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ABSTRACT 
In this paper, two new classes of implicit Runge-Kutta methods which based on 4 points Gauss-

Kronrod-Radau I quadrature formula and 4 points Gauss-Kronrod-Radau II quadrature formula were 

developed. The resulting implicit methods from the 4 points Gauss-Kronrod-Radau I quadrature 

formula were 4-stage sixth order Gauss-Kronrod-Radau I and 4-stage sixth order Gauss-Kronrod-

Radau IA; while the resulting implicit methods from the 4 points Gauss-Kronrod-Radau II quadrature 

formula were 4-stage sixth order Gauss-Kronrod-Radau II and 4-stage sixth order Gauss-Kronrod-

Radau IIA. Each of these methods required 4 function of evaluations at each integration step and gave 

accuracy of order 6. Numerical experiments compared the accuracy of these four implicit methods and 

the classical 3-stage sixth order Gauss-Legendre method in solving some test problems. Numerical 

results revealed that, 4-stage sixth order Gauss-Kronrod-Radau I and 4-stage sixth order Gauss-

Kronrod-Radau IIA were more accurate than the 3-stage sixth order Gauss-Legendre method in 

solving a scalar stiff problem, whereas 4-stage sixth order Gauss-Kronrod-Radau I and 4-stage sixth 

order Gauss-Kronrod-Radau II were more accurate than the 3-stage sixth order Gauss-Legendre 

method in solving a two-dimensional stiff problem. 

 
Keywords: Initial value problem, Gauss-Kronrod-Radau I, Gauss-Kronrod-Radau IA, Gauss-

Kronrod-Radau II, Gauss-Kronrod-Radau IIA 

 

 

INTRODUCTION 

 

One-step Runge-Kutta method which is a self-starting numerical method gains tremendous 

popularity for the computations of numerical solutions of first order initial value problems given 

by 

 

   ,y x f x y  ,  0 .y x          (1) 

 

According to Alexander (1977) and Alexander (2003), the rationale behind the Runge-Kutta 

method is to approximate the integral in 

      
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by a qudrature formula as follows: 
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where the numbers 1 2, , , sb b b  and 1 2, , , sc c c  which are independent of the function f, are 

called the quadrature weights and nodes respectively. The functions iY  are the stage values 

which are the approximations to  n iy x c h , 1, ,i s , computed by some other quadrature 

formulae on the intervals  ,n n ix x c h  as follows: 

 

 
1

,
s

i n ij n j j

j

Y y h a f x c h Y


   , 1, ,i s .       (4) 

 

In most cases, explicit Runge-Kutta method is preferable because it allows explicit stage-by-

stage implementation which is very easy to program using computer. However, numerical 

analysts also aware that the computational costs involving function evaluations increases rapidly 

as higher order requirements are imposed (Hall and Watt, 1976). Another disadvantage of 

explicit Runge-Kutta method is that it has relatively small interval of absolute stability, which is 

not suitable to solve stiff initial value problems (Fatunla, 1988). In view of this, we are thus 

taking interest in implicit Runge-Kutta method. In an implicit Runge-Kutta method, the explicit 

stage-by-stage implementation scheme enjoyed by explicit Runge-Kutta method is no longer 

available and needs to be replaced by an iterative computation (Butcher, 2003). Other than this 

computational difficulty, implicit Runge-Kutta method is an appealing method where higher 

accuracy can be obtained with fewer function evaluations, and it has relatively bigger interval of 

absolute stability. For excellent surveys and various perspectives of implicit Runge-Kutta 

methods, see, for example, Dekker and Verwer (1984), Butcher (1987), Lambert (1991), Hairer 

and Wanner (1991), Butcher (1992), Hairer et al. (1993), Iserles (1996) and Butcher (2003). 

