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ABSTRACT 
In this paper, iterative methods particularly Alternating Group Explicit (AGE) iterative method are 
used to solve system of linear equations generated from two-dimensional fuzzy diffusion equation is 
examined. The formulation and implementation of these proposed method were also presented. In 
addition, numerical results by solving two test problems are included and compared with the Gauss-
Seidel (GS) method to show their performance. The results show that the AGE method is superior 
compared to GS method in terms of number of iterations, execution time and Hausdorff distance.  
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INTRODUCTION 
 
The Alternating Group Explicit (AGE) method is a widely used and successful two-stage 
iterative method in solving sparse linear system that employs fractional splitting strategy which 
is applied alternately at each intermediate step of linear system. Studies (Dahalan et al., 2013, 
2014, 2015a, 2015b; Mohanty and Talwar, 2012; Feng, 2008; Feng and Zheng, 2009; Bildik and 
Ozlu, 2005) examined and tested the effectiveness of AGE and its variants in solving various 
scientific problems. 

This paper will investigate the performance of AGE method in solving linear systems 
generated from fuzzy heat equation which will then be compared with the existing Gauss-Seidel 
(GS) method.  In order to solve the fuzzy heat problems numerically based on Seikkala 
derivative (Seikkala, 1987), we apply implicit difference scheme to discretize the fuzzy heat 
problem into a linear system and subsequently solve it iteratively using AGE method (Evans and 
Yousif, 1988; Evans and Ahmad, 1996). This iterative method is indeed analogous to Alternate 
Direction Implicit (ADI), a scheme used extensively in solving large scale computations. 
Previous studies have shown that the family of AGE method have been widely used to solve 
non-fuzzy problems due to its efficiency. Hence, this paper extends the application of AGE 
iterative method to solve fuzzy problems.  
 
 

FINITE DIFFERENCE APPROXIMATION EQUATIONS 
 
Let x% and y% be two fuzzy subsets of real numbers. They are characterized by a membership 

function evaluated at t, written  x t%  and  y t%  respectively as a number in  1,0 . Fuzzy numbers 

can be identified through the membership function. The  - cut of x% and y%, where   denotes a 
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crisp number is written as  x %  and  y %  in   |x x t %  and   |y y t %  respectively, for 

0 1  . Since they are always closed and bounded interval, the  - cut of fuzzy numbers can 

be written as      ,x x x     %  and      ,y y y     %  for all   (Allahviranloo, 2002). 

Suppose  ,x x  and  ,y y  are parametric form of fuzzy function x  and y  respectively. For 

arbitrary positive integer n and m subdivided the interval a t b   where 

 0,1,2, ,ix a ih i n   K  and  0,1, 2, ,jy a jl j m   K  for i and j respectively and the step 

size h and l defined by 
b a

h
n


  and 

b a
l

m


 . 

Now, consider the following general fuzzy heat equation 

   
2 2

2 2
, 0 0

U U U
V R x n y m

t x y

   
           

% % %
 (1) 

with boundary conditions 

     , ,0 , , ,U x y f x y x y R %%   

and initial conditions  

       , , , , , , , 0U x y t g x y t x y t R t T    %   

where R  was a boundary of R . In this paper, we derive the formulation of finite difference 
approximation equations based on the implicit scheme i.e. Backward Time, Centered Space 
(BTCS). By using BTCS scheme, 

, 1, 1 , ,i j k i j kU UU

t t

  


 
, (2a) 

, 1, 1 , ,i j k i j kU UU

t t
  


 

, (2b) 

with 

1j jt t t     

and 

 

2
, , 1 , , 1 , , 1

22

2i p j k i j k i p j kU U UU

x ph

      
  

   
, (3a) 

 

2
, , 1 , , 1 , , 1

22

2i p j k i j k i p j kU U UU

x ph

    
  

  
   

, (3b) 

 

2
, , 1 , , 1 , , 1

22

2i j p k i j k i j p kU U UU

y ph

      
  

   
, (4a) 

 

2
, , 1 , , 1 , , 1

22

2i j p k i j k i j p kU U UU

y ph

    
  

  
   

. (4b) 

By applying (2a), (3a) and (4a), lower boundary for (1) can be reduced to 

 , , 1 , , 1, , 1 1, , 1 , 1, 1 , 1, 1 , , 12
4i j k i j k i j k i j k i j k i j k i j k

V t
U U U U U U U

h         


       (5a) 

for 1 , 2 , ,i p p n p K  and 1 ,2 , ,j p p m p K . Meanwhile, applying (2b), (3b) and (4b) into 
upper boundary for (1), it can be shown 
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 , , 1 , , 1, , 1 1, , 1 , 1, 1 , 1, 1 , , 12
4i j k i j k i j k i j k i j k i j k i j k

V t
U U U U U U U

h         


      . (5b) 

Since both equations (5a) and (5b) have the same form in terms of the equation, except, based on 
the interval of the  - cuts, the differences identified only in the upper and lower bound, thus it 
can be rewritten as 

 , , 1 , , 1, , 1 1, , 1 , 1, 1 , 1, 1 , , 14i j k i j k i j k i j k i j k i j k i j kU U U U U U U                (6) 

with 
2

V t

h
    

 
. Moreover, (6) can be represented in matrix form as follows 

~ ~1j j
AU b


 . (7) 

Implementation of the BTCS scheme requires to solve a linear system at each time step and it is 
unconditional stable. 

