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ABSTRACT 

Interval Single Step (IS1) procedure is an interval iterative procedure for finding real zeros of polynomial 
simultaneously. They have since been extended to Interval Symmetric Single Step (ISS1) and Interval Double 
Symmetric Single Step (IDSS1). In this paper, we propose the inclusion of Newton Correction to the procedures, 
of which we name as Interval Single Step with Newton Correction (IS1-N), Interval Symmetric Single Step with 
Newton Correction (ISS1-N) and Interval Double Symmetric Single Step with Newton Correction (IDSS1-N). 
Convergence analysis was done and the proposed procedures were tested on 120 polynomials. The efficiency of 
the modified methods were compared with existing procedures in terms of number of iterations and largest final 
interval width. The results show that the proposed procedures perform better than the original methods.  
 

Keywords: Interval analysis, simultaneous method, single step, zeros of polynomial, Newton correction, 
performance profile 
 

INTRODUCTION 

Classically, all methods for finding zeros of polynomials only involve finding one root at a 
time and this can lead to increased rounding errors. On the contrary, the simultaneous method 
finds all the zeros of the polynomial at the same time. The advantage of the simultaneous 
method is that it nearly always converges to the zero no matter the value of the initial guess.  
This was verified by Semerdhiev (1994) where he found that for 4000 tested random 
polynomials, only 4 showed unsatisfactory results while the rests successfully converged. The 
first and simplest simultaneous method for finding real and simple zeros is Weierstrass, 
Durand and Kerner method (WDK) (see Weierstrass, 1891 and Weierstrass, 1903). This, 
together with rapid development of digital computers, leads to more modifications in ensuring 
the efficiency of the procedure (see also McNamee, 2007).  

 
In 1959, Moore and Yang introduced interval analysis which is also known as interval 
arithmetic, interval computations or interval mathematics. The main significance of interval 
analysis is that more accurate results are guaranteed and they can be computed with finitely 
precise floating point operations. This idea was then applied on simultaneous method for 
finding real and simple zeros. Examples of early studies involving interval analysis on the 
simultaneous approach are by Gargantini and Henrici (1971) and Petkovic (1982). A more 
detailed literature of early iterative procedures involving interval can be found in McNamee 
(2007). Subsequently, Alefeld and Herzberger (1974) proposed the interval version of 
simultaneous iteration method known as Interval Single Step (IS1). Monsi (2011) then 
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extended the IS1 procedure by introducing an extra step into the IS1 procedure. The procedure 
is known as Interval Symmetric Single Step (ISS1). This is then followed by Rusli et al. (2011) 
who extended ISS1 procedure to Interval Double Symmetric Single Step (IDSS1). 
 
In this paper, we introduce Newton Correction into the IS1, ISS1 and IDSS1 procedures, of 
which we name our modification procedures as Interval Single Step with Newton Correction 
(IS1-N), Interval Symmetric Single Step with Newton Correction (ISS1-N) and Interval 
Double Symmetric Single Step with Newton Correction (IDSS1-N), respectively.  Newton 
Correction is obtained from the part of the method by Schroder (1870). Similar to the WDK 
method, part of the method are used as correction on the method in Anourein (1977). The 
Newton Correction increases the convergence rate as the values of the polynomial and its 

derivative are evaluated at the midpoints, 𝑥௜
(௞)

, 𝑖 = 1,2, … , 𝑛. This gives us the current 
approximations of the zeros. So the procedure with Newton Correction increases the speed of 
convergence and leads to faster convergence to the zeros. This correction is also used in several 
methods such as in Petkovic et al. (2003), Petkovic and Milosevic (2004) and Petkovic and 
Rancic (2006). While they focussed on the disk version, our method is applied on rectangles. 
 
The paper is organized as follows. In Section 2, we provide the preliminaries of our study, 
focusing particularly on the method for estimating the polynomial zeros and interval iterative 
procedures. We present the algorithm of the modification procedures in Section 3. 
Subsequently, Section 4 will consist of a brief discussion on the convergence analysis of the 
procedures. In Section 5, we compare the efficiency of the new procedure with their original 
procedures in term of the number of iterations and largest final interval width by using 
performance profile. Finally, the conclusion of the paper is presented in Section 6. 

