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ABSTRACT 
The purpose of this study is to evaluate the performance of parametric survival model in the 
presence of left-truncation and case-k interval censoring where individuals are monitored 
periodically with fixed k-inspection times and the event of interest occurs between any two 
following inspection times. The log-normal distribution is extended to incorporate fixed 
covariate and the properties of bias, standard error (SE) and root mean square error (RMSE) 
were compared in the presence of low and high percentage of truncation with fixed width of  
inspection times. Also, the properties of bias, SE and RMSE were equally compared when 
the midpoint imputation technique were implemented. The simulation study indicates that 
the bias, SE and RMSE of the parameter estimates increases as the percentage of truncation 
and the width of the inspection times increases. Following that, a coverage probability study 
were implemented to study the performance of the Wald confidence interval method for the 
parameters of the log-normal distribution. The results from this study is equally applicable 
to the parameters of the log-logistic distribution which shares similar hazard rate with the 
log-normal distribution. 
Keywords: left-truncation, case-k interval censoring, fixed covariate, log-normal 
distribution, midpoint imputation, Wald interval 
  INTRODUCTION 

Left-truncation usually occurs in clinical studies when it is not feasible to observe an 
individual from time of contraction of certain disease but some time point later which 
may be due to the study design, cost or time constraint. In other words individuals are 
not observed from the beginning time point of the study, but some time point later u. It 
can be equally said that these individuals have been diagnosed with some initial or 
transitional events e.g. diagnosed with cancer or diabetes for a time period u before 
being recruited into the study. However, those who  have experienced the event of 
interest prior e.g. cancer metastasis or death  are excluded from the study or remains 
unobserved by the researcher. The selected individuals are equally said to be left-
truncated at u.  

Mathematically, this can be expressed as it  being the lifetime of the thi  
individual in the study for 1,2,...,i n , and iu  is the left-truncation time.  As individuals 
have to survive long enough before being recruited into the study, their lifetime, i it u . 
Consequently, individuals with i it u  are disregarded or excluded from the research. 
The selected individuals are followed prospectively with fixed k inspection times where 
the exact event time is unknown except that it falls within an interval of ( , ]l ri it t  where 

( , ]i l ri it t t  with Pr( ) 1l ri it t  . This type of data is known as left-truncated and case-k 
interval censored (LTIC) survival data, where left-truncated observations are existing 
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cases usually sampled from registry record. As date of diagnosis may differ from one 
individual to the other, individuals may enter the study at random age or time points, 
however in the presence of left-truncation only those who are free from failure are 
observed by the researcher (Guo, 1976). Further, other factors that affect the lifetime, 
known as covariates, x are only observed from the time of entry of individuals into the 
study, see Guo (1976), Lawless (1982) and Klein and Moeschberger (2003). Also, the 
lifetime after selection forms the response variable, hence the term prospective, Lawless 
(1982). In other words, the truncation time u contains no information on lifetime t, or 
equally t is independent of u.  

Two types of covariates that are usually measured in a survival study are fixed 
and time-dependent covariates. Fixed covariates are covariates that is measured at the 
beginning time-point of the study and stays constant throughout the study. Example of 
such covariate includes the gender and ethnicity of individuals in the study. In contrary, 
time-dependent covariates vary over time. This study focuses on fixed covariates.  
 

RESEARCH BACKGROUND 
Sun (2007) indicated that research work involving left-truncation and interval censoring 
is limited although truncation is equally observed in the presence of censoring. 
Furthermore, statistical packages such as R and S-Plus does not accommodate the 
analysis of LTIC survival data, thus requires statisticians to develop functions in 
accordance to a specified model which fits the data in hand.  

Following that, parametric survival models often remain a useful tool as they are 
fitted much faster and offers more efficient estimates under conditions such as 
dependency of lifetime of individual on covariates or when parameter values are far 
from zero, see Klein and Moeschberger (2003), Nardi and Schemper (2003), Cox and 
Oakes (1984).  Parametric models involving left-truncated survival data has been 
discussed by Lawless (1982), Guo (1992), Klein and Moeschberger (2003), Cain et.al 
(2011) and Balakrishnan and Mitra (2011,2012,2014) among others, where all the 
researchers unanimously agreed to the conditional likelihood approach in estimating 
parameters of a model fitted with left-truncated survival data.  