According to Dekker and Verwer (1984), Butcher (1987), Lambert (1991), Hairer and 

Wanner (1991), Iserles (1996), Butcher (2003) and many others, there are three classes of Gauss-

Legendre type implicit Runge-Kutta methods that are based on three different Gauss-Legendre 

type quadrature formulae, namely Gauss-Legendre methods that are based on Gauss-Legendre 

quadrature formulae; Radau I, Radau IA, Radau II and Radau IIA methods that are based on 

Gauss-Radau quadrature formulae; and Lobatto III, Lobatto IIIA, Lobatto IIIB and Lobatto IIIC 

methods that are based on Gauss-Lobatto quadrature formulae. At this moment, it is natural to 

ask whether we can devise other types of quadrature formulae in order to develop some new 

implicit Runge-Kutta methods that will perform equally well or even better than the Gauss-

Legendre type implicit Runge-Kutta methods mentioned above. Hence, in this study, we have 

considered Gauss-Kronrod-Radau I quadrature formula and Gauss-Kronrod-Radau II quadrature 

formula in constructing two new classes of Kronrod type implicit Runge-Kutta methods. 

An n-point Gauss-Radau I quadrature formula for the integral 

 

   
b

a

I f f x dx  ,        (5) 

 

is a formula of the form 
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,
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k
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with the nodes 1 2 3 na x x x x b       and positive weights kw  are chosen so that 

 nG f I f , 2 2nf    where 2 2P n  denotes the set of polynomials of degree 2 2n  (Davis and 

Rabinowitz, 1984; Kythe and Schäferkotter, 2005). The associated Gauss-Kronrod-Radau I 

quadrature formula is given by 

 

   2

1 1

ˆ ˆ ,
n n

n k k k k

k k

K f w f x w f x
 

          (7) 

 

where  ˆ
k kx x  are precisely the one used in equation (6), while all the other 3n  parameters 

 ˆ
kw ,  kw  and  kx  are chosen in such a way that (Calvetti et al., 2000) 

 

 2nK f I f , 3 1nf   .       (8) 

 

According to Calvetti et al. (2000), the nodes in the Gauss-Kronrod-Radau I quadrature formula 

are ordered so that the following interlacing property is satisfied: 

 

1 1 2 2 3 3 1 1
ˆ ˆ ˆ ˆ ˆ

n n n na x x x x x x x x x x b             . 

 

The n-point Gauss-Radau II quadrature formula for the integral in equation (5) is a formula 

of the form 

 

 
1

,
n

n k k

k

H f w f x


         (9) 

 

with the nodes 1 2 3 na x x x x b       and positive weights kw  are chosen so that 

 nH f I f , 2 2nf    (Davis and Rabinowitz, 1984; Kythe and Schäferkotter, 2005). The 

associated Gauss-Kronrod-Radau II quadrature formula is given by 

 

   2

1 1

ˆ ˆ ,
n n

n k k k k

k k

L f w f x w f x
 

        (10) 

 

where  ˆ
k kx x  are precisely the one used in equation (9), while all the other 3n  parameters 

 ˆ
kw ,  kw  and  kx  are chosen in such a way that (Calvetti et al., 2000) 

 

 2nL f I f , 3 1nf   .     (11) 

 

According to Calvetti et al. (2000), the nodes in the Gauss-Kronrod-Radau II quadrature formula 

are ordered so that the following interlacing property is satisfied: 

 

1 1 2 2 3 3 1 1
ˆ ˆ ˆ ˆ ˆ

n n n na x x x x x x x x x x b             . 
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This paper is organized as follows. Section 2 presents the developments of 4-stage sixth 

order Gauss-Kronrod-Radau I and 4-stage sixth order Gauss-Kronrod-Radau IA. Section 3 

presents the developments of 4-stage sixth order Gauss-Kronrod-Radau II and 4-stage sixth order 

Gauss-Kronrod-Radau IIA. Numerical comparisons among these new methods and the 3-stage 

sixth order Gauss-Legendre method are presented in Section 4. Lastly, some discussions and 

conclusions will be given in Section 5. 