 

PRELIMINARIES 

The interval version of estimation of polynomial zeros goes as follow. Let 𝑝: ℝ → ℝ be 
a polynomial of degree 𝑛: 

𝑝(𝑥) = 𝑎௡𝑥௡ + 𝑎௡ିଵ𝑥௡ିଵ + 𝑎௡ିଶ𝑥௡ିଶ + ⋯ + 𝑎ଵ𝑥 + 𝑎଴ = ෍ 𝑎௜𝑥௜

௡

௜ୀ଴

    (1) 

 where 𝑎௜ ∈ ℝ, 𝑖 = 1, … , 𝑛 and 𝑎௡ ≠ 0. Suppose that 𝑝 has 𝑛 distinct zeros where 𝑥௜
∗ ∈ ℝ, 𝑖 =

1, … , 𝑛. Also, note that 𝐼(ℝ) is the set of real intervals and 𝑋௜
(଴)

∈ 𝐼(ℝ), 𝑖 = 1, … , 𝑛 are such 
that 

𝑥 ௜
∗ ∈ 𝑋௜

(଴)
, 𝑖 = 1, … , 𝑛,       (2) 

and the intervals are pairwise disjoint, that is 

𝑋௜
(଴)

∩ 𝑋௝
(଴)

= ∅, 𝑖, 𝑗 = 1, … , 𝑛 and 𝑖 ≠ 𝑗.       (3) 

Assume that 𝑎௡ = 1, so that  
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𝑝(𝑥) = ෑ(𝑥 − 𝑥௜
∗)

௡

௜ୀଵ

    (4) 

and from (4), we define 

𝑥௝
∗ = 𝑥 −

𝑝(𝑥)

∏ ൫𝑥 − 𝑥௝
∗൯௡

௝ୀଵ

.    (5) 

Given the midpoints of the intervals 𝑋௜
(଴)

, 𝑖 = 1, … , 𝑛 are 

𝑥௜
(଴)

= midpointቀ𝑋௜
(଴)

ቁ, 𝑖 = 1, … , 𝑛.  (6) 

Then by (2) and (3), 

𝑥௜
(଴)

≠ 𝑥௝
∗, 𝑖, 𝑗 = 1, … , 𝑛, 𝑗 ≠ 𝑖. 

It follows from (5) that 

𝑥௝
∗ = 𝑥௜

(଴)
−

𝑝ቀ𝑥௜
(଴)

ቁ

∏ ቀ𝑥௜
(଴)

− 𝑥௝
∗ቁ௡

௝ୀଵ

, 𝑖 = 1, … , 𝑛.       (7) 

Furthermore, by (3) and (6) with 𝑥௜
(଴)

∉ 𝑋௝
(଴)

, 𝑖, 𝑗 = 1, … , 𝑛, 𝑗 ≠ 𝑖, we have 

ෑቀ𝑥௜
(଴)

− 𝑋௝
(଴)

ቁ

௡

௝ୀଵ

≠ 0, 𝑖 = 1, … , 𝑛. 

So, by (2) and (7) with the inclusion monotonicity of real interval, it follows that 

𝑥௜
∗ ∈ 𝑋௜

(ଵ)
= ቐ𝑥௜

(଴)
−

𝑝ቀ𝑥௜
(଴)

ቁ

∏ ቀ𝑥௜
(଴)

− 𝑋௝
(଴)

ቁ௡
௝ୀ௜

ቑ ∩ 𝑋௜
(଴)

, 𝑖 = 1, … , 𝑛. 

The interval expression on the right is therefore a new interval 𝑋௜
(ଵ) for which 

𝑥௜
∗ ∈ 𝑋௜

(ଵ)
⊆ 𝑋௜

(଴) 

holds. This relation gives rise to the following iteration, 

𝑋௜
(௞ାଵ)

= ቐ𝑥௜
(௞)

−
𝑝ቀ𝑥௜

(௞)
ቁ

∏ ቀ𝑥௜
(௞)

− 𝑋௝
(௞)

ቁ௡
௝ୀ௜

ቑ ∩ 𝑋௜
(௞)

, 𝑖 = 1, … , 𝑛, 𝑘 ≥ 0.  