 
 

ALTERNATING GROUP EXPLICIT ITERATIVE METHOD 
 
Consider a class of methods mentioned by Evans, 1997, which is based on the splitting of the 
matrix A  into the sum of its constituent symmetric and positive definite matrices, as follows 

1 2 3 4A G G G G     (8) 

where 1G  and 2G  are the forward and backward differences in the x-plane and 3G  and 4G  are 

similar difference in y-plane. Then      1 2  
1

 
4

di G G Aag diag diag   with 

221100

1100

0

0011

0011

1100

1100

0

0011

0011

1

nn

G































































 221

1100

1100

0

0011

0011

1

1

1100

1100

0

0011

0011

1

2

nn

G











































































 
By reordering the points column-wise along y-direction, 3G  and 4G  literally have the same 

structures as 1G  and 2G  respectively, 

221100

1100

0

0011

0011

1100

1100

0

0011

0011

~
13

nn

GG































































 
221

1100

1100

0

0011

0011

1

1

1100

1100

0

0011

0011

1

~
24

nn

GG











































































 
Then (8) becomes 

 1 2 3 4
~ ~1j j

G G G G U b


    . (9) 
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Thus, the explicit form of AGE method can be written as 

   
1 1
4

1 1 1 1
~ ~

2 2kU r I G f r I G A
   
 

       
, (10) 

   1 11
2 41 2 2 1

~ ~ ~

k k kU r I G G U r U
       
   

     
, (11) 

   3 11
4 22 3 3 2

~ ~ ~

k k kU r I G G U r U
       
   

     
, (12) 

and 

      311
42 4 4 2

~ ~ ~

k k kU r I G G U r U
   
 

     
. (13) 

From (10) to (13), therefore, the implementation of AGE method to solve corresponding BTCS 
approximation equations is presented in Algorithm 1.  

Algorithm 1: AGE method 

i. Initialize  0

~
0U   and 1010  .  

ii. First sweep 
Compute 

   
1 1
4

1 1 1 1
~ ~

2 2kU r I G f r I G A
   
 

       
 

iii. Second sweep 
Compute 

   1 11
2 41 2 2 1

~ ~ ~

k k kU r I G G U r U
       
   

     
 

iv. Third sweep 
Compute 

   3 11
4 22 3 3 2

~ ~ ~

k k kU r I G G U r U
       
   

     
 

v. Fourth sweep 
Compute 

      311
42 4 4 2

~ ~ ~

k k kU r I G G U r U
   
 

     
 

vi. Convergence test. If the convergence criterion i.e.    1

~ ~

k kU U 


   is satisfied, 

go to Step (vii). Otherwise go back to Step (ii). 
vii. Display approximate solutions. 

   
 
 

NUMERICAL EXPERIMENTS 
 
In order to compare the performances between AGE and GS methods, the following fuzzy heat 
equations were used as test problems.  
 
Test Problem 1 (Kadalbajoo and Rao, 1997) 

     
2 2

2 2
, , , , , , , 0 , 1, 0

U U U
x y t x y t x y t x y t

t x y

  
    

  

% % %
 (14) 



 
 

A. A. Dahalan, J. Sulaiman and W. R. W. Din 

Menemui Matematik Vol. 40 (1) 2018                                                 15 

 

where        , 0.75 0.25 ,1.25 0.25k k k         
%  with the initial condition 

     , ,0 sin sinU x y y x % . The boundary conditions are    ,0, ,1, 0U x t U x t % %  and 

   0, , 1, , 0U y t U y t % % . The exact solution for 

     
2 2

2 2
, , ; , , ; , , ;

U U U
x y t x y t x y t

t x y
    

 
  

 (15a) 

and 

     
2 2

2 2
, , ; , , ; , , ;

U U U
x y t x y t x y t

t x y
    

 
  

 (15b) 

are 

        2

, , ; sin sin tU x y t k y x e       (16a) 

and 

        2

, , ; sin sin tU x y t k y x e       (16b) 

respectively. 
 
