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ABSTRACT
We consider two classes of finitely presented groups as follows:
H, = <x, y‘xm2 =y" =1, y'xy= x1+m>
G, =(a, bla"=b"=1 [a,b]"=[a,b], [a b]’=[a b]), m>2.

In this paper, we study the 3 - nacci sequence of H,  and G, . And show that the period of these

sequences are a multiple of K (m).
Keywords: group, 3-nacci sequence , wall number

INTRODUCTION

Many authors have studied the periodic sequences of elements of finite groups. Since 1990 the
Fibonacci length has been studied and calculated for certain classes of finite groups (see Ahmadi
and Doostie (2012), Campbel and Campbell (2005), Doostie and Hashemi (2009), Karaduman

and Aydin (2006) ), where the least positive integer | is called the Fibonacci length of the group
G=(a,a,,,a,) ifitis the period of the sequence

n

x;=a, (I<i<n)ix, ; =]]xi i1
j=1

of the elements of G.

We now introduce a generalization of Fibonacci sequences which first presented by Knox
(1992) .

Definition1.1. Let J<Kk . A k — nacci sequence in a finite group is a sequence of group
elements Xy, %+, X,, - for which, given an initial set x;,x,---,X; ,, each element is defined by

. :{xlxz...xn_l, j <n<k,

n

Xo X ka X N>K.

We also require that the initial elements of x,,x,---,X; ,, generate the group. The k — nacci
sequence of G with seed set x,, X, -+, X, ; is denoted by

Fy (G; Xoy Xqy eens xj_l) and its period is denoted by P, (G; Xy Xqs eens xj_l) (see Ahmadi
and Doostie (2012), Karaduman and Deveci (2009), Wall (1960)).
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Definition 1.2. The 3-step Fibonacci sequence {Fn}—oo of numbers defined by
F.=F_+F_+F,_ for n>0,
{Fn_l =F.,-(F, +F
and we seed the sequence with F, =0, F, =1land F, =1.
We use K (m) to denote the minimal length of the period of the series (F, mod m)

it Wall number of m (see Knox (1992))
The Fibonacci length of H and G was investigated by Doostie and Hashemi (2009).

In this paper, we study the 3- nacci sequence of H_and G . In Section 2, we prove some

preliminary results that are needed for the main results of this paper. Section 3 is devoted to the
3-nacci sequences of H , and G, .

) for n<0,

n+1

i=0
j=—00!

and call

SOME BASIC RESULTS

The aim of this section is to prove some basic results that will be applied in the rest of this paper.
First, we consider the 3-step Fibonacci sequence and prove that the following results:

Lemma 2.1. The following relations are satisfied about 3-step Fibonacci sequence:
() an3 +2(Fn72 + Fn—l) = Fn+1’
(“) Fn—l + I:n+3 = 2Fn+2'

Proof. According to the definition of the 3-step Fibonacci sequence, relations (i) and (ii) are
satisfied.

Lemma 2. 2. For every integers m, i and t >2:

() Fegyi =F (modt);

(i) FmK(t)+i =F (modt).
Proof. Using of the definition of the Wall number of the 3-step Fibonacci sequence one has:
i =F (modt).

To prove (ii), according to the above relations, we have

Focon = Fe =F =..=F (modt).

mK (t)+i O+(M-DK (t)+i) — " (m-DK (t)+ —
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Corollary 2.3. Foreveryintegers nandt > 2, if

F =0 (modt),
F.=1 (modt),
F..,=1 (modt).

Then K (t)|n.

Proof. Let n=mK(t)+i,0<i<K(t). Since K (t) is the least integer such that the assumption
holds , the result follows by considering 2.2.(ii ). We need some results concerning on H  and

G, . First, we state a lemma without proof that establishes some properties of groups of
nilpotency class two.