 

 

4-STAGE IMPLICIT RUNGE-KUTTA METHODS BASED ON 4 POINTS GAUSS-

KRONROD-RADAU I QUADRATURE FORMULA 

 

In this section, we have developed two implicit Runge-Kutta methods based on 4 points Gauss-

Kronrod-Radau I quadrature formula which consists of two fixed nodes from the 2 points Gauss-

Radau I quadrature formula, and 2 additional nodes. The weights and nodes of a 2 points Gauss-

Radau I quadrature formula are well known, and these values are given by (Butcher, 2003) 

 

1 2 1 2

1 3 2
, , 0,

4 4 3
w w x x
 

    
 

.     (12) 

 

The weights of a 2 points Gauss-Radau I quadrature formula as shown in (12) will not be reused 

in constructing a 4 points Gauss-Kronrod-Radau I quadrature formula. 

For the derivation of the 4 points Gauss-Kronrod-Radau I quadrature formula, we 

considered the following function given by 

 

  2 3 4 5

0 1 2 3 4 5f x a a x a x a x a x a x      .     (13) 

 

On substituting (5), (7) and (13) into (8) with 2n  , 0a   and 1b  , then we obtain the 

following result: 

 

     
1 2 2

2 3 4 5

0 1 2 3 4 5

1 10

ˆ ˆ .k k k k

k k

a a x a x a x a x a x dx w f x w f x
 

           (14) 

 

The integration of integral in (14) yields the following result, 

 

 
1

2 3 4 5 3 51 2 4
0 1 2 3 4 5 0

0

.
2 3 4 5 6

a aa a a
a a x a x a x a x a x dx a              (15) 

 

On substituting the result in (15) and  1 1 2 2
ˆ ˆ0, 2 3x x x x     into (14), we obtain the 

following expression: 

 

      3 51 2 4
1 1 1 2 2 2 0

2
ˆ ˆ0

3 2 3 4 5 6

a aa a a
w f w f x w f w f x a

 
         

 
.   (16) 
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Finally, we have to rearrange the left-hand side of (16) in terms of ia for  0 1 5i   and match 

these coefficients ia  with those on the right-hand side of (16) in order to obtain a system of six 

equations. On solving these six equations simultaneously using MATHEMATICA 5.0, we have 

obtained the following weights and quadrature nodes of a 4 points Gauss-Kronrod-Radau I 

quadrature formula: 

 

   
1 1 2 2

1 1 2 2

125 4 3 125 4 311 81
ˆ ˆ, , , ,

114 1872 208 1872

3 3 2 3 3
ˆ ˆ  0, , , ,

5 3 5

w w w w

x x x x

  
   



  
    



 

 

or in the sense of the weights and abscissas of an implicit Runge-Kutta method is 

 

   
1 2 3 4

1 2 3 4

125 4 3 125 4 311 81
, , , ,

114 1872 208 1872

3 3 2 3 3
  0, , , .

5 3 5

b b b b

c c c c

  
   



  
    



    (17) 

 

4-stage Sixth Order Gauss-Kronrod-Radau I Method 

 

In order to complete the development of the 4-stage sixth order Gauss-Kronrod-Radau I method, 

the choice of ija  for  , 1 1 4i j   is to satisfy all the 16 order conditions of (Butcher, 2003; Hairer 

and Wanner, 1991) 
 

 
4

1

1

4
k

k i
ij j

j

c
C a c

k





   for  1 1 4i   and  1 1 4k  .    (18) 

 

On substituting the abscissas in (17) into (18) and solve these 16 equations simultaneously using 

MATHEMATICA 5.0, yield the solution of the parameters ija ,  , 1 1 4i j   as shown below: 

 

   

 

11 12 13 14 21 22 23

24 31 32 33 34

41 42 43 44

81 3 2 327 2 3 102 19 3
0, 0, 0, 0, , , ,

300 780 1300

25 25 16 3 25 25 16 3150 83 3 16 8
  , , , , ,

780 243 3159 39 3159

81 3 2 327 2 3 150 83 3 102 19 3
  , , ,

300 780 1300 780

a a a a a a a

a a a a a

a a a a

  
      



 
    

  
    .