This is Total Step (TS) procedure in terms of interval (see Alefeld and Herzberger, 1974 and 
Alefeld and Herzberger, 1983). Then they introduced IS1 (Alefeld and Herzberger, 1974b) 
procedure by introducing a new expression in the denominator of TS procedure as follows: 

𝑋௜
(௞,ଵ)

= ቐ𝑥௜
(௞)

−
𝑝ቀ𝑥௜

(௞)
ቁ

∏ ቀ𝑥௜
(௞)

− 𝑋௝
(௞,ଵ)

ቁ ∏ ቀ𝑥௜
(௞)

− 𝑋௝
(௞)

ቁ௡
௝ୀ௜ାଵ

௜ିଵ
௝ୀଵ

ቑ ∩ 𝑋௜
(௞)

,     

for 𝑖 = 1, … , 𝑛, 𝑘 ≥ 0. Its algorithm goes as follow: 
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Step 1: Given initial intervals 𝑋ଵ
(଴)

, 𝑋ଶ
(଴)

, … , 𝑋௡
(଴) and 𝑋௜

(଴)
∩ 𝑋௝

(଴)
= ∅, 𝑖 ≠ 𝑗.  

Step 2: For  𝑘 ≥ 0,   let 𝑥௜
(௞)

= midpointቀ𝑋௜
(௞)

ቁ, 𝑖 = 1, 2, … , 𝑛.  

 

Step 3: 

For 𝑖 = 1,2, … , 𝑛, evaluate 

𝑋௜
(௞,ଵ)

= ቐ𝑥௜
(௞)

−
𝑝ቀ𝑥௜

(௞)
ቁ

∏ ቀ𝑥௜
(௞)

− 𝑋௝
(௞,ଵ)

ቁ ∏ ቀ𝑥௜
(௞)

− 𝑋௝
(௞)

ቁ௡
௝ୀ௜ାଵ

௜ିଵ
௝ୀଵ

ቑ ∩ 𝑋௜
(௞)

 . 

 

    (8) 

Step 4: Set 𝑋௜
(௞ାଵ)

= 𝑋௜
(௞,ଵ)

, 𝑖 = 1, 2, … , 𝑛.  

Step 5: If the width of the interval is less than the stopping criteria 𝑤൫𝑋௜
௞ାଵ൯ < 𝜀, 

then stop. Else set 𝑘 = 𝑘 + 1 and go to Step 2. 
 

 
The procedure starts with initial intervals with each containing a zero. Step 3 of the algorithm, 
known as forward step, will generate intervals that are smaller than the initial intervals. The 
generated intervals decrease about half as we take the midpoint of the initial intervals in the 
iteration process. The zeros are guaranteed to be in the generated intervals as they intersect 
with the initial intervals, respectively.  The process will repeat until the width of generated 
intervals achieve the stopping criteria. 
 
The Interval Symmetric Single Step procedure (ISS1) is an extension of the IS1 procedure. 
ISS1 procedure has an extra step at each iteration known as the backward step: 
 

𝑋௜
(௞,ଶ)

= ቐ𝑥௜
(௞)

−
𝑝 ቀ𝑥௜

(௞)
ቁ

∏ ቀ𝑥௜
(௞)

− 𝑋௝
(௞,ଵ)

ቁ ∏ ቀ𝑥௜
(௞)

− 𝑋௝
(௞,ଶ)

ቁ௡
௝ୀ௜ାଵ

௜ିଵ
௝ୀଵ

 ቑ  ∩  𝑋௜
(௞,ଵ)

, 𝑖 = 𝑛, 𝑛 − 1, … ,1, 
(9) 

 
which is performed after the forward step. ISS1 procedure is more efficient when compared to 
IS1 as ISS1 has one extra step at each iteration to generate smaller intervals.  Meanwhile, the 
Interval Double Symmetric Single Step procedure (IDSS1) has a second forward step: 

𝑋௜
(௞,ଷ)

= ቐ𝑥௜
(௞)

−
𝑝ቀ𝑥௜

(௞)
ቁ

∏ ቀ𝑥௜
(௞)

− 𝑋௝
(௞,ଷ)

ቁ ∏ ቀ𝑥௜
(௞)

− 𝑋௝
(௞,ଶ)

ቁ௡
௝ୀ௜ାଵ

௜ିଵ
௝ୀଵ

 ቑ  ∩  𝑋௜
(௞,ଶ)

,   

 

   (10) 

for 𝑖 = 1, 2, … , 𝑛. The word double in the name means there are two extra steps for the 
procedure, which are the backward step and the second forward step. The steps from each 
procedure (8), (9) and (10), respectively, will generate intervals that are smaller than the initial 
intervals. The zeros are guaranteed to be in the generated intervals as they intersect with the 
initial intervals, respectively. The process repeats until the width of generated intervals achieve 
the stopping criteria. With two extra steps in the IDSS1 procedure, the generated intervals will 
be the smallest among the three procedures as more calculations were made at each iteration. 
This is why IDSS1 is a more effective procedure as compared to IS1 and ISS1. In the next 
section, we show the modification on these three procedures. 
 



