                                   ,70)0,( Ctxu o                                                                                     (2) 
and with the boundary conditions 
                                   ,50),0( Ctxu o                         (3) 

                                   .20),1( Ctxu o              (4) 
 
The above problem can be stated as - a rod composed of any material of unit length with a 
limiting cross sectional area having the thermal diffusivity   is heated with temperature given 
by Eq. (2) and the boundary conditions is set according to Eqs. (3) and (4) such that the 
temperatures at the end points remain fixed at the specified temperatures. The rod is then raped 
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with an insulator except the boundaries. Here ),( txu is a function of x  and t  that describes the 
distribution of temperature in a space over time in the rod. 
 

Discretization 

In this paper, we have used the 5-point central finite difference approximation to semidiscretize 
Eq. (1). With this view, choosing a mesh size in the given interval   to explain the domain 
through some node points, we introduced an integer 0m such that mjjhx j ...,,3,2,1,0;   

with 
m

h
1

 .  

For the discretization of the equation, we have used the principle of Taylor series with central-

finite difference approximation that returns the spatial derivative 
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 in discretized form as 

Chapra and Canale (1998) 
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for .1...,,2,1  mj  
Now, invoking Eq. (5) in Eq. (1), it is simplified to the form 

         ).(
12

),(),(16),(30),(16),( 4
2

21122 hO
h

txutxutxutxutxu

t

u jjjjj 




                (6) 

Introducing a notational representation, )(),( tutxu jj  , the 5-point central-finite difference 

approximation for Eq. (1) may be formulated as Chapra and Canale (1998) 
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Also the initial and the boundary conditions can be rewritten to the forms Ctu o

j 70)0(  , 

(initial temperature) Ctu o50)(0   (left boundary temperature) and Ctu o
m 20)(   (right boundary 

temperature), respectively. Then Eq. (7) can be treated as a set of first order ODEs of initial 
valued with  t  as independent variable with the set of initial conditions Ctu o

j 70)0(  . 

 
Integration procedure 

The system of ODEs specified by Eq. (7) with the mentioned initial conditions can be solved 
using any sophisticated solvers capable of solving the equations having mildly stiffness. But the 
first and last ODEs of the system given by Eq. (7) involve one point (starting point) each outside 
the boundary. Thus some assumptions must be adopted for those points. With the view to 
rectifying this problem found in Ahmad and Yaacob (2013), boundaries are assumed to be 
sinked in that the temperatures outside the boundaries will be the same like their boundaries, i.e., 
if any temperatures are distributed on the points, sinking the temperatures they will be carried out 
to the boundary temperature. In this study, the obtained ODEs are solved by the classical Runge-
Kutta (RK4) method, third order (stage) arithmetic mean Runge-Kutta (RKAM3) method (see 
Ahmad and Yaacob, 2013), Dormand-Prince fourth and fifth order embedded Runge Kutta 
method (RK45), and Bogacki-Shampine Runge-Kutta second order embedded method with third 
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order error control(RK23) method. The choices of the methods are made due to their capabilities 
of solving IVPs with mildly stiffness. It is of interest to note here that the equations given by Eq. 
(7) are mildly stiff (see Ahmad and Yaacob, 2013). For the validation of our computed results, 
they are compared with the analytic results, later we will see, by the method of separation of 
variables through the software Maple 17.  We used the Matlab solvers as well as our own codes 
for solving the obtained system of ODEs specified by Eq. (7). In both cases the results were 
found to be the same. The same problem stated in problem statement subsection is also solved in 
coordination with homogeneous boundary conditions with boundary temperature Co20 each. All 
the representative results of our calculations are depicted in diagrammatic forms and sometimes 
in tabular form for convenience. 
 

RESULTS AND DISCUSSION 

Figures 1-4 depict our computed results for both inhomogeneous and homogeneous boundaries 
in coordination with the solvers mentioned above (RK4, RKAM3, RK45 and RK23).  The results 
through the assumptions made in Ahmad and Yaacob (2013) are also presented in the figures 
(right panel). In our calculations no instabilities were obtained in both the cases of interest, 
whereas in the inhomogeneous case the results obtained by the assumption adopted in Ahmad 
and Yaacob (2013) are found to be inconsistent, which can be clarified from the figures (Figs. 1-
4). It can be inferred from the figures that the obtained results by the present study in both the 
cases of interest compared well with the exact results over the results obtained through the 
assumption made in Ahmad and Yaacob (2013). 
 