  (19) 
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On substituting the values in (17) and (19) with 4s   into (3) and (4), we obtained the 4-

stage sixth order Gauss-Kronrod-Radau I method, or in brief as GKRM(4,6)-I. GKRM(4,6)-I has 

proved to possess sixth order of accuracy because the parameters in (17) satisfy all the order 

conditions in (Butcher, 2003; Hairer and Wanner, 1991) 
 

 
4

1

1

1
6 k

i i

i

B b c
k





   for  1 1 6k  .     (20) 

 

In addition, the parameters in (17) and (19) also satisfy all the order conditions in (Butcher, 2003; 

Hairer and Wanner, 1991) 
 

   
4

1

1

2 1
jk k

i i ij j

i

b
D b c a c

k





    for  1 1 4j   and  1 1 2k  .   (21) 

 

Since GKRM(4,6)-I satisfies  4C , then we can claim that GKRM(4,6)-I has stage order 4. 

The stability function for GKRM(4,6)-I can be easily obtained by using the following 

formula (Dekker and Verwer, 1984) 
 

 
 

Tdet

det

z
R z

z

   


I A eb

I A
,      (22) 

 

where in the case of a 4-stage Runge-Kutta method, I is a 4 4  identity matrix, A is a matrix 

containing the elements ija  for  , 1 1 4i j  ,  
T

1 1 1 1e   and b is a row vector containing 

the elements ib  for  1 1 4i  . Upon these substitutions from (17) and (19), the stability function 

for GKRM(4,6)-I is given by 
 

 
2 3 4

2 3GKRM(4,6)-I

1800 960 216 24

1800 840 156 12

z z z z
R z

z z z

   


  
.   (23) 

 

Figure 1 is the plot of stability function (23). The shaded region in Figure 1 is the region of 

absolute stability of GKRM(4,6)-I where the conditions   1R z   is satisfied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Stability region of GKRM(4,6)-I 
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Observe that the region of absolute stability of GKRM(4,6)-I is a bounded region which suggest 

that GKRM(4,6)-I is not A-stable. 

 

4-stage Sixth Order Gauss-Kronrod-Radau IA Method 
 

As for the 4-stage sixth order Gauss-Kronrod-Radau IA method, the choice of ija  for  , 1 1 4i j   

is to satisfy all the 16 order conditions of (Butcher, 2003; Hairer and Wanner, 1991) 

 

   
4

1

1

4 1k ki
i i ij j

i

b
D b c a c

k





    for  1 1 4j   and  1 1 4k  .   (24) 

 

On substituting the weights and abscissas in (17) into (24) and solve these 16 equations 

simultaneously using MATHEMATICA 5.0, yield the solution of the parameters ija ,  , 1 1 4i j   

as shown below: 

 

   

   

   

11 12 13 14 21

22 23 24 31

32 33 34 41 42

5 268 145 3 5 268 145 311 123 11
, , , , ,

144 20592 2288 20592 144

3 71 48 3 7 244 139 31276 397 3 11
  , , , ,

9360 1040 9360 144

5 76 45 3 5 76 45 3115 11
  , , , ,

1872 624 1872 144

a a a a a

a a a a

a a a a a

    
    



 
   

 
    

 

 
43 44

7 244 139 3
,

9360

3 71 48 3 1276 397 3
  , .

1040 9360
a a



  
  



  (25) 

 

On substituting the values in (17) and (25) with 4s   into (3) and (4), we obtained the 4-

stage sixth order Gauss-Kronrod-Radau IA method, or in brief as GKRM(4,6)-IA. GKRM(4,6)-

IA has proved to possess sixth order of accuracy because the parameters in (17) satisfy all the 

order conditions in equation (20). In addition, the parameters in (17) and (25) also satisfy all the 

order conditions in (Butcher, 2003; Hairer and Wanner, 1991) 

 

 
4

1

1

2
k

k i
ij j

j

c
C a c

k





   for  1 1 4i   and  1 1 2k  .    (26) 

 

Since GKRM(4,6)-IA satisfies  2C , then we can say that GKRM(4,6)-IA has stage order 2. 