  
Abdul Hakim Ghazali, Chuei Yee Chen), Wah June Leong, Siti Mahani Marjugi and Nor Aliza Abd Rahmin 

 
  

Menemui Matematik Vol. 41 (1) 2019                                                     5 
 

ITERATIVE INTERVAL PROCEDURES WITH NEWTON CORRECTION 

The Newton Correction is as follow: 

𝑁ቀ𝑥௜
(௞)

ቁ =

⎩
⎪
⎨

⎪
⎧ 𝑝ቀ𝑥ො௜

(௞)
ቁ

𝑝′ቀ𝑥௜
(௞)

ቁ
 , if 𝑝′ቀ𝑥௜

(௞)
ቁ ≠ 0,

         0       , if 𝑝′ቀ𝑥௜
(௞)

ቁ = 0 .

  (11) 

The Newton Correction increases the convergence rate as the correction already calculate 

values of 𝑝 and 𝑝′ at midpoints, 𝑥௜
(௞)

, 𝑖 = 1,2, … , 𝑛, which are the current approximations to the 
zeros. So the procedure with Newton Correction will increase the speed of convergence to the 
zeros. In our study, we include this Newton Correction into the second part of denominator of 

forward step as in Step 4 of Algorithm 1 below. The 𝑘୲୦ interval sequence 𝑋௜
(௞)

, 𝑖 = 1, 2, … , 𝑛, 
generated by Interval Single Step with Newton Correction (IS1-N) procedure is given in 
Algorithm 1.  
 
Algorithm 1 (IS1-N Procedure) 
Step 1:  Given initial intervals 𝑋ଵ

(଴)
, 𝑋ଶ

(଴)
, … , 𝑋௡

(଴) and 𝑋௜
(଴)

∩ 𝑋௝
(଴)

= ∅, 𝑖 ≠ 𝑗. 

Step 2:  For  𝑘 ≥ 0,   𝑥௜
(௞)

= midpointቀ𝑋௜
(௞)

ቁ, 𝑖 = 1, 2, … , 𝑛. 

Step 3: For 𝑖 = 1,2, … , 𝑛, evaluate 𝑁ቀ𝑥௜
(௞)

ቁ. 

Step 4: For 𝑖 = 1,2, … , 𝑛, evaluate 
 

𝑋௜
(௞,ଵ)

= ൞𝑥௜
(௞)

−
𝑝 ቀ𝑥௜

(௞)
ቁ

∏ ቀ𝑥௜
(௞)

− 𝑋௝
(௞,ଵ)

ቁ ∏ ൬𝑥௜
(௞)

− 𝑋௝
(௞)

+ 𝑁 ቀ𝑥௜
(௞)

ቁ൰௡
௝ୀ௜ାଵ

௜ିଵ
௝ୀଵ

ൢ ∩ 𝑋௜
(௞)

.  (12) 

Step 5:  Set 𝑋௜
(௞ାଵ)

= 𝑋௜
(௞,ଵ)

, 𝑖 = 1, 2, … , 𝑛. 
Step 6:  If 𝑤(𝑋௜

௞ାଵ) < 𝜀, then stop. Else set 𝑘 = 𝑘 + 1 and go to Step 2. 
 
The Interval Symmetric Single Step with Newton Correction (ISS1-N) procedure is an 
extension from the IS1-N procedure by applying the concept of the ISS1 procedure. This 
backward step generates smaller intervals as the calculation of each iteration is made twice. 

This leads to faster convergence. The 𝑘௧௛ interval sequence 𝑋௜
(௞)

, 𝑖 = 1, 2, … , 𝑛, generated by 
ISS1-N procedure is in Algorithm 2. 
 

