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ABSTRACT
We define S;(,d, A,B) be the class of functions which are analytic and univalent in
an open unit disc, E={z:[z<1) of the form

f(z)=z+a,z>+a,2° +---+a,2" +~~=z+ianz” and normalized with f(0)=0

n=2

and f'(0)-1=0 and satisfy (ei“ Z;((ZZ)) —(S—isino:]i <

zeE where g(z):%, t,=cosa-35, cosa-5>0 0<5<1 and

1+ Az
1+Bz '

-1<B<A<L]

taf§

|a|<%. The aim of this paper is to obtain the upper and lower bounds of

Re o (Z) and Im o (Z)

9(z) 9(z)
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for this class of functions.

points, subordination principle, bounds of Re i (Z) and Im o (Z)

9(z) 9(z)

INTRODUCTION

Let H be the class of functions » which are analytic and univalent in the unit disc, E = {z 7] <1}
given by

m(z):itnz” 1)

and satisfies the conditions (0)=0, |w(z) <1, z € E.
Let P(A, B) be the class of all functions p of the form

0

p(z)=1+pz+p,z° +-+p,2" +--=1+ > p,2" (2)

n=1
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that is analytic in E and satisfying the condition
p(z) - 1+ Az ,
1+Bz
for z € E. Then this function is called a Janowski function. Hence, by using the definition of
subordination it can be written that p e P(A, B) if and only if

-1<B<A<1

p(z):Lw(z),—ls B<A<lweH.
1+ Bo(z)

Let S be the class of functions f which are analytic and univalent in E and of the form

f(z)=z+ianz” 3)
n=2
and normalized with f(0)=0 and '(0)-1=0.

Let two functions F(z) andG(z) be analytic in E. If there exists a functions @ € H which is
analytic in E with ©(0)=0 and |@(z) <1 such that F(z)=G(w(z)) for every z e E, then we say
that F(z) is subordinate to G(z) and it can be written as F(z)< G(z). We also note that if G(z) is
univalentin E, then the subordination is equivalentto F(0)=G(0) and F(E)c G(E).

Moreover, we introduce S:(a, 5) as the class of functions f which are analytic and
univalent in E and of the form (3) and normalized with f(0)=0 and f'(0)-1=0 and satisfy

Re[eia %}a @

, cosa-5>0, 0<6<1 and |a| <%. We shall first relate the class

f(z)+ f(z)

2
P(A,B) with the class S;(,d,A,B) so that we are able to obtain the bounds of Rer—(Z) and

g(z)

where g(z)=

im 2 (@) for the class S (a, 5, A, B).
9(z)
Theorem 1.1
If fesS. Then f eS(a,d,A B) ifand only if

(e‘“ 22 _5_isin a]ti < P(A,B) (5)

9(2)
where g(z):@ and t,, =cosa — 6.

Proof.

ad

Let f €S (e, &, A B) From the fact that Z;((ZZ))= p(z) where g(z):M and g is

starlike (Ravichandran , 2004), it follows that
2t '(2) 2
——==1+) b z". (6)
9(z) HZ‘

Thus, from (4) we have

Menemui Matematik Vol. 37(1) 2015 2



On a Subclass of Tilted Starlike Functions with Respect to Conjugate Points

W 2f'(2) . ( 2 )

e —o0=e“|1+) b z"|-0,
9(z) 2

(Z)—§=(c05a+isina)+e‘“ibnz”—5,

9(2)

e 2 (Z)—cS—isina:tm; +e“Y b 2" 7)
n=1

N
—h

where t,, =cosa — 9.
Rearranging (7), we get

(eiaL(Z)—é—isinaJti=1+fla ib z".

9(z)

Hence, : :
. 7f'(2) . j 1 2
e" —-o—isinag |—=1+) p,z"
| & e
where p, _E b".

ad

Thus, forany f €S, let

(e“’ Z;é(zz))—d—isina]é: p(z)zcE ®)

so that f €S (a,5,A B) ifand only if p e P(AB)
Remark 1.2: We note that t_; = cosa —6 must always be positive so that (8) is valid. Therefore,
we have to consider the condition of cosa > & in the definition of the class S’ (e, 5, A, B).

We now in the position to represent our class of functions in terms of subordination.
Definition 1.3

f €S (e, 8, A B) if and only if

(e‘“ o (Z) —5—isinaji< 1+ Az zeE.

9(z) o 1+Bz’
9)
By definition of subordination, it follows that f € S:(a, o,A B) if and only if
e A @) _5_ising | =1 Aolz) _ p(z)weH (10)
9(z) w  1+Balz)

The following lemma due to Dixit and Pal (1995) is required to prove the later results.