The stability function for GKRM(4,6)-IA can be easily obtained by substituting the values in 

(17) and (25) into (22). Upon these substitutions, the stability function for GKRM(4,6)-IA is 

given by 
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 
2 3

2 3 4GKRM(4,6)-IA

1800 840 156 12

1800 960 216 24

z z z
R z

z z z z

  


   
.   (27) 

 

Figure 2 is the plot of stability function (27). The shaded region in Figure 2 is the region of 

absolute stability of GKRM(4,6)-IA where the conditions   1R z   is satisfied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Stability region of GKRM(4,6)-IA 

 

Observe that the region of absolute stability of GKRM(4,6)-IA contains the whole left-half 

complex plane, which suggest that GKRM(4,6)-IA is A-stable. In addition, the condition: 

 
GKRM(4,6)-IA

0R z   as  Re z   is also satisfied. Therefore, GKRM(4,6)-IA is L-stable. 

 

 

4-STAGE IMPLICIT RUNGE-KUTTA METHODS BASED ON 4 POINTS GAUSS-

KRONROD-RADAU II QUADRATURE FORMULA 

 

The discussion for this section is very much similar to the discussion presented in the previous 

section. In this section, we have developed two implicit Runge-Kutta methods based on 4 points 

Gauss-Kronrod-Radau II quadrature formula which consists of two fixed nodes from the 2 points 

Gauss-Radau II quadrature formula, and 2 additional nodes. The weights and nodes of a 2 points 

Gauss-Radau II quadrature formula are well known, and these values are given by (Butcher, 

2003) 

 

1 2 1 2

3 1 1
, , , 1

4 4 3
w w x x
 

    
 

.     (28) 

 

The weights of a 2 points Gauss-Radau II quadrature formula as shown in (28) will not be reused 

in constructing a 4 points Gauss-Kronrod-Radau II quadrature formula. 

For the derivation of the 4 points Gauss-Kronrod-Radau II quadrature formula, we 

considered the same function shown in equation (13). On substituting (5), (10) and (13) into (11) 

with 2n  , 0a   and 1b  , then we obtain the following result: 
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     
1 2 2

2 3 4 5

0 1 2 3 4 5

1 10

ˆ ˆ .k k k k

k k

a a x a x a x a x a x dx w f x w f x
 

           (29) 

 

The integration of integral in (29) yields the same result as in equation (15). On substituting the 

result in (15) and  1 1 2 2
ˆ ˆ1 3, 1x x x x     into (29), we obtain the following expression: 

 

      3 51 2 4
1 1 2 2 2 2 0

1
ˆ ˆ 1

3 2 3 4 5 6

a aa a a
w f x w f w f x w f a

 
         

 
.   (30) 

 

Finally, we have to rearrange the left-hand side of (30) in terms of ia for  0 1 5i   and match 

these coefficients ia  with those on the right-hand side of (30) in order to obtain a system of six 

equations. On solving these six equations simultaneously using MATHEMATICA 5.0, we have 

obtained the following weights and quadrature nodes of a 4 points Gauss-Kronrod-Radau II 

quadrature formula: 

 

   
1 1 2 2

1 1 2 2

125 4 3 125 4 381 11
ˆ ˆ, , , ,

1872 208 1872 144

2 3 1 2 3
ˆ ˆ  , , , 1 ,

5 3 5

w w w w

x x x x

  
   



  
    



 

 

or in the sense of the weights and abscissas of an implicit Runge-Kutta method is 

 

   
1 2 3 4

1 2 3 4

125 4 3 125 4 381 11
, , , ,

1872 208 1872 144

2 3 1 2 3
  , , , 1 .