Algorithm 2 (ISS1-N Procedure) 
Step 1:  Given initial intervals 𝑋ଵ

(଴)
, 𝑋ଶ

(଴)
, … , 𝑋௡

(଴) and 𝑋௜
(଴)

∩ 𝑋௝
(଴)

= ∅, 𝑖 ≠ 𝑗. 

Step 2:  For  𝑘 ≥ 0,   𝑥௜
(௞)

= midpointቀ𝑋௜
(௞)

ቁ, 𝑖 = 1, 2, … , 𝑛. 

Step 3: For 𝑖 = 1,2, … , 𝑛, evaluate 𝑁ቀ𝑥௜
(௞)

ቁ. 

Step 4: For 𝑖 = 1,2, … , 𝑛, evaluate forward step as in (12). 
Step 5: For 𝑖 = 𝑛, 𝑛 − 1, … ,1, evaluate backward step as in (9). 
Step 6:  Set 𝑋௜

(௞ାଵ)
= 𝑋௜

(௞,ଶ)
, 𝑖 = 1, 2, … , 𝑛. 

Step 7:  If 𝑤(𝑋௜
௞ାଵ) < 𝜀, then stop. Else set 𝑘 = 𝑘 + 1 and go to Step 2. 
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The Interval Double Symmetric Single Step with Newton Correction (IDSS1-N) procedure is 
an extension of ISS1-N with an extra step, second forward step (10) after the backward step. 
With the two extra steps in IDSS1-N procedure, it generates smaller intervals when compared 
to the ISS1-N procedure, hence leading to faster convergence and the procedure yields lesser 

number of iterations 𝑘. The 𝑘୲୦ interval sequence 𝑋௜
(௞)

, 𝑖 = 1, 2, … , 𝑛, generated by IDSS1-N 
procedure is given in Algorithm 3. 
 

Algorithm 3 (IDSS1-N Procedure) 
Step 1:  Given initial intervals 𝑋ଵ

(଴)
, 𝑋ଶ

(଴)
, … , 𝑋௡

(଴) and 𝑋௜
(଴)

∩ 𝑋௝
(଴)

= ∅, 𝑖 ≠ 𝑗. 

Step 2:  For  𝑘 ≥ 0,   𝑥௜
(௞)

= midpointቀ𝑋௜
(௞)

ቁ, 𝑖 = 1, 2, … , 𝑛. 

Step 3: For 𝑖 = 1,2, … , 𝑛, evaluate 𝑁ቀ𝑥௜
(௞)

ቁ. 

Step 4: For 𝑖 = 1,2, … , 𝑛, evaluate forward step as in (12). 
Step 5: For 𝑖 = 𝑛, 𝑛 − 1, … ,1, evaluate backward step as in (9). 
Step 6: For 𝑖 = 1, … , 𝑛, evaluate second forward step as in (10). 
Step 7:  Set 𝑋௜

(௞ାଵ)
= 𝑋௜

(௞,ଷ)
, 𝑖 = 1, 2, … , 𝑛. 

Step 8:  If 𝑤(𝑋௜
௞ାଵ) < 𝜀, then stop. Else set 𝑘 = 𝑘 + 1 and go to Step 2. 

 

CONVERGENCE ANALYSIS 

We now give the convergence analysis of the procedures, of which we show that the generated 
intervals always decrease towards the zeros. 
 
Theorem 1 

Let 
𝑝(𝑥) = 𝑎௡𝑥௡ + 𝑎௡ିଵ𝑥௡ିଵ + ⋯ + 𝑎ଵ𝑥 + 𝑎଴, 

be a polynomial with n simple roots, 𝑥௜
∗ and pairwise disjoint initial interval, 𝑋௜

(଴) with 

𝑥௜
∗ ∈ 𝑋௜

(଴)
, 𝑖 = 1, … , 𝑛. Further let 𝑎௡ = 1. Then the sequence {𝑋௜

(௞)
}௞ୀ଴

ஶ  generated from IS1-N, 
ISS1-N and IDSS1-N procedures satisfy  

𝑥௜
∗ ∈ 𝑋௜

(௞)
 , 𝑘 ≥ 0 

and 

𝑋௜
(଴)

⊃ 𝑋௜
(ଵ)

⊃ 𝑋௜
(ଶ)

⊃ ⋯ 

with lim
௞→ஶ

𝑋௜
(௞)