Test Problem 2  

     
2 2

2 2
, , , , , , , 0 , 1, 0

U U U
x y t x y t x y t x y t

t x y

  
    

  

% % %
 (17) 

where        , 0.75 0.25 ,1.25 0.25k k k         
%  with the initial condition 

     , ,0 sin sinU x y y x % . The boundary conditions are    ,0, ,1, 0U x t U x t % %  and 

   0, , 1, , 0U y t U y t % % . The exact solution for 

     
2 2

2 2
, , ; , , ; , , ;

U U U
x y t x y t x y t

t x y
    

 
  

 (18a) 

and 

     
2 2

2 2
, , ; , , ; , , ;

U U U
x y t x y t x y t

t x y
    

 
  

 (18b) 

are 

   
2

21 1
, , ; sin sin

2 2

t

U x y t k y x e


   
 
  
        

   
 (19a) 

and 

   
2

21 1
, , ; sin sin

2 2

t

U x y t k y x e


   
 
  
        

   
 (19b) 

respectively. 
For numerical results, three parameters i.e. number of iterations, execution time (in seconds) and 
Hausdorff distance (as mention in Definition 1) were measured and considered for comparative 
analysis.  
 
Definition 1 (Nutanog et al., 2011)  
Given two minimum bounding rectangles P and Q, a lower bound of the Hausdorff distance from 
the elements confined by P to the elements confined by Q is defined as 

      , , :HausDistLB P Q Max MinDist f Q f FacesOf P   .  
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The computations are performed on a PC with Intel(R) Core(TM) 2 (1.66GHz, 1.67GHz) and 
1022MB RAM and, the programs were compiled by using C language. Throughout the 
numerical experiments, the convergence test considered was 1010   and carried out on several 
different values of n . All results of numerical simulations obtained from implementation of the 
GS and AGE methods for test problems 1 and 2 are tabulated in Tables 1 to 5. 
 
 

CONCLUSION 
 
In this paper, the AGE iterative method was used to solve linear systems arising from the 
discretization of fuzzy diffusion problems using implicit scheme. The results show that AGE 
method is more superior in terms of the number of iterations, execution time and Hausdorff 
distance compared to the GS method. This is due to the computational complexity of the high-
order discretization schemes. Since AGE is well suited for parallel computation, it can be 
considered as a main advantage because this method has groups of independent task which can 
be implemented simultaneously. It is hoped that the capability of the proposed method will be 
helpful for the further investigation in solving any multi-dimensional fuzzy partial differential 
equations (Farajzadeh et al., 2010). Also the family of AGE methods such as Modified 
Alternating Group Explicit (MAGE) (Evans and Yousif, 1988; Yousif and Evans, 1987) and 
Two Parameter Alternating Group Explicit (TAGE) (Mohanty et al., 2003; Sukon, 1996; 
Dahalan and Sulaiman, 2015) methods can be used as linear solvers in solving the same problem. 
Basically the results of this paper can be classified as one of full-sweep iteration. Further 
investigation of half-sweep (Dahalan et al., 2013, 2014, 2015b; Sulaiman et al., 2004; Abdullah, 
1991; Muthuvalu and Sulaiman, 2008) and quarter-sweep (Othman and Abdullah, 2000; 
Sulaiman et al., 2009; Muthuvalu and Sulaiman, 2011; Dahalan and Sulaiman, 2015) iterations 
can also be considered in order to speed up the convergence rate of the standard proposed 
iterative methods. 
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TABLE 1. Comparison of three parameters between GS and AGE methods at 0.00  . 
 

Methods 
n 

 16 32 64 128 256 

Problem 
1 

Number of 
iterations 

GS 60 181 546 1500 2134 
AGE 22 60 186 569 1553 

Execution 
time 

GS 1.02 3.83 29.74 322.58 4137.79 
AGE 0.48 1.63 14.03 168.97 2269.53 

Hausdorff 
distance 

GS 9.1328e-04 9.1334e-04 9.1338e-04 9.1351e-04 9.1401e-04 
AGE 9.1328e-04 9.1333e-04 9.1335e-04 9.1339e-04 9.1352e-04 

Problem 
2 

Number of 
iterations 

GS 168 561 1884 6186 19449 
AGE 54 173 585 1971 6477 

Execution 
time 

GS 2.07 8.62 67.43 773.95 9764.77 
AGE 0.81 3.42 36.09 396.16 5524.52 

Hausdorff 
distance 

GS 9.6736e-07 9.5198e-07 9.2103e-07 8.0616e-07 3.9726e-07 
AGE 9.6887e-07 9.5848e-07 9.4891e-07 9.1788e-07 7.9618e-07 

 
TABLE 2. Comparison of three parameters between GS and AGE methods at 0.25  . 

