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Abstract 
In this paper phase-lag and dissipation properties for singly diagonally implicit Runge-

Kutta-Nyström (RKN) methods is discussed for second-order ordinary differential 

equations with periodical solutions. The methods have algebraic order four. The 

absolute stability and periodicity interval are also given. The numerical result for these 

new methods are  compared and discussed for the numerical integration of second-order 

differential equations with periodic solutions, using constant step size. 

    

Keywords: Runge-Kutta-Nyström methods; Phase-lag; Oscillatory solutions  

 

INTRODUCTION 

This paper deals with numerical method for second-order ODEs, in which the 

derivative does not appear explicitly,  
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for which it is known in advance that their solution is oscillating. Such problems often 

arise in different areas of engineering and applied sciences such as celestial 

mechanics, quantum mechanics, elastodynamics, theoretical physics and chemistry, 

and electronics. An s -stage Runge-Kutta-Nyström (RKN) method for the numerical 

integration of the IVP is given by  
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The RKN parameters 
 andij j j ja b b c   are assumed to be real and s  is the number of 

stages of the method. Introduce the s -dimensional vectors c b  and andb s s   matrix 

A, where 1 2[ ]T

sc c c c     1 2[ ]T

sb b b b        

1 2[ ]T

sb b b b        [ ]ijA a

mailto:norazak@upm.edu.my


 

Norazak Senu, Mohamed Suleiman, Fudziah Ismail, and Mohamed Othman 

 

                                                  Menemui Matematik Vol. 36(1) 2014                                                 29 

 

respectively. RKN methods can be divided into two broad    classes: explicit    (

0jka  , k   j )    and    implicit ( 0jka  , k > j). The latter contains the class of 

diagonally implicit RKN (DIRKN) methods for which all the entries in the diagonal 

of A are equal. The RKN method above can be expressed in Butcher notation by the 

table of coefficients  

 

c  A    
 Tb   

 T
b    

    

Generally problems of the form (1) which have periodic solutions can be divided into 

two classes. The first class consists of problems for which the solution period is 

known a priori. The second class consists of problems for which the solution period is 

initially unknown. Several numerical methods of various types have been proposed 

for the integration of both classes of problems. See Gautschi (1961), Stiefel and Bettis 

(1969), van der Houwen and Sommeijer (1987) and others.  

When solving (1) numerically, attention has to be given to the algebraic order of 

the method used, since this is the main criterion for achieving high accuracy. 

Therefore, it is desirable to have a lower stage RKN method with maximal order. This 

will lessen the computational cost. If it is initially known that the solution of (1) is of 

periodic nature then it is essential to consider phase-lag (or dispersion) and 

amplification (or dissipation). These are actually two types of truncation errors. The 

first is the angle between the true and the approximated solution, while the second is 

the distance from a standard cyclic solution. In this paper we will derive a new 

diagonally implicit RKN method with three-stage fourth-order with dispersion of high 

order.  

A number of numerical methods for this class of problems of the explicit and 

implicit type have been extensively developed. For example, van der Houwen and 

Sommeijer (1987), and Senu, Suleiman and Ismail (2009) have developed explicit 

RKN methods of algebraic order up to five with dispersion of high order for solving 

oscillatory problems. For implicit RKN methods, see for example van der Houwen 

and Sommeijer (1989), Sharp, Fine and Burrage (1990), Imoni, Otunta and 

Ramamohan (2006) and Senu et al. (2010). 

In this paper a dispersion relation is imposed and together with algebraic 

conditions  to be solved explicitly. In the following section new three- and four-stage 

fourth-order diagonally implicit RKN methods is described. Its coefficients are given 

using the Butcher tableau notation. Finally, numerical tests on second order 

differential equation problems possessing an oscillatory solutions are performed. 

Analyses for dissipative and zero-dissipative with phase-lage is also given. 

 
 

ANALYSIS OF PHASE-LAG 

In this section we shall discuss the analysis of phase-lag for RKN method. The first 

analysis of phase-lag was carried out by Bursa and Nigro (1980). Then followed by 

Gladwell and Thomas (1983) for the linear multistep method, and for explicit and 

implicit Runge-Kutta(-Nystrom) methods by van der Houwen and Sommeijer 

(1987),(1989). The phase analysis can be divided in two parts; inhomogeneous and 

homogeneous components. Following van der Houwen and Sommeijer (1989), 

inhomogeneous phase error is constant in time, meanwhile the homogeneous phase 
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errors are accumulated as n  increases. Thus, from that point of view we will confine 

our analysis to the phase-lag of homogeneous component only.  

The phase-lag analysis of the method (2) is investigated using the homogeneous 

test equation  
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Alternatively the method (2) can be written as  
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By applying the general method (2) to the test equation (1) we obtain the 

following recursive relation as shown by Papageorgiou, Famelis and Tsitouras (1989) 
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where 2

1(1 1) ( )T T

mH z e c c c     .  Here D(H) is the stability matix of the RKN 

method and its characteristic polynomial 

 
2 2 2tr( ( )) det( ( )) 0,D z D z     

 

is the stability polynomial of the RKN method. Solving difference system (5), the 

computed solution is given by 

 

 2 cos( )n

ny c n                                                 (6) 

The exact solution of (1) is given by  

 

( ) 2 cos( )ny t nz                                               (7) 

 

Eq. (6) and (7) led us to the following definition.  

