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ABSTRACT 
In this paper, we propose preconditioned conjugate gradient method by applying preconditioning 
technique to the search direction. Besides, we also enforce the search direction to satisfy sufficient 
descent and boundedness condition. These two conditions are important to ensure the global 
convergence of the proposed method. Numerical results on a set of unconstrained optimization 
problems showed that the proposed method is efficient for different conjugate gradient methods.   
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INTRODUCTION 
 
We consider the unconstrained optimization problem 
 

      )(min xf  

subject to ,nRx                     (1) 
 
where RRf n : is a continuously differentiable and n  is a dimension of x  that assumed to be 
large. The iterative formula of conjugate gradient method is given by 
 

,1 kkkk dxx                               (2) 

 
where 0k  is step length obtained by some line searches and kd is the search direction 

defined by 
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where )( kk xfg   denotes the gradient vector of )(xf at kx  and k  is a parameter which 

determines different conjugate gradient methods. The well-known conjugate gradient methods 
are the Fletcher-Reeves (FR) , Polak-Ribière-Polyak (PRP) and Dai-Yuan (DY) methods, in 
which k is defined as follows: 
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where 11   kkk ggy  and   denotes the Euclidean norm. 

 
The step length can be obtained by using exact line search 
 

  .0|)(minarg   kkk dxf                                     (7) 

 
But it is expensive or impossible to get the exact line search, so in this paper, the Armijo 

inexact line search are used to find the step length, such as 
 

,)()( k
T
kkkk dgxfdxf                                           (8) 

  
for the constant )1,0( . 
 

To ensure the global convergence of the modified methods, we enforce the search direction 
to satisfy the sufficient descent and boundedness condition. The sufficient descent condition 
which appears to guaranteeing the descent property of conjugate gradient (CG) method has been 
first considered by Gilbert and Nocedal. The sufficient descent condition is defined as 
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T
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It is used to establish the global convergence of different algorithms with inexact line 

searches by Hager and Zhang and Nakarima et al. followed to modify the technique of Hager and 
Zhang by considering a unified formula of parameters. 

 
Another key condition that has been frequently used in the convergence analysis on CG 

method is the boundedness condition on kd : 

 

                                                   .2 kk gCd                                                     (10) 

 
Powell suggested that a projection matrix, P can be used to precondition the CG direction in 

the following way: 
 

                                                ,1 kkkkk dgPd                                                (11) 

 
where 
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However, the projection matrix proposed by Powell does not satisfy the quasi-Newton 
equation. Motivated by the above observation, we propose a preconditioner in a similar form as 
suggested by Powell, but would satisfy the quasi-Newton equation. 

 
The paper is organized as follows. Next section presents the derivation of the proposed 

preconditioner, search direction and the algorithm of the proposed preconditioned conjugate 
gradient method. Then we prove the global convergence of the proposed method and the 
performance of the methods in comparison with different conjugate gradient methods are 
presented in following section. Some conclusions are included in last section. 

 
 

PRECONDITIONED CONJUGATE GRADIENT METHOD 
 

  
In this section, we present the proposed preconditioner which is in the similar form as Powell 
preconditioner. Initially we set our preconditioner P  as: 
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By the quasi-Newton relation, we have 
 

                                                    ,1 kkk syH                                                  (14) 

 
where kkk xxs  1 , kkk ggy  1 , and 1kH  is the inverse of the Hessian matrix. 

 
      To incorporate the quasi-Newton property into P , we let P satisfy the quasi-Newton 
equation, hence it gives namely 
 

                                                       ,kkk syP                                                    (15) 

 
and we have 
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For simplicity, we set 
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and hence we obtain, from (16) 
 

                                                       .kkk ysu                                                 (18) 
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       Substituting (18) into (17) gives 
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       Then by substituting the (19) and (18) into (13), we have 
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 and lastly, 
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which is the memoryless SR1 update. From here, we showed that the proposed preconditioner is 
satisfy the quasi-Newton equation. 
 
       To ensure the satisfaction of sufficient descent condition and boundedness condition, our 
search direction is then defined as follow: 
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The Preconditioned Conjugate Gradient Algorithm 
 
The steps of the preconditioned algorithm are presented as follows: 
 
Step 1: Choose an initial point nRx 0  and set 0gdo  . Given constants )1,0( , let 

0k . 
 

Step 2: Set 410 , check kg , if yes, stop. Else, proceed to step 3. 

 
Step 3: Compute kd  by (22) where 01.01 C  and 1002C  are used. 

 
Step 4: 

Find a step size  ,...2,1,0,max   jj
k  (

2

1
  is chosen) satisfying 
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T
kkkkkk dgxfdxf                                  (23) 

Step 5: Let the next iteration be kkkk dxx 1    . 

 
Step 6: Let 1:  kk  then go to step 2. 
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 CONVERGENCE ANALYSIS 

 
 
In this paper, our focus is on the conjugate gradient method, which we enforce the search 
direction to satisfy the sufficient descent direction and the boundedness condition on search 
direction, kd . Therefore, we shall look at the convergence properties of sufficient descent 

condition and the boundedness condition on direction, kd . The convergence analysis is based on 

the convergence analysis given by Bryd et al. and Bryd and Nocedal. 
 
       In order to present convergence analysis, we make some assumptions about the objective 
function, f and the step size, k  as follows: 

 
Assumption 1 
 
(1) The level set  )()(| 1xfxfRx n   is closed. 
 
(2)  The objective function, f is uniformly convex on   and there exist two positive  
             constants m  and M  such that 
 

                                   ,)(
22
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 where )()( 2 xfxG   for all x  and all nRz  . 
 