5 3 5

b b b b

c c c c

  
   



  
    



    (31) 

 

4-stage Sixth Order Gauss-Kronrod-Radau II Method 

 

In order to construct the 4-stage sixth order Gauss-Kronrod-Radau II method, the choice of ija  

for  , 1 1 4i j   is to satisfy all the 16 order conditions of  4D  as given in equation (24). On 

substituting the weights and abscissas in (31) into (24) and solve these 16 equations 

simultaneously using MATHEMATICA 5.0, yield the solution of the parameters ija ,  , 1 1 4i j   

as shown below: 
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   

   

   

11 12 13 14 21

22 23 24 31 32

33 34 41 42 43 44

3 4 3 3 5 6 5 3102 19 3 66 29 3
, , , 0, ,

780 65 780 468

5 6 5 3 3 4 3 38 66 29 3
 , , 0, , ,

39 468 780 65

5 114 35 3 5 114 35 3102 19 3 48
 , 0, , , , 0 .

780 1716 143 1716

a a a a a

a a a a a

a a a a a a

   
    



 
    

  
      



  (32) 

 

On substituting the values in (31) and (32) with 4s   into (3) and (4), we obtained the 4-

stage sixth order Gauss-Kronrod-Radau II method, or in brief as GKRM(4,6)-II. GKRM(4,6)-II 

has proved to possess sixth order of accuracy because the parameters in (31) satisfy all the order 

conditions in  6B  as given in equation (20). In addition, the parameters in (31) and (32) also 

satisfy all the order conditions in  2C  as shown by equation (26). Since GKRM(4,6)-II satisfies 

 2C , then we can claim that GKRM(4,6)-II has stage order 2. 

On substituting the values given in (31) and (32) into equation (22), the stability function for 

GKRM(4,6)-II is given by 

 

 
2 3 4

2 3GKRM(4,6)-II

1800 960 216 24

1800 840 156 12

z z z z
R z

z z z

   


  
.   (33) 

 

We note that both GKRM(4,6)-II and GKRM(4,6)-I possess the same stability function. 

Therefore, Figure 1 also represents the plot of stability function (33). It follows that, the shaded 

region in Figure 1 is the region of absolute stability of GKRM(4,6)-II where the conditions 

  1R z   is satisfied. Observe that the region of absolute stability of GKRM(4,6)-II is a 

bounded region which suggest that GKRM(4,6)-II is not A-stable. 

 

4-stage Sixth Order Gauss-Kronrod-Radau IIA Method 
 

As for the 4-stage sixth order Gauss-Kronrod-Radau IIA method, the choice of ija  for 

 , 1 1 4i j   is to satisfy all the 16 order conditions of  4C  as given in equation (18). On 

substituting the abscissas in (31) into (18) and solve these 16 equations simultaneously using 

MATHEMATICA 5.0, yield the solution of the parameters ija ,  , 1 1 4i j   as shown below: 
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   

   

   

11 12 13 14

21 22 23 24

31 32 33 34

81 13 8 3 7 100 53 31276 397 3 49 24 3
, , , ,

9360 5200 9360 3600

25 140 121 3 25 140 121 3115 41
  , , , ,

50544 624 50544 3888

7 100 53 3 81 13 8 3 1276 397 3 49 24 3
  , , ,

9360 5200 9360

a a a a

a a a a

a a a a

    
   



 
   

    
   

   
41 42 43 44

,
3600

125 4 3 125 4 381 11
 , , , .

1872 208 1872 144
a a a a

  
    



   (34) 

 

On substituting the values in (31) and (34) with 4s   into (3) and (4), we obtained the 4-

stage sixth order Gauss-Kronrod-Radau IIA method, or in brief as GKRM(4,6)-IIA. 

GKRM(4,6)-IIA has also proved to possess sixth order of accuracy because the parameters in (31) 

satisfy all the order conditions in equation (20). In addition, the parameters in (31) and (34) also 

satisfy all the order conditions in  2D  as shown in equation (21). Since GKRM(4,6)-IIA 

satisfies  4C , then we can say that GKRM(4,6)-IIA has stage order 4. 