Midpoint imputation is another procedure adopted by researchers when data is 
interval censored. By utilizing this method, the effect of interval censoring is practically 
ignored by treating the interval censored failure times as exact failures by taking the 
midpoint of intervals where the event has occurred. However, Lindsey (1998) reported 
that this approximation is not constantly consistent. Additionally, Shen (2011) reported 
that using midpoint imputation method to estimate the parameters of Cox's semi-
parametric model involving LTIC survival data resulted in larger bias, standard error 
(SE) and root mean square error (RMSE) compared to when the event is considered as 
interval censored in the estimation procedure. Also, Stovring and Kristiansen (2011) 
compared midpoint and multiple imputation procedure to identify suitable parametric 
model to estimate mean survival times of patients for left-truncated and grouped survival 
data. he further indicated that estimation procedure involving midpoint imputation 
resulted in satisfactory bias, SE and coverage probability provided that the inspection 
width is no more than 6months.   

Nevertheless, many of the existing research on left-truncation involving semi-
parametric and parametric models does not accommodate the covariates effects on the 
lifetimes, although this is a significant reason on employing these models which allows 
survival to be measured with reference to several covariates. 

In this research the log-normal distribution is considered as it is often a popular 
choice to model cancer survival data based on the ability to accommodate non-
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monotonic hazard rate, the hazard that increases, reaches a peak and later decreases. A 
detailed review on survival times and cancer sites has been discussed by Tai.et.al (2004). 
Also, the log-normal distribution belonging to the family of log-location scale model 
shares similar hazard function with the log-logistic distribution. Following that, the 
survival times of observations that satisfy a log-normal distribution has low mortality in 
the beginning, reaches a peak where the rate of mortality is the highest after which it 
slowly decreases with time Tai.et.al (2004).  
 

RESEARCH OBJECTIVES 
In this research, the log-normal survival model is extended to incorporate observations 
from prevalence (existing cases) and incidence (new cases) cohort encountered in a 
cancer survival study whom are monitored periodically with fixed k inspection times, 
where the exact event time is known to fall between two following inspection times. 
Also, the covariate factors which influence their lifetime are equally measured. 

The performance of the proposed parametric model is assessed based on the bias, 
SE and RMSE of the parameter estimates. The robustness of this model is equally 
compared using midpoint imputation (mid.imp) method, where the exact event time is 
taken as the midpoint of the two following inspection times. Following that, the 
coverage probability study is conducted to study the Wald confidence interval method 
for the parameters of the log-normal distribution. In addition, the suitability of the 
parameterization of log( ) , based on the Wald method is equally analyzed for the scale 
parameter  .  
 

LOG-NORMAL MODEL WITH LEFT-TRUNCATION AND FIXED 
COVARIATE  

In this study, we considered a single fixed covariate. The density and survival function 
of the log-normal distribution is given by (1) and (2) respectively, 
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with ( )  is the cumulative distribution function of the standard normal distribution,   
the scale or the nuisance parameter, 0  the intercept parameter, 1  the covariate 
parameter and 1,2,...,i n . Following that, the likelihood function for the observations 
from the prevalence cohort and incidence cohort with 0 1( , , )  θ  is given in (3) and 
(4). 
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with lit  and rit  are the left and right end points of an interval ( , ]l ri it t  where 
Pr( ) 1l ri it t  , it  is the exact failure times and iu  is the left truncated times. Also the 
censoring indicators is defined in (5) as follows: 

1 if individual's failure time is observed exactly
0 otherwiseiE    

 1 if individual's failure time is right censored 
0 otherwiseiR    

 1 if individual's failure time is interval censored
0 otherwiseiI    

 1 if individual's failure time is left censored
0 otherwise.iL             (5) 

 
Note that left-censored observations are only observed among the incidence cohort. 
Therefore, the log-likelihood function for the prevalence cohort and incidence cohort 
can be derived by combining the likelihood function as in (3), (4) and (5) by including a 
truncation indicator iv . This is defined in (6) and (7). 
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with 0 1 ix     and the truncation indicator iv , is defined in (7)  as follows: 
    0 if subject is left-truncated

