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ABSTRACT 
Fuzzy polynomial equations have been solved by using many computational methods, including the fuzzy 
neural network. However, it is limited to triangular membership function. While, trapezoidal fuzzy 
numbers can handle uncertainty and vagueness, similar to the triangular fuzzy number. Hence, this study 
wishes to introduce a learning algorithm of fuzzy neural network to solve the trapezoidal fuzzy 

polynomial equation in the form of 0
2

21 ... AxAxAxA n
n  . The learning algorithm comprises 

fuzzy coefficients  niAi ,...,1  and fuzzy target output 0A  that based on the use of a fuzzified neural 

network. To illustrate the efficiency of the learning algorithm, two numerical examples of trapezoidal 
fuzzy polynomial equation are presented. As a result, the trapezoidal fuzzy polynomial equation is 
efficiently produces the approximate solution by using a learning algorithm of fuzzy neural network. 
 
Keywords: Fuzzy neural network, Fuzzy polynomial equation, Fuzzy numbers  
 
 

INTRODUCTION 
 
Fuzzy polynomials (FPs) have been used by many researchers for solving many 
problems in economics, engineering, physics, and finance. Since then, various 
approaches for solving FPs problems have been introduced and one of the recent 
approaches is fuzzy neural networks (FNN). The FNN model has been rapidly 
developed not only for solving various types of mathematical equations but also have 
been used in various fields (Tahavvor and Yaghoubi, 2012). In FNN, a cost function 
was defined for every pair of fuzzy output vector and fuzzy target vector (Ishibuchi et 
al., 1995). Therefore for the first time, Buckley and Qu (1991) have applied a structure 
of FNN in solving fuzzy equations. Then, this approach was extended further by the 
same researcher (Buckley and Eslami, 1997; Buckley et al., 2002). Besides that, the 
applications of FNN have been summarized in the fuzzy expert systems, fuzzy 
hierarchical analysis, and fuzzy systems modeling (Hayashi et al., 1993). Years after 
this breakthrough, linear and nonlinear fuzzy equations have been solved numerically 
by Abbasbandy and Asady (2004), Abbasbandy and Alavi (2005), Abbasbandy and 
Ezzati (2006), Asady et al. (2005) and Abbasbandy and Otadi (2006a). After a few 
years, FNN has been used to obtain the approximate solution for dual FPs (Jafarian and 
Jafari, 2012).   

 
In this study, an architecture of FNN equivalent to a fuzzy equation of the form 

0
2

21 ... AxAxAxA n
n   was built, where nAAA ,...,, 10  are FNs. The proposed 

neural network had two layers, in which the input-output relation of each unit was 



Learning Algorithm of Fuzzy Neural Network for Solving Trapezoidal Fuzzy Polynomial Equation 
 

Menemui Matematik Vol. 40 (1) 2018                                                                    2 

 

defined by the extension principle (Zadeh, 1975). The coefficients of the fuzzy equation 
were considered as input signals, while the right-hand FNs were considered as a target 
output. The output from the neural network was numerically compared with the target 
output. Learning algorithm of FNN was employed to find a real root for trapezoidal 
fuzzy polynomial equations (FPE). The trapezoidal fuzzy number that characterized by 
interval defuzzier, left fuzziness and right fuzziness has a great potential for obtaining 
approximate solutions using learning algorithm of FNN. It is anticipated that 
polynomials with trapezoidal fuzzy numbers would yield a new approximate solution 
for FPs. Taking the characteristics of trapezoidal fuzzy numbers and the vagueness 
requirements of FNN learning algorithm, this paper seeks to propose approximate 
solutions for FPE using a learning algorithm where the coefficients are trapezoidal 
fuzzy numbers.  

 
The organization of this study is presented as follows. In Section 2, the necessary 
preliminaries for defining fuzzy numbers is introduced. Then, Section 3 presents the 
learning algorithm of FNN for solving FPE. To illustrate the efficiency of the proposed 
method, two numerical examples are considered in Section 4.  Finally, conclusions 
come in Section 5.  
 