Lemma2.4.1f G isagroupand G ' < Z (G ) , then the following hold for every integer
Kand u,v e G
@ [uv,w]=[u,w][v,w]and [u,vw ]=[u,v][u,w];
i) [u*,v1=[u,v ]=[u,v]";
k(k-1)
Gii) (uv) =u*v*[v,u] 2

Proposition 2.5. Let G = Hp,,, then
Z(G)=G'=<z|z" =1>

Proof. We first prove that G ' < Z (G ) . By the relations of G , we get
. Then

m

[X, y]=x"'xY=x"x""=x

[[x,y].yl=y *x tyxy 'x ty txy 2= (x 1)Y x(x1)Yx ¥

m 2

-1-m X(1+m)2 — X-Zm-l X(1+2m+m2) — Xm _1.

=X X =

Also we have [[X,Y],X]=1, sothat G' < Z (G ) and [X,Y]" =1.Itis sufficient
to show that Z (G ) < G'. For every U=u,"u,’? - u, % e G, where

u e{xy} and S;,S,, - ,S, are integers, using the relation y*‘xy=x"*

prove that U is in the form y'x® where 0< r<m and 0< s < m?. Suppose y'x° € Z(G) .

we may easily
Then y'x=xy" and yx*=x°y . Hence, we have
=[xy T XH ™ =X Em =™
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1:[Xs y] :X-s (Xs )y :X-sx(l+m)s :Xms.
These show that m |r and m|s, andthen y'x*=(x")'=[x,y]' € G '. Therefore Z(G)=G.
By the above calculations, we get:

Corollary 2.6. Every element of G = H,, can be written uniquely in the form y "X *, where

0< r<m-1and0< s<m’-1.Also |G|:m3.

Proof. Let y'x*=1 then 1=[x,y']=[x,y]'=x"" . Therefore m|r, m*|s and uniqueness of the
presentation follows. This yields that |G|:m3 .

We complete this section by stating the following important results from [3].

Lemma?2.7. Let

G,, =<a, b

a"=b" =1, [a,b]" =[a,b], [a,b] =[a,b]), n,m=2

Then

1- |G, =d xmn;
2- |G'|=d and Z (G), the center of G , has a presentation isomorphic to

z<e>=<x,y,z X =ye =1, [x, y]=[x, z]. [y,z]=1>,

where d =g.c.d(m,n).

Corollary 2.8. Let G, =G, . Then
1- (G EM3, Z(G) =G, |Z @) |=m.

2- Every element of G__ can be written uniquely in the form a"bS [b,a]t where
0<rst<ml.

THE 3-NACCI SEQUENCESOF H,, AND G,,

For study of the 3- nacci sequences of H and G, , we need the following sequences:
Ty=1,T,=3Ts=6;T, =T, +T,,+T,,+2F;+F (F_;+F,_,), n>6.

9,=0,=0,9,=1;0,=9,,+9,,+9,,+(F, s +F_,)F., +(F,_, +Fn_3)2 ,n>5,
Now we find a standard form for the 3-nacci sequence X, X,, --- of H_,m>2.
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Lemma 3.1. Every elementof F;(H; x, y) may be represented by

X, =y xH et >3

Proof. For n=3 and n=4 , we have X;=Xy =YX [x, y]:szme and
X, =Xy .yx"" =yx[x,y ]2 x "M =y Fsx 23 respectively. Then by induction

on n we get:
Xy = Xns X0 X

— y Foa X Frs—Faa+tmTy 3 y Fns X Fra=Fn3+mTh_, y Foz X Foo—Faa+mTy
=y Froa+Fos y Fr2=Fooa tM(Th3+Th2) I: X y:l Fos(Fn3—Fn4) y Fo2 y Far=Foa +MToy
- ’

Foosa+F3+Fh2 X Fo1—Fpg+m (Tn—3 T+ T +Fh; ( Faz—Fna )+ Foz ( Fo2—Fna ))

=Y
_ y Fo_sa+Fn3+Fos X Foa+Fh3+m (Tn—3 T2+ Th+Fos ( Fas+Fna )+ Fos ( Fos+Faa ))
— y Foa X Fo—Fnoi +m(Tn—3 T +Tho 12 I:n2—3 +Fys ( Foos+tFaos )) .

