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ABSTRACT
Longitudinal data are measures collected repeatedly at different time-points; with each time of the 
collection has the tendency to be affected by a covariate. Furthermore, such data can be subjected 
to missing values. In this study, a multilevel longitudinal model based on a regression concept, with 
assumptions of varying degree of correlation between the response and covariate, is suggested. The 
performance of the estimators in the model parameters is then investigated by using a simulated 
longitudinal data. The strength of the correlation is responsible to manipulate the distribution of the 
response variables throughout the simulation process. It is found that as the correlation increases, the 
performance of the estimators becomes better. In addition to the simulated data, a logistic regression 
model with some degree of missingness is further implemented to generate the missing values. The 
model parameters are re-estimated using a reduced data set which ignores the missing values. As 
expected, the performance of the estimators gets worse as the degree of missing values increases.
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ABSTRAK
Data pengukuran berulang sering dikumpul berulang-kali pada suatu masa yang berlainan; dengan 
setiap kali pengumpulan mempunyai kecenderungan untuk dipengaruhi oleh covariat. Selain itu, 
data tersebut boleh tertakluk kepada nilai-nilai yang hilang. Dalam kajian ini, model pengukuran 
berulang pelbagai-peringkat yang berdasarkan konsep regresi, bersama dengan andaian bahawa tahap 
korelasi antara pembolehubah sambutan dan covariat yang berbeza-beza, adalah disyorkan. Prestasi 
penganggar parameter model kemudian diselidik dengan menggunakan data simulasi pengukuran 
berulang. Kekuatan kolerasi bertanggungjawab untuk memanipulasi taburan pembolehubah sambutan 
disepanjang proses simulasi ini. Kajian ini mendapati bahawa korelasi yang lebih kukuh akan 
menghasilkan prestasi penganggar yang lebih baik. Daripada data yang dijana, model regresi logistik 
yang mengawal peratusan kehilangan digunakan untuk menjana kehilangan data. Parameter model 
dianggar semula dengan menggunakan set data yang kurang dengan mengabaikan nilai-nilai yang 
hilang. Seperti yang dijangka, prestasi penganggar menjadi kurang tepat apabila tahap kehilangan 
nilai bertambah.

Katakunci: Korelasi, Regresi Logistik, Kehilangan Data, Simulasi, Model Pengukuran Berulang
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INTRODUCTION 
Repeated measurements are defined as a set of data which is collected continuously at a sequence of 
time-points. A popular mathematical model for this type of data was presented and investigated by 
Laird and Ware (1982) through a class of random effect models. Different from the two-stage models 
in Laird and Ware (1982), this study will incorporate a multilevel model introduced by Goldstein 
(1986) to analyze the repeated measurements. Simplifying the longitudinal model into a multilevel 
model, it involves analysis of linear regression. With the proof of Goldstein (1986), the iterative 
generalized least squares estimation is equivalent to the maximum likelihood estimation (MLE). Since 
the researchers had produced a general model on the multilevel data in Goldstein and McDonald 
(1988), it can also be applied to some other special cases such as repeated measures designs. Using 
the same approach, Hedeker and Gibbons (1997) applied the multilevel model ideas to model the 
random-effects pattern-mixture model. Gibbons and Hedeker (1997) further improved the two-level 
hierarchical model into three-level probit and logistic model and then the work was advanced to 
four-level hierarchical mixed-effects regression models (Gibbons et. al., 2010).
	 As mentioned earlier, longitudinal data are measures collected repeatedly at different time-points. 
Therefore Diggle (1988) suggested that correlation should be constructed within each time sequence 
of measurements. In addition, correlation should be introduced in a simple linear regression model 
due to a close relationship between time-independent or time-dependent covariates (predictors) 
and the response variable (Ismail Mohamad, 2003). Therefore, it is reasonable to implement this 
approach into the longitudinal model by using a simplified multilevel path to generate the repeated 
measurements.
	 Missing data is always a common problem occurs in longitudinal studies. Therefore, some 
proportions of covariate might contingently be missing. From the previous review, Little (1992) 
produced a review paper on the regression analysis with missing X’s. The author summarized some of 
the available methods such as complete case analysis, available case analysis, least squares on imputed 
data, maximum likelihood, Bayesian and multiple imputation to estimate the missing estimators. Next, 
according to Diggle and Kenward (1994), the partition of missing data mechanism can be restricted 
to the assumption of missing completely at random (MCAR), missing at random (MAR) or missing 
not at random (MNAR). The authors thus proposed a useful methodology to analyze the longitudinal 
dropout process. For more information, the most common and alternative approach in analyzing the 
longitudinal model with missing data was the likelihood-based methods such as selection models (Wu 
and Carroll, 1988; Diggle and Kenward, 1994; Follmann and Wu, 1995), pattern-mixture models (Wu 
and Bailey, 1989; Little, 1993, 1994, 1996; Hedeker and Gibbons, 1997) and mixed-effects hybrid 
models (Little, 2008 and Yuan and Little, 2009).
	 In particular, the recent works have presented a multilevel longitudinal model based on a linear 
regression concept, with the assumptions of varying degree of correlation between the response and 
predictor variables. The performance of estimators of the model parameters is then investigated by 
using a simulated longitudinal data. With the presence of certain proportions of missing data in the 
covariate, the model parameters are re-estimated using a reduced data set which ignores the missing 
values.