= 𝑥௜
∗, or the sequence comes to rest at [𝑥௜

∗, 𝑥௜
∗] after a finite number of iteration, 

where  [𝑥௜
∗, 𝑥௜

∗] is a zero in term of interval. Define  𝐷௜ = ൣ𝑑௜ inf, 𝑑௜ sup൧. If 0 ∉ 𝐷௜ ⊂ 𝐼(ℝ) is 

such that 𝑝′(𝑥) ∈ 𝐷௜ for all 𝑥 ∈ 𝑋௜
(଴)

, then 

𝑤ቀ𝑋௜
(௞ାଵ)

ቁ ≤
1

2
ቆ1 −

𝑑௜ inf

𝑑௜ sup
ቇ 𝑤ቀ𝑋௜

(௞)
ቁ, 

where 𝑤ቀ𝑋௜
(௞)

ቁ = 𝑤 ቀቂ𝑥௜ inf
(௞)

, 𝑥௜ sup
(௞)

ቃቁ = 𝑥௜ sup
(௞)

− 𝑥௜ inf
(௞)  .  

 
Proof: 
We only show the first part of the theorem while the second part of the theorem follows from 
Alefeld and Herzberger (1983), Monsi (2011) and Rusli et al. (2011). Let 
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𝑆௜
(௞)

= ෑ ቀ𝑥௜
(௞)

− 𝑋௝
(௞ାଵ)

ቁ ෑ ൬𝑥௜
(௞)

− 𝑋௝
(௞)

+  𝑁ቀ𝑥௜
(௞)

ቁ൰
௡

௝ୀ௜ାଵ

௜ିଵ

௝ୀଵ
. 

We estimate 

𝑑ቀ𝑋௜
(௞ାଵ)

ቁ ≤ 𝑑 ቐ𝑥௜
(௞)

−
𝑝ቀ𝑥௜

(௞)
ቁ

𝑆௜
(௞)

ቑ ≤ 𝑑 ቌ
𝑝ቀ𝑥௜

(௞)
ቁ

𝑆௜
(௞)

ቍ = ቚ𝑝ቀ𝑥௜
(௞)

ቁቚ 𝑑 ൭
1

𝑆௜
(௞)

൱. (13) 

Observe that 

ቚ𝑝ቀ𝑥௜
(௞)

ቁቚ = ቚ𝑝ቀ𝑥௜
(௞)

ቁ − 𝑝(𝑥௜
∗) ቚ (14) 

since 𝑝(𝑥௜
∗) = 0. By letting  

𝑝ᇱቀ𝑥௜
(௞)

ቁ =
𝑝ቀ𝑥௜

(௞)
ቁ − 𝑝(𝑥௜

∗) 

𝑥௜
(௞)

− 𝑥௜
∗

, 

we now have 

ቚ𝑝ቀ𝑥௜
(௞)

ቁቚ ≤ ቚቀ𝑥௜
(௞)

− 𝑥௜
∗ቁ𝑝ᇱቀ𝑥௜

(௞)
ቁቚ =  𝑑ቀ𝑋௜

(௞)
ቁ ቚ𝑝ᇱቀ𝑥௜

(௞)
ቁቚ ≤ 𝑑ቀ𝑋௜

(௞)
ቁ ቚ𝑝ᇱቀ𝑋௜

(଴)
ቁቚ, 

and it follows from (13) that 

𝑑ቀ𝑋௜
(௞ାଵ)

ቁ ≤ 𝑑ቀ𝑋௜
(௞)

ቁ ቚ𝑝ᇱቀ𝑋௜
(଴)

ቁቚ 𝑑 ൭
1

𝑆௜
(௞)

൱. 

The rest of the proof follows from Alefeld and Herzberger (1983) that gives us 

𝑑ቀ𝑋௜
(௞ାଵ)

ቁ ≤ 𝑑ቀ𝑋௜
(௞)

ቁ 

and it is valid that 𝑋௜
(௞)

⊆ 𝑋௜
(଴). Therefore,  

𝑋௜
(଴)

⊃ 𝑋௜
(ଵ)

⊃ 𝑋௜
(ଶ)

⊃ ⋯ . 

So, we conclude that lim௞→ஶ 𝑋௜
(௞)

= 𝑥௜
∗. 