It is to be noted down here that in the depicted results, the programs were run for 99 lines with 

the time step 
25000

3.0
t  and the temperature distribution only for some times are displayed for 

the sake of brevity and the final result ( 3.0t ) and a result prior to it ( 15.0t ) are compared 
with the analytic result obtained from solving the problem with the method of separation of 
variables through the Maple 17 software. For better understanding of the superiority of our 
results, the graphical outputs of relative errors with the mentioned methods are presented in Fig. 
5 as well as the relative errors obtained through the RK45 and RKAM3 methods for equally 
spaced 19 lines out of 99 along with analytic solution at time 3.0t   are presented in Table 1. It 
can be observed from Fig. 5 and Table 1 that the results that came out through our calculation by 
both the methods (RK45 and RKAM3) have less relative error in comparison with the results 
obtained with the assumption made in Ahmad and Yaacob (2013). The table for other solvers is 
omitted due to save space consumption. But they also bear the similar results. It is of interest to 
note here that we used some other sophisticated ODE solvers for solving the problem, but the 
used solvers in the study yielded better solutions. 
 
 To test the performance of our computed results, the root mean square error (RMSE) analysis 
was made in both the homogeneous and inhomogeneous fixed boundaries which are presented in 
Table 2. In both the cases, our results show better performance over the ones obtained through 
the assumptions made in Ahmad and Yaacob (2013). The performance of the approach adopted 
in the present study and the one adopted in Ahmad and Yaacob (2013) were also analyzed with 
reference to the RMSE values for several number of lines in the case of the inhomogeneous 
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boundaries in coordination with the solvers mentioned above. Due to the shake of brevity the 
results through the RK45 method are presented only in Table 3. It is to be noted here that the 
outputs through the use of the other solvers bear about the same meaning. It can be inferred from 
Table 3 that the performance of the approach adopted in the present study increases with the 
increase in number of lines, which is conflicted by the approach adopted in Ahmad and Yaacob 
(2013) and in each case of the considered number of lines, the present study can be found to 
perform well over the approach of the revisited paper. 
 
To test computational efficiency, the results were calculated on the same computer for the same 
number of lines with the same time step using all the assumed methods in the case of 
inhomogeneous boundaries and are presented in Table 4. It is seen from Table 4 that the present 
study needs less computing time. The same result bears for the problem with homogeneous 
boundaries and is not shown for the similar reason mentioned above. 
We also computed our results solving the equation by the MOLs using the 3-point central 
difference approximation in coordination with the used solvers. Due to avoiding the space 
consumption, RMSE values obtained by the RK45 solver are only presented in Table 5.   
Comparison of these RMSE values show that the present study has a better performance  with 
the increase of the number of lines as it is to be expected whereas that of the results using the 3-
point central difference approximation method fluctuate with the increase in  number of lines. 
The problem with inhomogeneous boundaries applying initial temperature distribution to the rod 
through space dependent initial condition )sin(x  was also solved by the solvers of interest. 
Again, due to a similar reason mentioned above, the graphical outputs by only the  solvers, RK45 
and RKAM3 in comparison with the results obtained through the assumption adopted in Ahmad 
and Yaacob (2013) are presented in Fig. 6, whereas all of the remaining  methods bear about the 
same results. The figure clearly shows that the approach adopted in the study is better over the 
one adopted in Ahmad and Yaacob (2013). 
 
We have also examined the performance of all the four solvers in solving our problems with 
regard to the RMSE values. In all the cases RK45 showed better performance [see Tables 2, 4]. It 
is to be noted down here that all of the results presented above are taken considering same lines 
except the two boundary lines as the temperature at them are always retained at the boundary 
temperature. Thus the present study in coordination with the RK45 seems to yield more effective 
solutions in all the regards, namely computational stability, relative error, computational cost and 
efficiency in solving heat equation in both the inhomogeneous and homogeneous boundaries 
with the assumptions proposed in the present study. 
 