 
 

PRELIMINARIES 
 

Definition 1: (Goetschel and Voxman, 1986) A fuzzy number is defined by fuzzy set 
 1,0: Ru  which satisfies the following: 

I. u  is upper semicontinuous. 
II.   0xu  outside some interval  da, . 

III. There are real numbers dcbacb :, , for which 

i.  xu  is monotonic increasing on  ba,  . 

ii.  xu  is monotonic decreasing on  dc, . 

iii.   cxbxu  ,1  
 
Definition 2:  (Ma et al., 1999; Kaleva, 1987; Jafarian and Nia, 2011) A pair of 

function  uu,  with Rr   is called a FN if satisfying the following conditions.  

I.  ru  is a bounded monotonic increasing left continuous function. 

I.  ru  is a bounded monotonic decreasing left continuous function. 

II.     10,  rruru  
 
Definition 3: (Ma et al., 1999) The trapezoidal FNs ),,,( 00  yxtrap   with two 

defuzzifier, 00 , yx  and left fuzziness 0  and right fuzziness 0  is a fuzzy set 

where the membership function is as  
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The parametric form for trapezoidal FNs can be obtained as below. 

                         xyxxxx traptrap
  00 ,              

Operation on FNN 
 

FNs operations are defined by the extension principle (Zadeh, 1975; 2005) 
      
      xyzyxz

yxzyxz

BANetf

BABA









max

max

)(

 

where A  and B  are FNs,    denotes the membership function of each FNs,   is the 

minimum operator, and f  is a continuous activation function (such as   xxf  ) of 
FNN ‘s output unit .  
 
The above operations on FNs were numerically performed on level sets (  cuts). For 

10  , an  level set of a FNs A  is defined as     RxxxA A  ,
 and 

      AA 1,0
0

   . Since level sets of FNs become closed intervals,  A  is denoted by 

      
ul AAA ,  where  lA  and  uA  are the lower and the upper limits of the 

level set  A , respectively. Based on interval arithmetic, the operations on FNs are 
written for the  level sets as follows (Alefeld and Herzberger, 1983): 
 

                 ]][,][[][,][][

],][][,][][[]][,][[]][,][[][][




ulul

uullulul

NetfNetfNetNetfNetf

BABABBAABA




                        

(1)   

                     
,0]],][,][[[]][,][[][

,0]],][,][[[]][,][[][





kifAkAkAAkAk

kifAkAkAAkAk

luul

ulul





                                           

(2) 
 

According to Nguyen (1978) and Goetschel and Voxman (1986), addition  vu   and 

multiplication by k  for arbitrary  uuu ,  and  vvv ,  are defined as: 

      
      rvrurvu

rvrurvu




 

         
          .0,,

,0,,





kifrukrkvrukrku

kifrukrkvrukrku
 

 
Then, a real solution of the FPE (if exist) in general form can be found by  



Learning Algorithm of Fuzzy Neural Network for Solving Trapezoidal Fuzzy Polynomial Equation 
 

Menemui Matematik Vol. 40 (1) 2018                                                                    4 

 

                                                 011 ... AxfAxfA nn                                                           

(3) 
where 1EAi   and  xf i ( ),...,1 ni    are real functions. 

 
In order to obtain an approximate solution, an architecture of FNN equivalent to 
Equation (3) is built. The network is shown in Figure 1.  
 

 
Figure 1: The proposed neural network 

(Abbasbandy and Otadi, 2006b) 
 

 
Input Output Relation of Each Unit 

 
A two layer FNN with n  input neurons and one output neuron were considered. It is 
clear that the input vector, the target output of the triangular FNs and the connection 
weights are crisp numbers. When a fuzzy input vector  nAAAA ,...,, 21  is presented to 

the FNN, then the input-output relation of each unit can be written as follows. 
 