1 otherwise.iv                                                (7) 
In the case when midpoint imputation procedure is applied to the LTIC survival data, the 
likelihood in (6) reduces to observations with exact failure times (midpoint of two 
following inspection times) and right censored (if the event of interest is not observed 
even after the study ends). For instance, let ,( ]i ii l rt t t , with ilt and irt are the right and left 
end points of the pre-specified intervals. Thus using the midpoint imputation (mid.imp), 
the interval censored time is assigned as exact failure times with ( ) / 2i ii l rt t t   , which 
transforms the data to left-truncated and right-censored observations. This likelihood is 
defined in (8) as follows: 
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CONFIDENCE INTERVAL ESTIMATE 

Asymptotic based confidence interval (C.I) such as Wald is most commonly applied 
confidence interval method in any survival study as it easily computable and readily 
available in any statistical packages. The performance of the Wald and parameterization 
based C.I such as log( )  for the scale parameter,   is equally explored through a 
coverage probability study.  

A coverage probability study is the probability of a C.I containing the true 
parameter value. In specific, we do not want a conservative (anticonservative) interval 
which the probability of an interval containing the true parameter value is wider 
(shorter) than it needs to be. Further, we do not want an asymmetrical interval where the 
probability that the true value of the parameter estimate failing on one end of an interval 
is higher/lower than the other end  of the interval. 

An optimal and reliable C.I method generates least number of anticonservative, 
conservative and asymmetrical intervals in addition that the total error probability closer 
to the nominal error being evaluated (Doganaksoy and Schmee, 1993). The construction 
of the Wald and parameterization of log( )  addressed as PLS C.I method in this study 
is estimated using parameter   as an example, which equally applies to the rest of the 
parameters in the model. Note that the PLS method is only applicable to the scale 
parameter  . 
  Let ̂  be the mle of  . The 100(1 )%  C.I for the parameter   can be 
estimated as in (9) given by, 
 
                                   1 12 2

ˆ ˆ ˆ ˆvar( ) var( ),z z                                               (9) 

with ˆvar( ) the first diagonal element of the observed Fisher information matrix 1 ˆ( )I θ
and θ̂  be the maximum likelihood estimate (mle) of  vector of parameter θ . By utilizing 
the same principle, the PLS C.I for  log   is given as in (10), 
                                    1 2

ˆ ˆlog var log ,z                                                              (10) 

 
where the variance of   log   can be estimated  using the delta method and is given as 

    2 2
ˆ ˆvar( ) var( )ˆvar log ˆˆexp log
           

. Therefore the 100(1 )%  C.I for the 
parameter   using the result from (10) can be obtained using the back transformation 
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method given by,  
 

                    1 12 2

ˆ ˆvar( ) var( )ˆ ˆexp exp .ˆ ˆz z 
     

                                              (11) 

 
SIMULATION AND COVERAGE PROBABILITY STUDY 

The simulation method mimics the small cell lung cancer survival data studied by Tai 
et.al (2007) which provides a satisfactory fit with the log-normal distribution. The year 
of truncation, namely y is fixed. A set of random number of years is simulated with 
unequal probabilities with replacement; before ( rby ) and after ( say ) the year of 
truncation with r=1,2,..,n1 and s=1,2,..,n2 to represent the prevalence cohort (PC) and 
incidence cohort (DC) respectively. 

The percentage of truncation is fixed at 20% (T2) and 60% (T6) for a sample 
size of 80,100,150 and 200n  . Note that the total sample size 1 2n n n  . The 
lifetimes, it  are simulated from the log-normal distribution as exp( (1 ) )i it z      
for 1,2,...,i n  with ~ (0,1),iz unif   and σ μ  are the scale and the mean parameter 
respectively. Additional parameters, 0 1 and β β  are modelled through   with covariate 

~ (0,1)ix N  as 0 1 ix     . The true values of the parameters given as the vector of 
0 1( , , ) (0.50,2.87,0.05)   θ .  