 
RESULTS AND DISCUSSION 

The procedures were tested on 120 test problems. We compare the efficiency of the modified 
procedure with its original procedure in terms of number of iterations and largest final interval 
width. All algorithms were run using Matlab with Intlab V5.5 toolbox of Rump (1999) with 
stopping criteria of interval width 𝑤൫𝑋௜

௞ାଵ൯ < 10ିଵହ. The computational results are presented 
using performance profile (Dolan and More, 2002).  
 
Performance profile is an analytical tool with visualization that is used to interpret the result 
using benchmark experiment. It allows one to evaluate and compare the performance of a set of 
solvers on a given set of test, with respect to a chosen evaluation parameter. The performance 
profile is also able to indicate the most and the least efficient solvers.  
 
Figure 1 shows the profiling graph of the modification procedures and their original procedures 
in terms of number of iteration. From the figure, it is obvious that the modification procedure 
IDSS1-N perform better than its original procedure IDSS1 since IDSS1-N has the highest 
probability of being the optimal solver compared to others. In other words, IDSS1-N procedure 
requires less iterations to converge to zero. However, the procedure ISS1-N shows less 
satisfactory results. Statistically, ISS1-N procedure can solve with the best result for 
about 32%, while for ISS1 about 34%. The difference is intangible.  
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Figure 1: Performance Profile for Comparison in terms of Number of Iteration 

As for IS1 and IS1-N, it is not straightforward to predict which is the better procedure 
since Figure 1 analyses the data from all the procedures. With the data being simulated in the 
same programming, it is difficult to compare the two solvers that have little differences in their 
results (Gould and Scott, 2016). Therefore we need to generate a performance profile for both 
procedures only, as shown in Figure 2. From the figure, it is apparent that IS1-N procedure 
perform better than IS1 procedure. Statistically, the probability that IS1-N can solve the 
polynomial with less number of iteration is about 0.875 and for IS1 about 0.840. 

 

  

Figure 2: Performance Profile for Comparison in terms Number of Iteration for IS1  
and IS1-N 

 

𝜏 

𝑃(𝜏) 

IS1 
IS1-N 
ISS1 
ISS1-N 
IDSS1 
IDSS1-N 

𝑃(𝜏) 

𝜏 
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Figure 3: Performance Profile for Comparison in terms on Largest Final Interval Width 

Next, Figure 3 presents the performance profile for the largest final interval width of the 
procedures. Though IS1-N and ISS1-N may not outperform their original procedures in terms 
of number of iterations, their performance is much better in terms of final interval width. This 
simply means that the width of the final interval after convergence for these two modification 
procedures are smaller as compared to their original procedures, respectively. In other words, 
IS1-N and ISS1-N procedures converges faster than their original procedures, respectively, 
even though the number of iterations are almost the same. However, IDSS1-N procedure 
shows the least satisfying result. The procedure has less probability of solving the zeros of the 
polynomial with the small final interval width. This procedure has higher value of final interval 
width as compared to its original procedure, IDSS1 procedure. However, note that IDSS1-N 
procedure is the most effective method in terms of number of iterations, as one can see from 
Figure 1. In some cases, the number of iteration may be lesser but the final interval widths is 
larger. We give two examples of polynomial that reflect this situation in Table 1 and Table 2. 

 

Table 1:  Interval width in every interval and iteration for polynomial 7* 

𝑘 𝑖 
Interval width in every interval and iteration 

IDSS1 IDSS1-N 

1 

1 0.001724877177355 0.001159999981514 

2 0.002695201047809 0.002261232799590 

3 9.135187853126503e-05 7.392793855998114e-05 

                                                             
* 𝑝(𝑥) = 𝑥ଷ − 3𝑥 + 1 with initial intervals [-2.5,-1.1], [-1,0.9], [1.1,1.9] 

 

𝜏 

𝑃(𝜏) 



Simultaneous Procedures with Newton Correction for Finding Real Zeros of Polynomial  
 

Menemui Matematik Vol. 41 (1) 2019                                                              10 
 

2 

1 1.865174681370263e-14 2.220446049250313e-15 

2 6.106226635438361e-16 2.220446049250313e-16 

3 2.220446049250313e-16 2.220446049250313e-16 

3 

1 2.220446049250313e-16 - 

2 6.106226635438361e-16 - 

3 2.220446049250313e-16 - 

 