The absolute stability regions (ASR) for the methods (RK4, RKAM3, RK23 and RK45) are also 
estimated and presented in Fig. 7 (see Ashino et al. 2000; Butcher, 2016). It is known that ASR 
helps to choose step size for which the method will converge. From Fig. 7, one can make 
understand easily that ASR obtained from RK45 (ode45 in MATLAB suit) is more flexible over 
the mentioned solvers in choosing step size in the case of the present study. With a large step 
size, the method returns a good results and if error is generated due to the use of large step size, it 
will be automatically controlled by comparing higher order method (see Ashino et al., 2000). It is 
also to be mentioned in this juncture that our computed ASR for RK45 agrees well with that 
presented in Ashino et al. (2000). As Ahmad and Yaacob (2013), the obtained system of ODEs 
represented by Eq. 7 is mildly stiff. RK45 embedded scheme can be found to mitigate the 
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stiffness properly. Therefore, the use of the RK45 method may be a good choice for solving the 
system of mentioned ODEs. Table 2 also reflects the same meaning. 
 
We have also conducted the study with higher order finite difference approximations, namely 7-
point and 11-point and the results were found to be consistent with the ones presented in the case 
of the 5-point central difference approximation. In this study we do not use time dependent 
boundary but it may be a future study. 
 

CONCLUSION 
In this paper, we have solved one-dimensional heat equation with a new approach, the MOLs in 
addition with some suitable RK methods, where discretization is made with higher point central 
difference approximation. As a test case the 5-point central difference approximation is used. 
New assumptions are made to remove the boundary constraints arising when discretizing the 
equation by the 5-point central difference approximation, which is valid for other higher point 
central difference approximations. The obtained results in coordination with the RK45 solver are 
found to be in good agreement with the analytical results and found to be more suitable with 
regard to the central processing unit time, RMSE accuracies, relative error and stability.  The 
outcome of the study can be expanded in the study of fluid dynamics, electrodynamics, heat 
conduction system, etc. 
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Table 1: The analytic result and relative errors. 

 
Domain 

 
Analytic 

result 

Relative errors 
Results with the present 
study 

Results by the method 
adopted in Ahmad and 
Yaacob (2013) 

RK45 RKAM3 RK45 RKAM3 
05.0x  56.32660678 0.00092599 0.00048054 0.13129487 0.13150430 
10.0x  59.16830556 0.00084422 0.00002044 0.10095766 0.10155624 
15.0x  61.66119839 0.00070639 0.00034074 0.07628174 0.07675606 
20.0x  63.74137018 0.0006268 0.0005976 0.05583074 0.05676340 
25.0x  65.37326488 0.00047818 0.00076258 0.04054282 0.04108319 
30.0x  66.54101634 0.00043546 0.00086132 0.02806579 0.02915496 
35.0x  66.54101634 0.0003141 0.00092681 0.01986006 0.02041474 
40.0x  67.23532910 0.00033508 0.00099294 0.01306919 0.01433803 
45.0x  67.43895153 0.00027136 0.00108794 0.00973681 0.01047043 
50.0x  67.11416494 0.00037748 0.00122849 0.00678086 0.00845039 
55.0x  66.19552904 0.00039907 0.00141504 0.00679778 0.00802668 
60.0x  64.59042211 0.00061085 0.00162902 0.00671944 0.00907360 
65.0x  62.18870917 0.00074753 0.00183206 0.00960865 0.01160978 
70.0x  58.88118426 0.00109026 0.00196647 0.01267476 0.01583108 
75.0x  54.58440226 0.00138299 0.00195552 0.01941325 0.02217783 
80.0x  49.26750138 0.00190442 0.00170036 0.02781413 0.03147681 
85.0x  42.9751957  0.00244343 0.00106796 0.04224974 0.04525206 
90.0x  35.84092088 0.0032905 0.00014457 0.06328147 0.06645897 
95.0x  28.08555431 0.00440216 0.00231401 0.09963727 0.10146443 
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Table 2: The RMSE values by the RK45 solver for different number of lines in the case of the 
inhomogeneous and homogeneous boundaries 