Lemma 1.4
Let p be analyticin E. Then,

o(2) <A 1B A<t
1+ Bz
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if and only if
1-ABr*| (A-B)r
(Z)_1—32r2|3§—32r)2 [=r (1)
Further, if p satisfies the inequality (11), then for |z|=r <1
1-Ar 1+ Ar
<R < .
1-Br ep(z) 1+Br
MAIN RESULTS
Theorem 2.1
If f €S.(a,8,AB), then for |z] =r <1 we have
|2f'(z) (1-Br*-Brle™T Tr
_ < 12
| 9(z) ( 1-B?r? j 1-B?r? (12)

which gives the centre, ¢(r) and radius, d(r) for functions in the class S_(a,d, A B) as

_R2¢2 __Ry2a-ia =
c(r)= 1-B I—B?rrze T and d(r):l_-r# for which g(z):@ﬁ - (A-B)},,
and t,, =cosa —9.

Proof.
Using (10), the transformation maps |a)(z)| <r onto the circle
1-ABr’| _(A-B)r
_ < =
and also

(ei“ i '(Z)—ﬁ—isinaj 1 _ p(z)

g(z) tab‘
where t_, =cosa —o.
Thus from (13), we get
' 2
O (Z)—5—isina _ 1= ABr |§ (A_B)r,|z|:r. (14)
t g(z) 1-Br* | 1-B’r?
Then, rearranging (14), we obtain
o 42 (isina + 51— Br?)+(1— ABre ), L Tr
9(2) 1-B*r? 1-B*r?
where T =(A-B)t,, and t,, = cosa -3,
oo (z) _(isina—B°rfisina+&-B°r* +1,, — ABr’cosa +dABr’ | _
9(2) 1-B*r?

ad

Tr
T 1-B%r?’
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oo A (2) (e -B’r’(isina+5)-ABrit, | _ Tr
9(2) 1-B*r? ~1-Br’
oo A (z) (e -B’r*(isina +5)- ABrt, +B’r’t, —Br't,, | _ Tr
9(2) 1-B*r? T 1-Br?’
«|2f'(z) _(1-B*r*-Bre"T)__ Tr
| a(z) 1-B?r? T 1-Br?
Since [e'“| =1, we obtain

|2f'(z) (1-Br?-Brie™T Tr
_ < 15

| 9(2) ( 1-B*r? ]‘ 1-B*r? (15)

which yields the center, c(r) and radius, d(r) where
()= 1-B%r? —Br?e™T
1-B°r?

and
Tr
d(r)=———.
(r) 1-B’r?
Remark 2.2: The result now follows from the subordination principle. From Lemma 1.4 and
Theorem 2.1, it follows that,
Let p beanalyticin E. Then

e‘“L(Z)—a“—isina i:1+Aw(z)<1+Az’_1SB<AS1
9(2) t, 1+Bw(z) 1+Bz

a

if and only if

|26 '(2) _(1— Br? —Brie T j‘ L Tr
| 9(2) 1-B?r? T 1-Br?

where T =(A-B)},, and t,, =cosa — 6.

Thus, we can conclude that the Definition 1.3 holds.

zf '(2)

Theorem 2.1 enables us to determine the upper and lower bounds of Re——*and

9(z)
t'(z)
9(2)

Theorem 2.3
If feS;(e,5,AB),thenfor |z/=r,0<r<1
1-Tr—Br’(B+T COSa)<Re 2f(z) _1+Tr—Br*(B+T cosa)
1-B*r? o g(z) 1-B*r?

Im as in the following theorem.

(16)

and
1-Tr-Br’(B-Tsina) _ im & (z) _1+Tr-Br’(B-Tsina)

< < 17
1-B?*r? 9(z) 1-Br? (17)
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for which g(z):@, T=(A-B), and t, =cosa — .

Proof.
From Theorem 2.1, we have

<

|t ’(z)_(l—Bzr2 ~Brle™T j‘ Tr

| 9(2) 1-B?r? T 1-Br?
which implies
1-Tr-Br?*(B+Tcosa) 2f'(z) _ 1+Tr-Br*(B+Tcosa)
<Re <
1-Br? 9(2) 1-Br?
and

1-Tr-Br’(B-Tsina) _ im 2 (z) _1+Tr-Br’(B-Tsina)
1-B?r? T g(z) T 1-B*r? '
This completes the proof.

Remark 2.4: By putting A=1 and B = -1 in Theorem 2.3, we obtain the result for the class
S, (e, 8,1,~1) which is introduced earlier as in (4) where
1-2rt, —r’(l-2t, cosa) Re X (2) JL+or, - r’(l-2t,, cos)

1-r? 9(2) 1-r°

and
1-2rt,, —r*(1+2t,sina) i A (2) L+, - r’(l+2t,,sina) |
1-r? 9(2) 1-r?
The results obtained can also be reduced to the results for some subclasses such as S (0,0,l—l),

S(0,81-1) and S;(0,0,AB) which are introduced by El-Ashwah and Thomas (1987), Abdul
Halim (1991) and Mad Dahhar and Janteng (2009) respectively.
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