Input units: 
The input neurons made no change in their inputs, so 

                                                    niAO ii ,...,2,1,                                                               

(4) 
 
Output units: 

                                                          
 






n

i
ii OWNet

NetfY

1

.

)(

                                                             

(5) 
 

where iA  was a trapezoidal FNs and iW  was a crisp connection weight. The relations 

between the input neurons and the output neurons in Equation (4)-(5) are defined by the 
extension principle by Zadeh (1975) as in (Hayashi et al.; Ishibuchi et al., 1993). 
 
 

Calculation of Fuzzy Output 
 

The fuzzy output from a neuron in the second layer is numerically calculated for crisp 
weights and level sets of fuzzy inputs. The input-output relations of the FNN as shown 
in Figure 1 can be written for the  level sets as follows: 
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Input units: 

                                                     niAO ii ,...,1,][][                                                         

(6) 
Output unit: 
Let f  be a one-to-one activation function. Then, 

                                                   

 
 






n

i
ii OWNet

NetfY

1

][][

,][][





                                                          

(7) 
  
 From Equations (6)-(7), 
 level sets of the fuzzy output Y  are calculated from those of the fuzzy inputs and 

crisp weights. From Equations (1)-(2), the above relations are transformed to the 
following form: 

 
Input units: 

niAAOOO uiliuilii ,...,1,]][,][[]][,][[][  

 
Output unit: 

   ],][,][[]][,][[][ 
ulul NetfNetfYYY   

where 
       ]][][,][][[]][,][[][   

  


Mi Ci

liiuii
Mi Ci

uiiliiul OWOWOWOWNetNetNet 

 
and 

      nCMWiCWiM ii ,...,1,0,0   

 
The architecture of solution FNN to Equation (3) are given in Figure 1.  
 
 
 

LEARNING ALGORITHM OF FUZZY NEURAL NETWORK  
 
Let a real quantity 0x  be initialized at random value for a variable x . Then update the 

crisp weights ),...,1( njforW j   so that j
j xW  . Adjust the parameter 0x  and then 

update weights ),...,1( njforW j   using 0x . For crisp parameter 0x  the adjusted rule 

can be written as follows: 

                                                txtxtx 000 1                                                          (8) 

                                     
   10

0
0 



 tx

x

e
tx 



                                                 (9) 
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where t  is the number of adjustments,   is the learning rate and   is the momentum 

term constant. Thus, the problem would be to calculate the derivative 
0x

e


 

 in (9). The 

derivative 
0x

e


 

 can be calculated from the cost function e  using the input-output 

relation of the FNN. The 
0x

e


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 is calculated as follows: 
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Consequently, 
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                                                                                                                                        (11) 

where  0 jWjM  and  0 jWjC .  

 
After adjusting 0x  by (8) and (9), connection weights  njforWi ,...,1  are updated 

with the FNN model as follows. 
                                         njtxftW jj ,...,1,11 0                                              (12) 
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Let us assume that the input-output pair 0; AA  where  nAAA ,...,1  are given as 

training data and also m  values of  -level sets  m ,...,, 21  are used for learning the 

FNN. Then the learning algorithm can be summarized as follows. 
 
Step 1. Choose 0,0   . Then initialized  00x  at random value. 

Step 2. Let 0:t  where t  is the number of iterations of the learning algorithm.  
 
Step 3. Calculate the crisp connection weights. 

                nixtW i
i ,...,1,0   

Step 4. Find  LNet and  UNet . 

Step 5. Calculates  10 tx . 

Step 6. Let 1:  tt . Repeat Steps 3 to 5 until the approximate solution is obtained. 
 
 

NUMERICAL EXAMPLES 
 

In the above section, a step-by-step presentation of an algorithm for the fuzzy neural 
network was outlined. Hence, in this section, the study will consider two numerical 
examples, which are FPE and DFPE.  
 