 
Methods 

n 
 16 32 64 128 256 

Problem 
1 

Number of 
iterations 

GS 61 183 554 1543 2284 
AGE 22 61 188 577 1601 

Execution 
time 

GS 0.99 3.85 29.75 324.20 3952.68 
AGE 0.49 1.64 14.03 169.04 2286.40 

Hausdorff 
distance 

GS 8.3718e-04 8.3723e-04 8.3727e-04 8.3740e-04 8.3790e-04 
AGE 8.3718e-04 8.3722e-04 8.3724e-04 8.3728e-04 8.3741e-04 

Problem 
2 

Number of 
iterations 

GS 168 565 1901 6251 19708 
AGE 54 174 589 1988 6545 

Execution 
time 

GS 2.35 8.54 67.64 794.78 9877.22 
AGE 0.79 3.41 32.58 397.57 5522.91 

Hausdorff 
distance 

GS 8.8655e-07 8.7188e-07 8.4120e-07 7.2648e-07 3.2823e-07 
AGE 8.8810e-07 8.7840e-07 8.6898e-07 8.3799e-07 7.1663e-07 

 
TABLE 3. Comparison of three parameters between GS and AGE methods at 0.50  . 

 
Methods 

n 
 16 32 64 128 256 

Problem 
1 

Number of 
iterations 

GS 62 183 560 1570 2416 
AGE 22 62 190 583 1629 

Execution 
time 

GS 1.02 3.88 29.88 325.38 3960.04 
AGE 0.49 1.65 14.22 170.43 2290.82 

Hausdorff 
distance 

GS 7.6107e-04 7.6112e-04 7.6116e-04 7.6129e-04 7.6179e-04 
AGE 7.6107e-04 7.6111e-04 7.6113e-04 7.6116e-04 7.6130e-04 

Problem 
2 

Number of 
iterations 

GS 170 567 1910 6291 19873 
AGE 55 175 592 2000 6588 

Execution 
time 

GS 2.09 8.62 68.65 783.15 9788.74 
AGE 0.83 3.43 32.83 405.44 5498.81 

Hausdorff 
distance 

GS 8.0583e-07 7.9178e-07 7.6131e-07 6.4681e-07 2.6243e-07 
AGE 8.0735e-07 7.9838e-07 7.8908e-07 7.5819e-07 6.3700e-07 

TABLE 4. Comparison of three parameters between GS and AGE methods at 0.75  . 
 

Methods 
n 

 16 32 64 128 256 

Problem 
1 

Number of 
iterations 

GS 61 184 562 1585 2698 
AGE 22 61 190 586 1645 

Execution 
time 

GS 1.06 3.83 30.73 328.76 4075.89 
AGE 0.48 1.78 14.13 169.33 2298.88 

Hausdorff 
distance 

GS 6.8496e-04 6.8501e-04 6.8505e-04 6.8517e-04 6.8567e-04 
AGE 6.8496e-04 6.8500e-04 6.8502e-04 6.8505e-04 6.8518e-04 

Problem 
2 

Number of 
iterations 

GS 170 569 1916 6314 19966 
AGE 54 176 594 2005 6613 

Execution 
time 

GS 2.02 8.68 69.99 805.99 9910.91 
AGE 0.78 3.42 32.55 400.02 5536.48 

Hausdorff 
distance 

GS 7.2506e-07 7.1176e-07 6.8152e-07 5.6736e-07 2.0107e-07 
AGE 7.2656e-07 7.1831e-07 7.0923e-07 6.7828e-07 5.5761e-07 
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TABLE 5. Comparison of three parameters between GS and AGE methods at 1.00  . 

 
Methods 

n 
 16 32 64 128 256 

Problem 
1 

Number of 
iterations 

GS 62 184 564 1590 2774 
AGE 22 62 190 586 1650 

Execution 
time 

GS 1.02 3.86 29.58 327.86 4119.54 
AGE 0.48 1.63 14.31 171.39 2298.56 

Hausdorff 
distance 

GS 6.0886e-04 6.0890e-04 6.0894e-04 6.0906e-04 6.0956e-04 
AGE 6.0886e-04 6.0889e-04 6.0891e-04 6.0894e-04 6.0907e-04 

Problem 
2 

Number of 
iterations 

GS 170 570 1918 6322 19996 
AGE 54 176 594 2008 6620 

Execution 
time 

GS 1.92 8.65 69.75 794.75 9640.57 
AGE 0.75 3.39 32.54 401.98 5516.17 

Hausdorff 
distance 

GS 6.4428e-07 6.3181e-07 6.0165e-07 4.8792e-07 1.4564e-07 
AGE 6.4579e-07 6.3830e-07 6.2929e-07 5.9846e-07 4.7822e-07 

 
 
 

 