       
      We use backtracking line search to find the step size,  . The algorithm of the backtracking 
line search is given as follows: 
 
Algorithm 
 
Step 1: Given the constants )1,0(  and 21 ,  , with 10 21   . 

 
Step 2: Set 1 . 

 
Step 3: Test the step size,   by using 

 
                                   .)()( k

T
kkkk dgxfdxf                                  (25) 

 
Step 4: If (25) is satisfied, set  k  and kkkk dxx 1 . If not, find a new  in 

],[ 21   then go to step 3. 
 

      In our cases, we set 
2

1
21   . From the backtracking line search, we state the following 

lemma which is due to Bryd and Nocedal. 
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Lemma 1 From the assumption 1, there exist positive constants 1c  and 2c  such that, for any 

kx  and kd with 0k
T
k dg , the step size, k  produced by the Algorithm will satisfy either 
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Proof: See Bryd and Nocedal. 
 
      Since our methods will enforce the search direction to satisfy the sufficient descent and the 
boundedness condition, hence the global convergence of the proposed methods can be proven by 
proving that these two conditions can ensure the global convergence. The following definition is 
made by refer to Dussault. 
 
Definition 1 A direction kd  is consider as sufficient descent if kd satisfies the following 

conditions: 
 
(i) Sufficient descent condition 
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T
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and 
 
(ii) Boundedness condition on kd  

 

                                                   kk gcd 4                                                  (29) 

where 3c  and 4c  are positive constants. 

 
Theorem 1 Let 1x  be the initial point which f  satisfies the Assumption 1, where k  is 

chosen from Algorithm 1. If (28) – (29) hold, then   *xxk  . Moreover, there is a constant 

10  r  such that 
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holds for all k  and 
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Proof: 
 
From Lemma 1, if (26) is satisfied, then by (28) - (29): 
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On the other hand, if (27) is satisfied, we have 
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where  32cc  . 

 
      Thus, in either case, we can obtain 
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      Then from Assumption 1, for all 1k , it can be seen that 
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       From (34) and (35), we have 
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where  mr  1 . Since Algorithm 1 ensures that )( kxf  is decreasing, then 10  r . Together 

with (35), 
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NUMERICAL RESULT AND DISCUSSION 
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In this section, the performance of the preconditioned conjugate gradient on a set of test 
functions is presented. The unconstrained test functions used in testing the unconstrained 
optimization are given by Andrei. The test functions we used are listed in below: 
 

Table 1: Test functions 
 

Raydan 1 Raydan  
Extended Beale Diagonal 1 

Diagonal 2 Diagonal 3 
Hager Generalized Tridiagonal 1 

Generalized Tridiagonal 2 Extended Tridiagonal 1 
Diagonal 4 Diagonal 5 

Extended Himmelblau Generalized PSC1 
Extended PSC1 Extended Powell 
Extended BD1 Extended Maratos 

Extended Quadratic Exponential EP1 Extended Tridiagonal 2 
ENGVAL1 EDENSCH 

NONSCOMP QUARTC 
Extended DENSCHNB Extended DENSCHNF 

Generalized Quartic Full Hessian FH3 
Diagonal 7 Diagonal 8 

HIMMELBG HIMMELH 
 

 
       Since we are interested in large-scale of unconstrained optimization problems, so the 
number of variable (n) are set at 1000, 5000 and 10000. The stopping criterion is set as 
 

                                                   ,10 4kg                                                  (37) 

 
which means that the runs were terminated if the norm of the final gradient is below 410 . 
Besides that, the iteration will also force to stop if the number of iterations exceed 1000 or the 
numbers of function evaluations exceed 10000. 
 
        To validate the performance of the proposed method, comparison is made between Powell 
conjugate gradient method with the modified SR1 conjugate gradient method in term of number 
of iterations, number of function evaluations and the CPU time in seconds. For both Powell and 
SR1 method, we test for three different conjugate gradient method, which is FR method, PRP 
method and also DY method. The numerical results are simplified using the performance profile 
by Dolan and Moré. We evaluate the performance with that of 
 
Powell-FR      : Powell preconditioner in FR conjugate gradient method, 
SR1-FR          : SR1 preconditioner in FR conjugate gradient method, 
Powell-PRP    : Powell preconditioner in PRP conjugate gradient method, 
SR1-PRP        : SR1 preconditioner in PRP conjugate gradient method, 
Powell-DY     : Powell preconditioner in DY conjugate gradient method, 
SR1-DY         : SR1 preconditioner in DY conjugate gradient method. 
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Figure 1: Performance profile based on number of iterations. 

 
 

 
Figure 2: Performance profile based on number of function evaluations. 
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Figure 3: Performance profile based on CPU time 

 
. 

         Figure 1-3 shows the performance profile in terms of number of iterations, number of 
function evaluations and CPU time. Based on Figure 1, the proposed SR1 preconditioner show 
better results in three different conjugate gradient methods compare to Powell preconditioner. 
SR1-FR solves 41% of the test functions compared to 33% by Powell-FR. SR1-DY improve 
almost 40% than Powell-DY. From Figure 2, Powell-FR, SR1-FR, Powell-DY and SR1-DY 
solve around 40% to 50% of the test functions. 
 
We can clearly see that the SR1-PRP performs better in terms of number of iterations, number of 
function evaluations and CPU time compared to Powell-PRP. In overall, the performance has 
improved around 30%. 
 
 

CONCLUSION 
 
In this paper, we propose a preconditioner that satisfy the quasi-Newton equation. Besides, we 
also ensure the global convergence of the modified method by forcing the search direction to 
satisfy sufficient descent and boundedness condition. Numerical results showed that the 
proposed methods are promising and effective. 
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