   Inhomogeneous boundary 
Solver Result by the 

present study 
Result by the method  
adopted in Ahmad and 
Yaacob (2013) 

RK4 0.072082699 2.985070416 
RKAM3 0.072075371 2.985067105 
RK45 0.063602016 2.943050056 
RK23 0.069912257 2.943050056 
Homogeneous boundary 
RK4 0.098542723 1.640816879 
RKAM3 0.098532711 1.640809389 
RK45 0.083905329 1.546338837 
RK23 0.094474273 1.546115966 

 

Table 3: The RMSE values obtained by the RK45 solver for the inhomogeneous boundary 
condition in both cases of interest 

Number of 
lines 

Result by the 
present study 

Result by the 
method  adopted in 
Ahmad and Yaacob 
(2013) 

N=49 0.126551992 2.842503488 
N=99 0.063602016 2.943050056 
N=199 0.031960961 2.993426858 
N=499 0.013592306 3.023711283 
N=799 0.008204899 3.031293953 
N=999 0.007245730 3.033814169 

 

Table 4: Computational costs (in second) for solving the problem with the inhomogeneous 
boundaries obtained by the adopted solvers along with the method adopted in Ahmad and 
Yaacob (2013) 

Solver Result by the 
present study 

Result by the 
method adopted in 
Ahmad and Yaacob 
(2013)    

RK4 172.9319 173.7571 
RKAM3 164.5327 164.9230 
RK45 10.31987 10.52753 
RK23 10.38126 10.54278 
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Table 5: Comparison of the RMSE values in the case of the inhomogeneous problem between 
the results through the 3-point and 5-point formulae using the RK45 solver 

Number of 
lines 

3-point formula 5-point formula 

N=49 0.019992 0.126552 
N=99 0.023333 0.063602 
N=499 0.014744 0.013592 
N=699 0.002316 0.009247 
N=799 0.006751 0.008205 
N=999 0.011508 0.007246 

 
 

 
 
Figure 1: The graphical outputs for the inhomogeneous boundaries with the RK4 and RKAM3 
solvers; (a) representation due to the present study using RK4; (b) representation due to the 
assumption made in Ahmad and Yaacob (2013) using RK4; (c) representation due to the present 
study using RKAM3; (d) representation due to the assumption made in Ahmad and Yaacob 
(2013) using RKAM3 
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Figure 2: The graphical outputs for the inhomogeneous boundaries with the RK45 and RK23 
solvers; (a) representation due to the present study using RK45; (b) representation due to the 
assumption made in Ahmad and Yaacob (2013) using RK45; (c) representation due to the 
present study using RK23; (d) representation due to the assumption made in Ahmad and Yaacob 
(2013) using RK23 

 
 
Figure 3: The graphical outputs for the homogeneous boundaries with the RK4 and RKAM3 
solvers; (a) representation due to the present study using RK4; (b) representation due to the 
assumption made in Ahmad and Yaacob (2013) using RK4; (c) representation due to the present 
study using RKAM3; (d) representation due to the assumption made in Ahmad and Yaacob 
(2013) using RKAM3 
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Figure 4: The graphical outputs for the homogeneous boundaries with the RK4 and RKAM3 
solvers; (a) representation due to the present study using RK45; (b) representation due to the 
assumption made in Ahmad and Yaacob (2013) using RK45; (c) representation due to the 
present study using RK23; (d) representation due to the assumption made in Ahmad and Yaacob 
(2013) using RK23 

 
Figure 5: The graphical outputs of relative errors for the inhomogeneous boundaries for the used 
solvers; (a) due to the present study; (b) representation due to the results through the assumption 
made in Ahmad and Yaacob (2013) 
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Figure 6: The graphical outputs for the inhomogeneous boundaries treating variable initial 
condition with the RK45 and RKAM3 solvers; (a) representation due to the present study using 
the RK45 solver; (b) representation due to the assumption made in Ahmad and Yaacob (2013) 
using the RK45 solver; (c) representation due to present study using the RKAM3 solver; (d) 
representation due to the assumption made in Ahmad and Yaacob (2013) using the RKAM3 
solver 
 

 
Figure 7: The absolute stability region in complex xy-plane of ODE solvers 