The lifetimes, it  are added to rby  and say ; if the resulting failure times are less 
than y, these observations are removed and new set of ,,  y  ,   and k jb a i i iy t z x  are 
simulated. Individuals are monitored periodically with fixed k inspection times and 
sequence of potential inspection times 1 2 ...i i ikm m m    are assumed to the same for 
all the individuals in the study.  Further, the exact survival times for the PC and DC is 
unknown despite the event time it  falls between any two following inspection times; e.g.   ( 1), ,i il r i j ijt t m m    with 1 j k   or after the last inspection times;   , ,i il r ikt t m    
which produces interval (IC) and right censored (RC) observations with ilt and irt are the 
right and left end points of the intervals. Additionally, for the DC, the event of interest 
could have occurred at unknown time, 1im ; e.g.   1, 0,i il r it t m   and after the time 
origin producing left censored (LC) observations. Exact observation (EO) of lifetimes 
are available for PC and DC if the event of interest is observed within the observational 
window of  1 2, ,i ir r i it t E E     with 0.90  , where the event of interest occurs closer 
to the time of inspection. Additionally, by implementing the midpoint imputation 
procedure, all the event times that falls within the interval of  ,i il rt t   with irt   is 
imputed as EO of lifetimes.  

The study period is assumed to be 60 months with the width of inspection 
intervals 2 months (W2) ( 30k  ) and 4 months (W4) ( 15k  ). The attributes of bias, 
SE and RMSE for parameter estimates 0 1ˆ ˆˆ ,  and     are compared under four different 



Thirunanthini Manoharan, Jayanthi Arasan, Habshah Midi and Mohd Bakri Adam 

44 
 

settings, M1 (T2,W2), M2 (T2,W4), M3 (T6,W2) and M4 (T6, W4), equally using the 
midpoint imputation method. In order to aid the conduct of the coverage probability 
study, 2000 samples of size 80,100,150 and 200n  were generated. The nominal 
probability error (npe) is set at 0.05  . The performance of the Wald and PLS C.I 
method are evaluated under similar settings indicated above. The error probabilities on 
the left (lep) and right (rep) for parameter  were estimated as the number of times the 
C.I did not contain the true value of   divided by the number of simulations; 2000 
times. Therefore, the estimated total error probability (tep) for   is simply the sum of 
lep and rep.  

Following that outcome, a CI method is termed anticonservative (AC) if    ˆtep 2.58 se( )α α , conservative (C) if  ˆtep< -2.58 se( )α α  with 
ˆ( ) (1 ) /se N    . Also, the estimated error probabilities are asymmetric (AS) 

when the larger error probabilities on one side of the interval is greater than 1.5 times 
the smaller one. A preferred confidence interval method produces least number of AS, C 
and AC intervals, the value of the lep and rep closer to 0.025 and the value of the tep 
closer to npe of 0.05, refer Doganaksoy and Schmee (1993).  

In this study, it is assumed that it , iu  and censoring times are non-informative 
and independent of each other. Also, the exact month of diagnosis is known for all 
observations in this study and these observations were event free at the time of entry into 
the study. All the analysis is done with R statistical software and the parameter estimates 
are obtained using the Newton-Raphson iteration procedure. 
 

RESULTS AND DISCUSSION 
The results in Table 1 shows the average percentages of IC, RC, LC and EO failure 
times under the settings of  M1 (T2,W2), M2 (T2,W4), M3 (T6,W2) and M4 (T6, W4).  

By fixing the width of inspection times, e.g. compare (M1 and M3) or (M2 and 
M4), the percentage of IC and EO failure times are approximately closer  to each other. 
However, the percentage of RC observations are slightly higher for M1 as opposed to 
M3. This may be due to the lower percentage of left-truncated observations in M1, 
which consequently increases the recruitment of new cases observed under M1 
compared to M3. In other words,  the possibility of patients not experiencing the event 
of interest (e.g. cancer metastasis) even after the last inspection times are higher among 
those whom have been recently diagnosed with a disease compared to those whom have 
been living with the disease for some period of time prior to entry into the study. 

