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ABSTRACT 
 

The spectral gradient method is popular due to the fact that only the gradient of the objective function 
is required at each iterate. Besides that, it is more efficient than the quasi-Newton method as the 
storage of second derivatives (Hessian) approximation are not required especially when the dimension 
of the problem is large. In this paper, we propose a spectral gradient method via variational technique 
under log-determinant measure such that it satisfies the weaker secant equation. The corresponding 
variational problem is solved and the Lagrange multiplier is approximated using the Newton-Raphson 
method and solved following interior point method that is associated with weaker secant relation. An 
executable code is developed to test the efficiency of the proposed method with some standard 
conjugate-gradient methods. Numerical results are presented which suggest a better performance has 
been achieved.  

 
Keywords: Spectral gradient method, Variational technique, Log-determinant norm, Weak 
                    secant relation, Large-scale optimization. 

 
 

INTRODUCTION 
 
 
Steepest descent method is the most straightforward optimization tool used to solve large scale 
unconstrained optimization. However, the steepest descent method is relatively slow as it is 
closes to minimum. For ill-conditioned problems, the steepest descent directions are exhibiting 
'zigzags' as the gradients point nearly orthogonally to the shortest direction to a minimum point. 
On the other hand, Quasi-Newton method was then introduced to overcome this deficiency. Its 
popularity is due to no actual Hessian is required for the algorithm but it still needs matrices 
storage for the Hessian approximation. La Cruz and Raydan (2003) and La Cruz et al (2006) 
extended the spectral approach to steepest descent direction for unconstrained nonlinear 
optimization. The main advantage of the spectral methods is that no second order information is 
needed for the search direction. Therefore, the Hessian is not required explicitly and a low 
computational cost is expected. On the other hand, a scaling parameter that incorporates certain 
second order information is used to scale the steepest descent direction. Spectral gradient 
methods are low-cost nonmonotone schemes for finding the local minimizers. They were first 
introduced by Barzilai and Borwein in 1988 and have been applied successfully to find local 
minimizers of large scale unconstrained problems. 
 
Barzilai and Borwein (1988) developed the updating formula for k  based on the least square 

problem as follow: 
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They also considered  
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Equations k are called BB step sizes. From the solution of problem (1), it can be expressed in 

the form of 

                                                             .
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and can be regarded as a Rayleigh quotient that calculated from the current gradient vector. In 
this paper, we intend to propose a strategy to obtain a set of spectral parameters, by incorporating 
the BB and quasi-Newton ideas. 
 
 

SPECTRAL GRADIENT METHOD FOR CONVEX QUADRATIC MINIMIZATION 
 
 

Consider the quadratic minimization problem: 

  ,
2

1
min xbAxxxf TT

x
  

where A  is the Hessian matrix that is assumed to be positive definite and symmetry, and the 
gradient bAxg kk  . 

Newton's method has an iterative formula in the form of 
                                                                     ,1 kkk dxx                                                           (4) 

where .1
kk gAd   Newton's method requires second order information that makes it 

converges extremely fast near the optimal solution and only one step is needed for quadratic 
function. However, forming and computing 1A  are costly and some modifications are needed 
when 1A  is not positive definite. Motivated from the above, we tend to choose k  so that 

  kkkk gIg 11     is used to approximate kgA 1  in some sense. First, define 

kkk xxs  1  and kkk ggy  1 . Then the matrix A  satisfies the relation 

                                                                          .kk yAs                                                              (5) 

Since it is inappropriate for a multiple of identity to satisfy (5), we will choose k  such that it 

satisfies some weaker form of (5). 
 