Table 1 presents the interval width in every interval, 𝑖 and iteration, 𝑘 for one of the tested 
polynomials. From the table, all interval width for IDSS1-N procedure has already converged 
at iteration 𝑘 = 2. However, interval 𝑖 = 1 for IDSS1 procedure at iteration 𝑘 = 2 has not 
converged yet and still continue to run until it converges at the next iteration. The IDSS1 
procedure then yields a smaller interval width at the next iteration, but IDSS1-N procedure has 
already converged and the calculation has stopped. That is why some of the final interval width 
for IDSS1 procedure can be smaller when compared to the modified procedure. Table 2 also 
shows the same situation happening in another tested polynomial. At 𝑘 = 3, IDSS1-N has 
already converged but IDSS1 has not since interval 𝑖 = 1 still does not satisfy the stopping 
criteria.  The largest final interval width for IDSS1-N is at interval 𝑖 = 1 while for IDSS1 is at 
interval 𝑖 = 7 at the next iteration. If we compare each of the final interval 𝑖 for both 
procedures, we notice that most width of the interval of the IDSS1-N are smaller compared to 
the IDSS1 procedure. 

Table 2:  Interval width in every interval and iteration for polynomial 40† 

𝑘 𝑖 
Interval width in every interval and iteration 

IDSS1 IDSS1-N 

1 

1 1.148940650673406 1.182805209119608 

2 0.002139186578885 0.002138709250000 

3 0.474033673950179 0.478223081911198 

4 0.805774549993387 0.813706397073050 

5 0.832956783535940 0.850388317535850 

6 0.719417907840691 0.740747980803507 

7 1.518209408891533 1.554760048180345 

8 2.075052883444817 2.124631664509566 

2 

1 0.004539471521884 0.004420346507992 

2 2.000983600014550e-05 1.853746986046900e-05 

3 5.575996931592719e-04 4.894479972621380e-04 

4 9.632299688834695e-04 8.929302637096653e-04 

5 6.084534814165821e-04 5.527433974310547e-04 

                                                             
† 𝑝(𝑥) = 𝑥଼ + 26.8562𝑥଻ + 165.507𝑥଺ − 487.737𝑥ହ − 4265.98𝑥ସ + 5980.42𝑥ଷ + 25347.1𝑥ଶ − 38639.3𝑥 
with initial intervals [2.9,4.9], [2.1,2.8], [0.8,2.0], [-1.8,0.7], [-5.8,-1.9], [-8.1,-5.9], [-13.8,-8.7] and [-22,-13.9] 
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6 0.001718927605319 0.001792000071357 

7 3.853130611979339e-04 3.545209526691906e-04 

8 3.327292892585376e-05 2.619950278592853e-05 

3 

1 1.465494392505207e-14 4.884981308350689e-15 

2 4.440892098500626e-16 4.440892098500626e-16 

3 4.440892098500626e-16 2.220446049250313e-16 

4 2.707625519193097e-17 3.078964763269382e-18 

5 8.881784197001252e-16 8.881784197001252e-16 

6 8.881784197001252e-16 8.881784197001252e-16 

7 1.776356839400251e-15 1.776356839400251e-15 

8 1.776356839400251e-15 1.776356839400251e-15 

4 

1 4.440892098500626e-16 - 

2 4.440892098500626e-16 - 

3 4.440892098500626e-16 - 

4 2.707625519193097e-17 - 

5 8.881784197001252e-16 - 

6 8.881784197001252e-16 - 

7 1.776356839400251e-15 - 

8 1.776356839400251e-15 - 

 

CONCLUSION 

We have presented three modified procedures which we name as Interval Single Step with 
Newton Correction (IS1-N), Interval Symmetric Single Step with Newton Correction (ISS1-N) 
and Interval Double Symmetric Single Step with Newton Correction (IDSS1-N). From the 
results, the proposed procedures are more efficient as compared to their original procedures, 
respectively. Though the Newton correction does not bring much effect on the IS1 and ISS1 
procedures in term of decreasing the number of iterations, it increases the efficiency in term of 
final interval width, i.e. IS1-N and ISS1-N converge to the zeros faster than their original 
procedure, respectively. Meanwhile the Newton correction contributes to decreasing the 
number of iterations of IDSS1 method but the largest final interval width for IDSS1-N may not 
be smaller due to its faster convergence, i.e. reaching stopping criteria with lesser number of 
iterations.  
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