In contrary, by fixing the percentage of truncation, e.g. compare (M1 and M2) or 
(M3 and M4), the percentage of observations with EO lifetimes are higher when the 
width of inspection times are narrower. This is as expected, as shorter width of 
inspection times increases frequency of inspection times. For instance width of 
inspection intervals of 2 months (4 months) results in 30k   ( 15k  ) for a total period 
of 60 months. This subsequently increases the possibility of observing event of interest 
occurring very close to the inspection times resulting in increased number of EO 
lifetimes.  This equally reduces the percentage of IC observations comparatively when 
the width of inspection times are wider. Further, there are small percentage of LC 
lifetimes among the DC with wider width of inspection times, e.g. M2 and M4 as longer 
awaiting time may result observations experiencing event of interest at unknown times 
before the first inspection time. 
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Table 1: The average percentage of IC, RC, LC and EO for M1, M2, M3 and M4 
% M1 M2 M3 M4 
IC 0.5475 0.7717 0.5496 0.7764 
RC 0.0069 0.0068 0.0057 0.0057 
LC 0.0000 0.0002 0.0000 0.0001 
EO 0.4456 0.2213 0.4447 0.2178 

 
Table 2 depicts the bias, SE and RMSE of the parameter estimates 0 1ˆ ˆˆ,  and    . It can 
be observed that the absolute bias for parameter estimate ̂  generally decreases with the 
increase in the sample size although the trend seems to be unclear for parameter 
estimates 0 1ˆ ˆ and   . However, none of these values seems to be a concern as these 
values are insignificant at 0.05   or 0.10 level of significance. Further, the SE and 
RMSE decreased with increase in sample size under all settings.  

However, by fixing the width of inspection times, it is evident that the SE and 
RMSE are higher when the percentage of left-truncation is higher. This is due to the 
increase number of observations that is excluded from the left-tail of the log-normal 
distribution in the presence of higher percentage of truncation consequently increasing 
sampling bias, SE and subsequently the RMSE of the parameter estimates.  

On the other hand, the values of RMSE of the parameter estimates are lower at 
shorter width of inspection times. This is due to the fact that, shorter width of inspection 
times results in higher number of inspection which additionally resulted in higher 
percentage of EO of lifetimes, see Table 1. As more information  is gained on the 
lifetimes of observations in the study, this results in lower values of SE and RMSE of 
the parameter estimates comparatively when larger width of inspection time is observed.  

Similar results are observed on the bias, SE and RMSE of the parameter 
estimates 0 1ˆ ˆˆ,  and    by adopting the mid.imp procedure, see Table 3. Further, the bias, 
SE and RMSE of the parameter estimates are approximately closer to the values 
observed in Table 2 specifically at lower percentage of truncation. Nevertheless, when 
higher proportion of truncation is present, e.g. refer M3 and M4, the estimation 
procedure fails to converge especially for sample size of 80, see Table 3.  
 

Table 2: Bias , SE and RMSE of  estimates 0 1ˆ ˆˆ,  and     for M1, M2, M3 and M4 
parameter ̂  0ˆ  1̂  setting n bias SE RMSE bias SE RMSE bias SE RMSE 

M1 
80 -0.0207 0.0391 0.0443 0.0326 0.0554 0.0643 -0.0019 0.0570 0.0571 

100 -0.0211 0.0352 0.0410 0.0284 0.0496 0.0571 -0.0010 0.0510 0.0510 
150 -0.0178 0.0291 0.0341 0.0306 0.0405 0.0507 -0.0015 0.0401 0.0401 
200 0.0179 0.0254 0.0311 0.0294 0.0352 0.0459 0.0018 0.0357 0.0358 

M2 
80 -0.0217 0.0402 0.0457 0.0326 0.0558 0.0646 -0.0019 0.0574 0.0575 

100 0.0222 0.0358 0.0422 0.0285 0.0498 0.0574 -0.0009 0.0513 0.0513 
150 -0.0191 0.0298 0.0354 0.0310 0.0407 0.0512 -0.0015 0.0404 0.0404 
200 -0.0192 0.0260 0.0323 0.0297 0.0356 0.0464 -0.0017 0.0359 0.0360 