For quadratic function mentioned above, we can assume without loss of generality that an 
orthogonal transformation is made that transform A  to a diagonal matrix that contains only its 
eigenvalues i . Besides that, if there are any eigenvalues of multiplicity 1m , then we can 

choose the corresponding eigenvectors so that   01 ig  for at least 1m  corresponding indices 
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of 1g . Using  idiagA  , (4) and the properties of a quadratic function that 
k

k
kk

Ag
gg


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we have 
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It is clear that if   0i
kg  for any i  and kk ˆ: , then this property will persist for all kk ˆ . Thus, 

without any loss of generality, we can assume that A  has distinct eigenvalues 
                                                              ,0 21 n                                                      (7) 

and that   01 ig  for all .,,3,2,1 ni   

From these conditions and (6), we can deduce that first if k  is equal to any eigenvalue i , then 
  01 
i

kg  and this property persists subsequently. If both  

                                                                 01 
i

kg  and   01 
n

kg ,                                                  (8) 

then from (3) and the external properties of the Rayleigh quotient that  
                                                                      .1 nk                                                             (9) 

Hence, assuming that 1  is not equal to 1  or n , then for BB method, a simple inductive 

argument shows that (8) and (9) hold for all 1k . It also follows that the BB method does not 
have the property of finite termination. Since the eigenvalues are distinct, it is reasonable to use a 
set of different  , so that they can better overlap the spectrum of A . Hence, this motivates us to 
choose a diagonal matrix,   i

kdiag   to approximate   i
kdiag  . 

 
Now, we extend the quadratic optimization problem to nonquadratic unconstrained large scale 
optimization problem as below: 

 ,min xf
nx 

 

where f  is twice continuously differentiable, while n  is assumed to be large, says greater than 
10000. In order to preserve the descent property, we incorporate the line search to the iterative 
method in (4) to yield 

,1 kkkk dxx   

where 0k  is a steplength, calculated to satisfy certain line search conditions, such as the 

Armijo condition. A steplength k  is said to satisfy the Armijio condition if the following 

inequality hold:  
                                                       ,k

T
kkkkkk xfpcxfpxf                                       (10) 

where .10  c   
 
There are various choices on the search direction kd . In this paper, however, we will only focus 

on the spectral gradient method where the search direction kd  is given by kkk gBd 1 , where 

matrix kB  is updated at every iteration and the sequence of matrices  kB  is required to satisfy 

some weaker form of secant equation. 
 
Besides the weighted Frobenius norm, Byrd and Nocedal (1989) simplified proofs the 
convergence for BFGS update by working simultaneously with the trace and determinant of kB . 

For this purpose, they defined, for any positive definite matrix B , the function, 
  ,detln)()( BBtrB   defines a measure of matrices, where ln denotes the natural logarithm. 
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Motivated by this measure, we propose to derive some spectral gradient type updating such that 
it satisfied the weaker secant relation defined by Dennis and Wolkowicz in 1993 as follow: 

.1 k
T
kkk

T
k yssBs   

 
FORMULATION FOR MULTI-SPECTRAL PARAMETERS 

 
Suppose the updating formula 1kB is diagonal and positive definite. Our purpose is to construct 

1kB such that it satisfies 

,1 k
T
kkk

T
k yssBs   

where kkk ggy  1  and kkk xxs  1 . 

Hence, we consider the following: 
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Let       n
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1  . Then, the minimization becomes 
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The Lagrangian formed from equation (12) will become 
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In order to get the minimizer, we differentiate equation (13) with respect to      n
kkk rrr ,,, 21  and 

setting the resulting derivation to 0: 
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which yields 
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Now, by substituting equation (15) into the constraint (11), we have 
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Thus,   can be obtained by solving the nonlinear equation   0F . It is not practical to solve 
the equation accurately, hence, we would approximate the solution by using only one Newton-
Raphson iteration from 0  and interior point method. Hence, the Lagrange multiplier, k  is 

approximated by 
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Finally, we obtain the updating formula for 1kB  as follows: 
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The algorithm for solving the optimization problems is the same as the spectral gradient 
algorithm, the only different is that instead of using I  as the updating formula, we use 1kB . 

Now, we provide our algorithm for solving large scale unconstrained nonlinear optimization 
problem. 
 
DS Algorithm: 
Step 1: Set 0k ; select the initial guess points 0x  and   as a stopping condition. Set IB 0  

where I  is the nn  identity matrix. 
Step 2: For 0k , compute  kxf  and  kxg . If   kxg , stop, else compute 1kB  where 

1kB  is defined as follows: 


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where 1kB  is defined by equation (16). 