 

Definition 1. (Phase-lag). Apply the RKN method (2) to (1). Then we define the 

phase-lag ( )z z   . If 1( ) ( )qz O z  , then the RKN method is said to have phase-

lag order q . Additionally, the quantity ( ) 1z      is called amplification error. If 
1( ) ( )rz O z  , then the RKN method is said to have dissipation order r . 
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Let us denote   

 
2 2( ) trace( ) and ( ) det( )R z D S z D    

 

From Definition 1, it follows that  
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Let us denote 2( )R z  and 2( )S z  in the following form  
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where 
2ˆ 2   is diagonal element in the Butcher tableau. Here the necessary 

condition for the fourth-order accurate DIRKN method (2) up to phase-lag order eight 

in terms of i  and i  is given by 

 

for s=3 

order 6 :
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for s=4 

order 6 :
2
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order 8 :  
2
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1 14 3
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2 45 2240


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Notice that the fourth-order method is already dispersive order four and dissipative 

order five. Furthermore dispersive order is even and dissipative order is odd. 

 

CONSTRUCTION OF THE METHOD 

In the following we shall derive  three- and four-stage fourth-order accurate DIRKN 

with dissipative and zero-dissipative methods, by taking into account the dispersion 

relations. The RKN parameters must satisfy the following algebraic conditions to find 

fourth-order accuracy as given in Hairer and Wanner (1975)  
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For most methods the ic  need to satisfy  
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ZERO-DISSIPATIVE DIRKN METHODS 

In this section zero-dissipative fourth-order ( 4p  ) three- and four-stage DIRKN 

methods will be derived.  For the three-stage its involved 11 nonlinear equations with 

13 variables to be solved. Set 
1 1 21 31 0b b a a    and then solving the equations, the 

following solution is obtained and denoted by Z1 (see Table 1). Furthermore the 

necessary condition for the nonempty periodicity interval ( 2( ) 1S z  ) which is 

satisfied. The periodicity interval is (-8.196,0). 

 

 

Table 1 The Z1 method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, for the four-stage fourth-order DIRKN method, its involved 12 equations and 

19 variables to be solved and leaving with seven free parameters. Let  

1 1 31 41 42 0b b a a a      and  the zero-dissipation condition together with algebraic 

conditions to be solved simultaneously. Then the following zero-dissipative method is 

obtained and denoted by Z2 (see Table 2) 
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Table 2 The Z2 method 
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DIRKN METHODS WITH HIGH DISPERSION ORDER 

In this section dissipative fourth-order ( 4p  ) three- and four-stage DIRKN methods 

with dispersion order 6 and 8 will be derived.  The method of algebraic order four ( r 

= 4 ) with dispersive order six ( u = 6 ) and dissipative order five ( v = 5 ) is now 

considered. From algebraic conditions (14)-(18), it formed eleven equations with 

thirteen unknowns to be solved. One method of dispersive order six is given below. 

The stability interval is approximately (-8.10,0) and denote as D1. 

 

Table 3 The D1 method 

 

 

 

 

 

 

 

 

 

 

 

 

A four-stage method of algebraic order four ( 4p  ) with dispersive order eight ( 8q  ) 

and dissipative order five ( 5r  ) is now considered. The conditions (14)-(18) and 

dispersion relations (11)-(12) formed thirteen nonlinear equations with nineteen 

variables to be solved. We mentioned here one fourth-order (p=4) with  dispersive 

order eight (q=8) method. This method will be denoted by D2 (see Table 4)  
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Table 1: : The DIRKN3(4,6) method 

 

 

 

 

 

 

 

 

 

 

 

where c1=-0.1704903206, b2=0.2332957499, b4=0.1610418175, and  A= 22

=0.01453347471.  

 

NUMERICAL RESULTS 

In this section we applied a model problem for testing their accuracy. The following 

homogeneous problem is used. 

 

Problem 1 (Homogenous)   
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Problem 2(Inhomogenous System)   
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Table 4 The D2 method 
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Table 5 Comparison results for Z1, Z2, D1 and D2 for Problem 1 

 

 
 

Table 6 Comparison results for Z1, Z2, D1 and D2 for Problem 2 

 

 
 

From Tables 1 and 2  above shown that the method with high dispersion order is the 

most accurate namely D2 method. The numerical results for D1 and D2 are batter 

when compared with the zero-dissipative methods Z1 and Z2 methods. The zero-

dissipative methods, Z1 and Z2 which not relate phase-lag does not give any 

advantage in term of accuracy compared with method with high dispersion order. 
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CONCLUSION 

In this paper we have showed that the DIRKN four-stage fourth-order and dispersive 

order eight with ‘small’ dissipation constant and principal local truncation errors gave 

highest accuracy. From the result in Tables 1 and 2, we conclude that the method with 

highest dispersive order is more accurate for integrating second-order equations 

possessing an oscillatory solution when compared to the zero-dissipative DIRKN 

methods with not consider the phase-lag order. 
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