M3 
80 -0.0215 0.0414 0.0466 0.0348 0.0578 0.0675 -0.0002 0.0592 0.0592 

100 -0.0216 0.0362 0.0421 0.0343 0.0521 0.0623 -0.0006 0.0510 0.0510 
150 -0.0203 0.0305 0.0366 0.0340 0.0416 0.0537 -0.0014 0.0424 0.0424 
200 -0.0176 0.0263 0.0317 0.0344 0.0371 0.0506 -0.0015 0.0371 0.0372 

M4 80 0.0223 0.0478 0.0478 0.0345 0.0584 0.0678 -0.0004 0.0597 0.0597 
100 0.0224 0.0372 0.0435 0.0343 0.0524 0.0626 -0.0007 0.0513 0.0513 
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150 0.0211 0.0310 0.0375 0.0339 0.0417 0.0538 -0.0014 0.0427 0.0427 
200 0.0187 0.0270 0.0328 0.0345 0.0373 0.0508 -0.0014 0.0374 0.0375 

 
 

Table 3: Bias , SE and RMSE of  estimates 0 1ˆ ˆˆ,  and     for M1, M2, M3 and M4 using 
mid.imp  

parameter ̂  0ˆ  1̂  
setting n bias SE RMSE bias SE RMSE bias SE RMSE

M1 
80 -0.02130.03830.043 0.02940.05630.0635-0.00100.05600.0560

100-0.020 0.03510.04070.02980.049 0.0576-0.001 0.04960.049
150-0.01780.02880.033 0.028 0.03960.04890.00030.041 0.041
200-0.016 0.024 0.029 0.03100.035 0.046 -0.003 0.034 0.0349

M2 
80 -0.01820.03980.04380.027 0.058 0.064 -0.00200.05740.057

100-0.01540.03570.03890.02630.050 0.056 -0.00100.05020.0502
150-0.014 0.02940.032 0.028 0.04090.050 -0.00260.041 0.041
200-0.012 0.02550.02840.02940.03560.0462-0.001 0.035 0.035

M3 
80 Fail Fail Fail Fail Fail Fail Fail Fail Fail

100-0.021 0.03680.04250.033 0.051 0.061 -0.00300.052 0.052
150-0.01880.029 0.03500.034 0.041 0.053 0.00050.04090.0409
200-0.01670.02620.03110.034 0.037 0.051 -0.00040.036 0.036

M4 
80 Fail Fail Fail Fail Fail Fail Fail Fail Fail

100-0.01600.03840.04160.032 0.05280.06200.00250.052 0.0525
150-0.01500.030 0.03390.033 0.04300.054 -0.00300.04360.0437
200-0.01460.02710.03080.032 0.037 0.0499-0.000 0.03730.0373

 The coverage probability study indicates the Wald method performed poorly with 
parameter   and 0  as more AC and AS C.I are produced regardless of large sample 
sizes under all settings, see Table 4. Also the parameterization of the Wald method, the 
PLS method did not improve the performance of the Wald interval for parameter   as 
the number of AC and AS intervals remained the same.  Additionally, the estimated tep 
are far from the npe of 0.05 and distance increased with the increase in sample size, see 
Table 5 and 6.  
In contrary, the Wald method performed fairly well for parameter 1  with least number 
of AC, C and AS intervals,  observed in the presence of higher proportion of left-
truncation, see Table 4. Additionally, the estimated tep are closer to 0.05 despite 
percentage of truncation and width of inspection times. 
Similar results are observed by implementing the mid.imp procedure, see Table 7-9. 
However, in the presence of higher percentage of left-truncation, e.g. refer M3 and M4, 
the Wald and PLS C.I method failed to work for samples less than 80, see Table 8-9. 
This results from the exclusion of observations from the left-tail of the log-normal 
distribution with lifetime t u , consequently resulting in skewed data, see Cain et.al 
(2013) and Manoharan (2013). Further, as censoring equally causes the data to be 
incomplete, assumption of normality often fails as it can't fully capture the sampling 
distribution of the sample statistics being studied. Therefore, inferential techniques that 
is heavily dependable on normality assumptions such as Wald and likelihood ratio may 
perform poorly with the parameters from a specific distribution. This has been equally 
demonstrated by Manoharan (2015) where asymptotic intervals such as Wald and 
likelihood ratio generated many AC and AS intervals with parameter   and 0  of the 
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log-normal distribution when data is highly truncated and right-censored.  
Table 4: Number of AS, C and AC C.I for estimates 0 1ˆ ˆˆ,  and     for M1, M2, M3 

and M4 
C.I parameter M1 M2 M3 M4 

AC C AS AC C AS AC C AS AC C AS 

Wald 
̂  4 0 4 4 0 4 4 0 4 4 0 4 
0ˆ  4 0 4 4 0 4 4 0 4 4 0 4 
1̂  0 0 0 0 0 0 0 0 1 0 0 1 