Step 3: Compute kkk gBd 1 . 

Step 4: Compute the steplength k  such that it satisfies the Armijo condition. 

Step 5: Compute kkkk dxx 1 . 

Step 6: Set 1:  kk , go to Step 2. 
 
 

NUMERICAL RESULTS AND DISCUSSION 
 
In this paper, we compared our proposed methods with a list of conjugate gradient methods as 
follow: 
(1). DS-NR – diagonal spectral gradient method with   is approximated by Newton-Raphson 
method.  
(2). DS-IP – diagonal spectral gradient method with   is approximated by interior point method.  
(3). CG-PR – conjugate gradient method proposed by Polak & Ribiere (1969) and Polyak (1969). 
(4). CG-CD – conjugate gradient conjugate descent method proposed by Fletcher (1987). 
(3). CG-LS – conjugate gradient method proposed by Liu and Storey (1991). 
(3). CG-HZ – conjugate gradient method proposed by Hager and Zhang (2005). 
 
In order to test the efficiency of our proposed method, a set of 96 tested problems given by 
CUTE, presented in Andrei (2008) has been tested with dimensions varying from 10 to 100000. 
we compared the methods in terms of the number of iterations, function calls and CPU times 
with the list of conjugate gradient method. Default values are used for all the other parameters, 
and the stopping criterion is set to be 

410kg . 
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We also set our upper bound of the iterations to be 10000. Therefore, whenever the number of 
iterations exceed the upper bound, we declare that this run as a failure. The codes are written in 
Matlab software. 

 
Figure 1: Performance profiling for the proposed methods and the list of CG methods in terms of 
number of iterations. 

 
Figure 2: Performance profiling for the proposed methods and the list of CG methods in terms of 
function calls. 
 
 
 
 



 
 

Multi-spectral Gradient Method for Large Scale Unconstrained Optimization 
 

Menemui Matematik Vol. 39 (1) 2017                                                        28 

 

 
Figure 3: Performance profiling for the proposed methods and the list of CG methods in terms of 
CPU time. 
 
Figure 1 shows that the profiling graph of our proposed methods and the list of conjugate 
gradient methods in terms of number of iterations. From figure 1, it is obvious that our proposed 
methods DS-NR and DS-IP perform better than the conjugate gradient methods. In other words, 
our proposed methods required less iterations to get the desired minimum points. 
 
Figure 2 shows that the profiling graph of our proposed methods and the list of conjugate 
gradient methods in terms of number of function calls. Therefore, our proposed methods DS-NR 
and DS-IP confirm that the number of function calls are lesser. 
 
Figure 3 shows that the profiling graph of our proposed methods and the list of conjugate 
gradient methods in terms of CPU time. From this figure, the graph of DS-NR appeared to be 
higher than the list of conjugate gradient methods. Therefore, DS-NR needs a shorter time as 
compared to other conjugate gradient methods. However, our DS-IP needs a longer time to 
execute and get the results. This is mainly because of the optimal value of Lagrange multiplier   
need to be computed using Matlab solver. 
 
 

CONCLUSION 
 

From the profiling graphs above, we can see that our proposed methods perform better when 
compared to the list of conjugate gradient methods. Thus, it is essential that satisfy the weak 
secant relation when deriving the updating formula for the diagonal matrix kB . In solving large 

scale optimization problems, computational times and costs are the main concern among all the 
other factors. Our proposed methods require only  nO  storage to get the optimal solutions. 
Hence, it is much more desirable to be the alternative methods than the quasi-Newton methods 
that required  2nO  storage. The DS-NR shows an outstanding result in terms of number of 
iterations, number of function calls and computational times. DS-IP also giving a similar trend as 
DS-NR except for computational times. DS-IP required more times to obtain the desired results 
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due to the optimal value of Lagrange multiplier   need to be executed using the built-in solver 
in Matlab. 
 
In conclusion, our proposed methods outperform the list of the conjugate gradient methods not 
only in term of number of iterations but also number of function calls. Thus, our proposed 
methods can be an economical alternative for solving large-scale problems. 
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