We denote the period of F,(H ;x,y) by P, ie P;(H_;x,y)=P andwe have the following

theorem:

Theorem 3.2. Forevery m >2, K (m)| P.

Proof. Since P,(H,;x,y)=P , we have

Xpy =X,
X P+2 = y '
I+m
Xp 3 =Xy =YX .
Then by the Lemma 3.1 we get
y Fp X Fpu—Fp+mT g =X
y I:p+1 X Fp+2_Fp+1+mTp+2 — y ,
y Fos2 X Fora=FpatmT s _ yX 1+m

Now according to corollary 2.6, we obtain that
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F. =0 (modm),
Fo.,—F.+mT,. =1 (modm?),
Fo., =1 (modm),
FP+2_FP+1+mTP+2 =0 (mOdm )
Fo., =1 (modm),
Foos—Fo,+mMT, ,=1+m (modm?).

Then one can easily see that

Fo=0 (modm),
Fo.,=1 (modm),
Fo,,=1 (modm)

Thus by the Corollary 2.3, the assertion holds.

Example 3.3. Forintegerm =2, P,(H,; x, y)=K (22):K (4)=8, since

X=X X=Y, X,=yx" x, =y.x""

X5 :y4.x3+6m’ X :y 'X6+24m’ X _y X11+76m

Xg y X20+224m’ X — y X37+830m — X,

X]o y X68+2778m — y’ — y149.X125+9349m — yX1+m’""
Consequently, X, =X,, X,, =X,, X, =X,
We now show that every element of F ( ) has a standard form:

Lemma 3. 4. For every n, (n > 3)every element X, of the 3-nacci sequences of group G, can be
written in the form a™ b [b,a]" .

Proof. We use an induction method on m. Indeed,
X3:aF1+FObF2 [b,a]g3, X4 :aF1+F2bF3 [b,a]g4,andif
X, =a""Fepfalb al™ (4 <k <n-1), then by the relation X, =X, X,_, X,

we get
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Xn =Xn3 Xp0X 0

— aFn76+Fn75b Fos [b ’ a]gn—3 aFn75+Fn4b Fos [b , a]gn—2 aFn74+Fn73b Fros [b ’ a]gn—l
_ g *Fish Frag s Fros g ot Frospy P [b , a]gn—3+gn—2+gn—1

FootFystFo s +F0 sl Fo g tFy 3 Fo g +F s Fo In3+0n2+9n 1 HFns+F4)Fas
=g e s n4b 4" -39 4 n3b n-2 b a

)
2
Fn—6+2Fn—5+2Fn4+Fn—3b Fr4+F5+F [b a]gn—3+gn—2+gn—l+(Fn—5+Fn—4)Fn—4+(Fn-4+Fn—3)
'

=a

_ gFrstFaap Fn [b , a]gn

By the above theorem, we get:

Theorem 3. 5. If P, (Gm;a,b): P, then P is the least integer such that the equations

Fo,+F., =1 (modm),
F. =0 (modm),
Fo,+F. =0 (modm),
F. =1 (modm),
F+F,, = (modm),
F.,=1 (modm),

hold. Moreover, K (m) divides P .

Proof. By the Lemma 3.4 we get x , =a™ " b [b,a]’". Since,

Xp, =8, Xp,, =D, Xp,; =2ab, by the second part of Corollary 2. 8, we have

Fo,+Fo =1 (modm),
F. =0 (modm),
Foo+F=0  (modm),
F. =1 (modm),
Fo+F., =1 (modm),
F,, =1 (modm)

As an immediate consequence of this we have
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FP =( (mOd m ),

F. =1 (modm),

Fo,, =1 (modm).
So, Corollary 2. 3 yields that K (m) P,
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