PLS ̂  4 0 4 4 0 4 4 0 4 4 0 4 
 

Table 5: Estimated Wald error probabilities for parameters 0 1,  and     for M1, M2, 
M3 and M4 

parameter   0  1  
setting n lep rep tep lep rep tep lep rep tep 

M1 
80 0.004 0.108 0.112 0.086 0.005 0.091 0.028 0.031 0.059 
100 0.003 0.126 0.128 0.093 0.007 0.100 0.035 0.029 0.063 
150 0.003 0.118 0.121 0.110 0.003 0.113 0.025 0.022 0.047 
200 0.001 0.148 0.149 0.135 0.002 0.137 0.025 0.0315 0.056 

M2 
80 0.004 0.112 0.116 0.089 0.006 0.095 0.028 0.032 0.060 
100 0.003 0.125 0.128 0.096 0.007 0.103 0.032 0.029 0.061 
150 0.003 0.124 0.127 0.109 0.003 0.112 0.028 0.022 0.050 
200 0.001 0.148 0.149 0.136 0.002 0.138 0.024 0.033 0.057 

M3 
80 0.003 0.111 0.114 0.098 0.003 0.101 0.026 0.026 0.052 
100 0.003 0.118 0.121 0.109 0.003 0.112 0.022 0.023 0.045 
150 0.002 0.130 0.132 0.124 0.003 0.127 0.024 0.025 0.049 
200 0.003 0.130 0.133 0.175 0.001 0.176 0.024 0.037 0.061 

M4 
80 0.002 0.108 0.110 0.096 0.002 0.098 0.025 0.028 0.053 
100 0.001 0.119 0.120 0.109 0.003 0.112 0.019 0.022 0.041 
150 0.002 0.132 0.134 0.122 0.003 0.125 0.026 0.023 0.049 
200 0.003 0.137 0.140 0.176 0.001 0.177 0.024 0.037 0.061 

  
 
Table 6: Estimated PLS error probabilities for parameters   for M1, M2, M3 and M4 

setting  M1   M2   M3   M4  
n lep rep tep lep rep tep lep rep tep lep rep tep 

80 0.001 0.123 0.124 0.001 0.133 0.134 0.001 0.131 0.132 0.001 0.135 0.136 
100 0.002 0.165 0.137 0.002 0.164 0.166 0.003 0.153 0.156 0.001 0.159 0.160 
150 0.002 0.143 0.145 0.002 0.144 0.146 0.001 0.163 0.164 0.001 0.155 0.156 
200 0.000 0.169 0.169 0.000 0.170 0.170 0.002 0.156 0.158 0.001 0.163 0.164 
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Table 7: Number of AS, C and AC C.I for estimates 0 1ˆ ˆˆ,  and     for M1, M2, M3 
and M4 using mid.point 

C.I parameter M1 M2 M3 M4 
AC C AS AC C AS AC C AS AC C AS 

Wald 
̂  4 0 4 4 0 4 3 0 3 3 0 3 
0ˆ  4 0 4 4 0 4 3 0 3 3 0 3 
1̂  0 0 1 0 0 0 0 0 0 0 0 0 

PLS ̂  4 0 4 4 0 4 3 0 3 3 0 3 
 

Table 8: Estimated Wald error probabilities for parameters 0 1,  and     for M1, 
M2, M3 and M4 using mid.point 

parameter   0  1  
setting n lep rep tep lep rep tep lep rep tep 

M1 
80 0.002 0.105 0.107 0.085 0.007 0.092 0.025 0.032 0.057 

100 0.001 0.121 0.122 0.090 0.005 0.095 0.027 0.028 0.055 
150 0.002 0.121 0.123 0.112 0.002 0.114 0.027 0.029 0.056 
200 0.004 0.108 0.112 0.148 0.003 0.151 0.017 0.032 0.049 