Example 1 
In this example, the study will consider the trapezoidal membership function of FPE.  
       45.2,65.1,5.0,05.045.0,35.0,25.0,15.05.1,1,0,2.05.0,3.0,25.0,1.0 32  xxx  
 
The study trains this example with three input unit and a single output. Let  

2.0,2.0,5.0,5.00  x . Hence, details of calculation are shown as below. 

 
Step 1. The parametric forms are as follows. 
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Step 2. Find  LNet and  UNet . 

             
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
















x
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     

7412304687.0

2412304687.05.0

001 000




 xxx

 

Step 4. Repeat Step 2 and Step 3 until the approximate solution is obtained.  
 
 
The following Table 1 shows the approximate solutions over a number of iterations. 

 
Table 1: The approximate solutions for Example 1. 

t   tx0  e  t   tx0  e  
0 
1 
2 

3 

4 
5 
6 

0.7412304687 
0.9361450867 
1.016096126 
1.021237906 
1.007907414 
0.9999384970 
0.9983857575 

0.258769531 
0.063854913 
0.016096126 
0.021237906 
0.007907414 
0.000061503 
0.0016142425 

7 
8 
9 
10 
11 
12 
13 

0.9991514494 
0.9998705948 
1.000100779 
1.000079554 
1.000022214 
0.9999959210 
0.9999933847 

0.0008485506 
0.0001294052 
0.000100779 
0.000079554 
0.000022214 
0.000004079 
0.0000066153 
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As can be seen from the Table 1, the trapezoidal fuzzy polynomial equation produces the 
approximate solution after 13 iterations, which is 9999933847.0x .  
 
 
Example 2 
 
Let consider the following trapezoidal fuzzy polynomial equation,  
     9.0,6.0,6.0,3.04.0,3.0,3.0,2.05.0,3.0,3.0,1.0 2  xx  
The study considers this example with two input unit and a single output. This example starts 
with 5.0,5.0,5.0,8.00  x . Hence, Table 2 presents the approximate solutions 

over a number of iterations.  
 

Table 2: The approximate solutions for Example 2. 
t  tx0  e  t   tx0  

e  
0 0.86894 0.13106 13 1.001254776 0.001254776 
1 0.9496841681 0.050315831 14 1.001103482 0.001103482 
2 

3 
1.008315195 
1.034554001 

0.008315195 
0.034554001 

15 
16 

1.000620502 
1.00015 

0.000620502 
0.00015 

4 
5 
6 
7 
8 
9 
10 
11 
12 

1.034777909 
1.021909860 
1.007332772 
0.9973319021 
0.9933151304 
0.9937680318 
0.9962893601 
0.9989175776 
1.000630958 

0.034777909 
0.02190986 
0.007332772 
0.0026680979 
0.0066848696 
0.0062319682 
0.0037106399 
0.0010824224 
0.00630958 

17 
18 
19 
20 
21 
22 
23 
24 
 

0.9998593964 
0.9997659749 
0.9998056127 
0.9998971560 
0.9999808758 
1.000029792 
1.000043257 
1.000034027 

0.0001406036 
0.0002340251 
0.0001943873 
0.000102844 
0.0000191242 
0.000029792 
0.000043257 
0.000034027 

 
The approximate solution is obtained after 24 iterations, which is 000034027.1x  
 
 

CONCLUSIONS 
 

This study has proposed a learning algorithm of FNN for solving trapezoidal FPE. A step-by-
step of the proposed algorithm has been shown. Hence, to illustrate the efficiency of the learning 
algorithm, two numerical examples were provided. Numerical results indicate that the number of 
iterations is influenced by the initial value  00x ,  ,   and  . The learning algorithm FNN 

which imitates the trapezoidal FPE has produced a series of approximate solutions. The 
trapezoidal fuzzy numbers used in the input of FNN have successfully shown a remarkable 
accuracy. An exploration related to other types of fuzzy numbers and learning algorithms are 
among the potential research for the future. 
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