The stability function for GKRM(4,6)-IIA can be easily obtained by substituting the values 

in (31) and (34) into (22). Upon these substitutions, the stability function for GKRM(4,6)-IIA is 

given by 
 

 
2 3

2 3 4GKRM(4,6)-IIA

1800 840 156 12

1800 960 216 24

z z z
R z

z z z z

  


   
.   (35) 

 

We note that both GKRM(4,6)-IIA and GKRM(4,6)-IA possess the same stability function. 

Therefore, Figure 2 also represents the plot of stability function (35). It follows that, the shaded 

region in Figure 2 is the region of absolute stability of GKRM(4,6)-IIA where the conditions 

  1R z   is satisfied. Observe that the region of absolute stability of GKRM(4,6)-IIA contains 

the whole left-half complex plane, which suggest that GKRM(4,6)-IIA is A-stable. In addition, 

the condition:  
GKRM(4,6)-IIA

0R z   as  Re z   is also satisfied. Therefore, GKRM(4,6)-

IIA is L-stable. 

 

NUMERICAL EXPERIMENTS AND COMPARISONS 

 

In this section, some test problems are used to check the accuracy of GKRM(4,6)-I, GKRM(4,6)-

IA, GKRM(4,6)-II and GKRM(4,6)-IIA using different number of integration steps. We 

presented the maximum absolute errors over the integration interval given by  
0
max ( )n n

n N
y x y

 
  

where N is the number of integration steps. We note that ( )ny x  and ny  represent the theoretical 

and numerical solutions of a test problem at point nx , respectively.  
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The numerical results obtained from these Kronrod-Radau methods are compared with the 

numerical results obtained from the 3-stage sixth order Gauss-Legendre method as shown in 

Hairer et al. (1993). The 3-stage sixth order Gauss-Legendre method consists of the formulae in 

(3) and (4) with the following values: 

 

1 3 2 1 2 3 11 33 12

13 21 22 23 31

32

5 4 5 15 1 5 15 5 80 24 15
, , , , , , ,

18 9 10 2 10 36 360

50 12 15 50 15 15 2 50 15 15 50 12 15
  , , , , ,

360 360 9 360 360

80 24 15
  .

360

b b b c c c a a a

a a a a a

a

   
        



   
    

 
 



 

 

Problem 1 (Ramos, 2007) 
2( ) 100 ( ) 99 xy x y x e    , (0) 0y  , [0,10]x . 

The theoretical solution is given by 2 100( ) 33 34( )x xy x e e  . The maximum absolute errors for 

each method appeared in Table 1. 

 

 

 

Table 1: Maximum absolute errors with respect to number of integration steps, N (Problem 1) 

N 

3-stage sixth order 

Gauss-Legendre 

method 

GKRM(4,6)-

I 

GKRM(4,6)-

IA 

GKRM(4,6)-

II 

GKRM(4,6)-

IIA 

160 4.50361(+01) 1.62929(-01) 1.24304(+03) 1.86364(+03) 4.83810(-01) 

320 1.02504(+00) 6.45554(-03) 3.23311(+01) 3.99111(+01) 1.01077(-02) 

640 1.80772(-02) 1.35124(-04) 6.10190(-01) 6.79162(-01) 1.67310(-04) 

 

Problem 2 (Yaakub and Evans, 2003) 

( ) 101 ( ) 100 ( ) 0y x y x y x    , (0) 1.01y  , (0) 2y   , [0,10]x . 

The theoretical solution is given by 100( ) 0.01 x xy x e e   . Problem 2 can also be written as a 

system, i.e. 

1 2( ) ( )y x y x  , 1(0) 1.01y  , [0,10]x . 

2 1 2( ) 100 ( ) 101 ( )y x y x y x    , 2(0) 2y   , [0,10]x . 