M2 
80 0.004 0.104 0.108 0.075 0.013 0.088 0.027 0.036 0.063 

100 0.004 0.091 0.095 0.081 0.006 0.087 0.023 0.024 0.047 
150 0.005 0.099 0.104 0.117 0.003 0.120 0.022 0.032 0.054 
200 0.007 0.096 0.103 0.134 0.003 0.137 0.021 0.026 0.047 

M3 
80 Fail Fail Fail Fail Fail Fail Fail Fail Fail 

100 0.000 0.122 0.122 0.105 0.003 0.108 0.027 0.029 0.056 
150 0.001 0.120 0.120 0.125 0.003 0.128 0.023 0.020 0.043 
200 0.003 0.125 0.128 0.168 0.003 0.171 0.030 0.027 0.057 

M4 
80 Fail Fail Fail Fail Fail Fail Fail Fail Fail 

100 0.004 0.099 0.103 0.101 0.003 0.103 0.023 0.027 0.050 
150 0.003 0.102 0.105 0.129 0.003 0.132 0.025 0.036 0.061 
200 0.003 0.119 0.122 0.149 0.002 0.151 0.026 0.027 0.053 

 
 

Table 9: Estimated PLS error probabilities for parameters   for M1, M2, M3 and 
M4 using mid.point 

setting  M1   M2   M3   M4  
n lep rep tep lep rep tep lep rep tep lep rep tep 
80 0.001 0.123 0.124 0.001 0.107 0.108 Fail Fail Fail Fail Fail Fail 

100 0.000 0.127 0.127 0.001 0.089 0.090 0.000 0.123 0.123 0.003 0.114 0.117 
150 0.001 0.107 0.108 0.001 0.074 0.075 0.000 0.117 0.117 0.001 0.078 0.079 
200 0.001 0.096 0.097 0.001 0.073 0.074 0.001 0.120 0.120 0.001 0.092 0.093 
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CONCLUSIONS 
 In conclusion, the log-normal survival model performed well under all settings and is 

robust against higher percentage of truncation and censoring present in the data. 
However, this parametric estimator performed best by producing estimates with lower 
values of bias, SE and RMSE when lower proportion of left-truncation and/or shorter 
width of inspection interval is present in the LTIC survival data. In other words, the 
estimation procedure generated more efficient and accurate parameter estimates with 
inclusion of cases from incidence cohort observed with frequent number of inspection 
times.  
 
Following that, the midpoint imputation procedure applied to the LTIC data equally 
worked well under similar conditions indicated above, nonetheless, we recommend this 
method to be implemented when smaller percentage of left-truncation , e.g. T2  is 
observed for small sample data, e.g. 80n  , as the imputation method suffered 
convergence problems at higher percentage of truncation, e.g. T6 . 
 
On the other hand, the coverage probability study indicated that the Wald method 
performed well with the covariate parameter, 1   at 0.05  . In contrary, the Wald 
method performed poorly with parameter   and 0 . Additionally, the parameterization 
of log( )  did not improve the performance of the Wald method for parameter   as it 
generated mostly anticonservative and asymmetrical intervals. Thus, the Wald and PLS 
method is not recommended for parameter   and 0  as inference drawn from such 
intervals will be unreliable; e.g. there are higher possibility of a researcher rejecting the 
true value of a desired parameter when the intervals appear to be shorter in length or 
where the estimated error probabilities are higher than it needs to be Manoharan et.al, 
(2015). Therefore, there is a necessity to investigate the performance of confidence 
interval methods which relaxes on the assumption of normality and alternatively rely on 
the distribution of data in hand. On that basis, the bootstrap confidence interval method 
may work well with the parameters of the log-normal distribution in the presence of left-
truncation and case-k interval censoring,  however further study is required to verify the 
suitability of the proposed method.   
The results from the simulation and coverage probability study is applicable with 
parameters of the log-logistic distribution in the presence of left-truncation and case-k 
interval censoring as this distribution shares similar hazard rate properties as the log-
normal distribution. 
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