The theoretical solutions of this system are given by 100

1( ) ( ) 0.01 x xy x y x e e    , 
100

2( ) ( ) x xy x y x e e     . The maximum absolute errors for each method appeared in Table 2. 
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Table 2: Maximum absolute errors with respect to number of integration steps, N (Problem 2) 

N 

3-stage sixth order 

Gauss-Legendre 

method 

GKRM(4,6)-

I 

GKRM(4,6)-

IA 

GKRM(4,6)-

II 

GKRM(4,6)-

IIA 

160 2.70905(-04) 7.90280(-05) 1.40348(-04) 7.90280(-05) 1.40348(-04) 

320 1.82422(-05) 8.11721(-06) 9.97874(-06) 8.11721(-06) 9.97874(-06) 

640 5.19273(-07) 2.59024(-07) 2.84600(-07) 2.59024(-07) 2.84600(-07) 

 

From Table 1, we could see that, both GKRM(4,6)-I and GKRM(4,6)-IIA with stage order 4 

generate smaller absolute errors compare to the absolute errors generated by the 3-stage sixth 

order Gauss-Legendre method with stage order 3, and both GKRM(4,6)-IA and GKRM(4,6)-IIA 

with stage order 2. Although both GKRM(4,6)-IA and GKRM(4,6)-IIA possessed sixth order of 

accuracy but they were not as accurate as GKRM(4,6)-I and GKRM(4,6)-IIA because they had 

lower stage order. If the stage order was significantly lower than the order of the Runge-Kutta 

method, then the values iY  from (4) were much less accurate due to lower stage order, and 

affecting the accuracy of the final results computed via formula (3).  

From Table 2, the effects of stage order were not apparent, but all four Kronrod-Radau 

methods were more accurate than the classical 3-stage sixth order Gauss-Legendre method for 

160N   and 320N  . All methods were found to have comparable accuracy for 640N  . 

Problem 2 could be expressed in the form of y y  ,  Re 0  , which is exactly the 

Dahlquist’s test equation. All stability functions for Runge-Kutta methods could be derived from 

the application of the Dahlquist’s test equation to the Runge-Kutta methods. Since the stability 

functions for GKRM(4,6)-I and (GKRM(4,6)-II were identical (as in equations (23) and (33)), 

therefore the results in Table 2 were found to be identical. The same pattern could be observed 

for GKRM(4,6)-IA and GKRM (4,6)-IIA where both stability functions were found to be 

identical (as in equations (27) and (35)). 

 

 

CONCLUSION 

 

In this paper, we have developed two implicit Runge-Kutta methods based on a 4 points Gauss-

Kronrod-Radau I quadrature formula, and also two implicit Runge-Kutta methods based on a 4 

points Gauss-Kronrod-Radau II quadrature formula. 

The resulting implicit methods from the 4 points Gauss-Kronrod-Radau I quadrature 

formula are 4-stage sixth order Gauss-Kronrod-Radau I (GKRM(4,6)-I) and 4-stage sixth order 

Gauss-Kronrod-Radau IA (GKRM(4,6)-IA). Both methods possess sixth order of accuracy, but 

the former possesses stage order 4 while the latter possesses stage order 2. On the other hand, the 

resulting implicit methods from the 4 points Gauss-Kronrod-Radau II quadrature formula are 4-

stage sixth order Gauss-Kronrod-Radau II (GKRM(4,6)-II) and 4-stage sixth order Gauss-

Kronrod-Radau IIA (GKRM(4,6)-IIA). Both methods also possess sixth order of accuracy, but 

the former possesses stage order 2 while the latter possesses stage order 4. In terms of absolute 

stability analyses, GKRM(4,6)-I and GKRM(4,6)-II shared the same stability function, but they 

are not A-stable. GKRM(4,6)-IA and GKRM(4,6)-IIA shared the same stability function and 

they are found to be L-stable. 
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Numerical experiments and comparisons showed that implicit Runge-Kutta methods based 

on Gauss-Kronrod-Radau quadrature formulae worked well for the numerical solution of first 

order initial value problem (1). In addition, some Kronrod-Radau-type implicit Runge-Kutta 

methods with higher stage order give more accurate numerical solution. In view of this, a study 

which focus on the developments of implicit Runge-Kutta methods based on Gauss-Kronrod-

Lobatto quadrature formula is now in progress. 
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