LONGITUDINAL MODEL WITH MISSING X VALUES
Generally, for i subject of interests, the longitudinal model is represented by
 
	 y X Z bi i i i ib f= + +   for ,  i= 1, 2, ..., n,	 (1)

with the error term  if   follows the normal distribution of mean 0 and variance  2af  and the random 
effects  bi  follow the bivariate normal with mean 0 and variance-covariance matrix R . 
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	 In this study, it is assumed that the full longitudinal model with a single covariate varies across 
the k number of time-points, so the model is as follows:

	 ( )y t x x t b b tik ik i i ik i i ik ik0 1 2 3 0 1b b b b f= + + + + + + .	 (2)

or in matrix form, it is represented by
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Describing Eq. (2) in the form of multilevel model, it is further split into a within-subjects model, 
written as

	 y v v tik i i ik ik0 1 f= + + ,	 (4)

and between-subjects model where
 
	 v x bi i i0 0 2 0b b= + +   and  v x bi i i1 1 3 1b b= + + .	 (5)

	 For the simulation study, correlation is suggested to be introduced for both the within-subjects 
model (4) and between-subjects models (5). The same covariate xi is correlated to i0o  and  i1o , with 
the bi being the bivariate normal, so vi  does also follow the bivariate normal. The simulated  i0o  
and  i1o  are then substituted into (4) in order to generate the repeated measurement yik. Similar to 
the between-subjects models, correlation is incorporated in the within-subjects model in which the 
response variables  are correlated to the independent variable such as time  tik.
	 Following Ismail Mohamad (2003) idea, the simulation algorithm for the simple linear regression 
model with correlation is developed as follows:
1.	 Set a value for the correlation coefficients rxy, and the estimators 0b   and 1b .
2.	 Simulate a set of data ~ ( , )x Nsim x x

2n v .
3.	 Find the variance  xs

2v  and xsv  standard deviation  for the simulated data x.
4.	 Find the standard deviation  rys

xy

xs
1v b v

=  and variance  ys
2v  for the simulated data y.

5.	 Calculate  s ys xs
2 2

1
2 2v v b v= -f .

6.	 Simulate a set of ~ ( , )N 0ys s
2f vf .

7.	 Calculate y xsim sim ys0 1b b f= + + .

	 Next, the percentage of missing X values is controlled by the logistic regression model adjusted 
from Ismail Mohamad (2003):

	 ( )
exp( )

exp( )
P X

a bY cX dif
a bY cX dif

1
 is missing | data =

+ + + +

+ + + ,	 (6)

where
a is the intercept point; with ln

q
q

a bY cX
1

=
-

- -r rc m , it is a shifted logistic regression line which 
is responsible to control for the q proportions of missing X values,
b and c control the type of missing mechanism; for instance, if b = c = 0, it will contribute as a MCAR 
missing mechanism and if b = 1, c = 0, the production will be a MAR model, and
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an additional of dif to the logistic regression model can generate the proportions of missing data 

exactly; let the shifted  ln
exp( )

exp( )
dif

tu
tu

a bY cX
a bY cX

1 1
=

-
-

+ + +
+ +

b l  and tu followed a pseudo random 

number 0.
	 From Eq. (6), the q proportions (percentage) of highest probability generated will be defined 
as the missing data. In this study the missing X values will be ignored in the complete case analysis 
which will then result in deleting the corresponding Y values. Hence the simulated data used will be 
a reduced set of data which ignores q proportion of data that contain missing values.

ANALYSIS OF SIMULATION STUDIES
First, the parameters are chosen arbitrarily as 0b  = 2.50, 1b = -0.25, 2b = -0.005 and 3b = 0.001. 
Followed with the pre-setting time sequences 0, 3 and 6 for all subjects; the X values are generated 
from a pseudorandom numbers which are normally distributed with mean 30 and standard deviation 
8. The longitudinal model is then being simulated and the parameters are estimated for 100 times 
by varying the correlation from 0 to 1. Table 1 shows the results using longitudinal model with and 
without the presence of missing values.
	 Referring to Table 1, it suggests that as the strength of correlation increases, the estimators tend 
to go closer to the true values of the assumed model parameters; these statements is true for three of 
the complete observation, MCAR and MAR cases. Additionally, Fig. 1, Fig. 2 and Fig. 3 show the 
different plots of estimates from 100 simulations which can be seen to vary differently around the true 
assumed parameter values. Bias and standard error (s.e.) significantly decrease when the correlation 
coefficient increases, as shown in Table 1. In short, the strength of the correlation influences the 
longitudinal simulation, and thus influences the accuracy of the attained estimators.
	 This paper only presented the graphical views for the three cases: (1) complete observation, (2) 
MCAR and (3) MAR, both (2) and (3) are with 60% missing X values. From Fig. 1, the distributions of 
estimates for the complete observation cases were scattered very close around the assumed parameter 
values, as expected. On the other hand, it is evident from Fig. 2 and Fig. 3 that the distributions of the 
estimates for the case with 60% missing X values were largely dispersed from the assumed parameter 
values. 
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Table 1: Comparisons of the performance of the assumed estimators by varying the percentage of x 
missingness and correlation.

Correlation 0 0.5 1

j
jbt Biasj s.e.j jbt Biasj s.e.j jbt

Biasj
(1.0e-
003)

s.e.j

True jb

0
1
2
3

 2.5000
-0.2500
-0.0050
 0.0010

Complete
Observation

0
1
2
3

 2.4161
-0.2657
-0.0014
 0.0013

-0.0839
-0.0157
 0.0036
 0.0003

0.4818
0.4283
0.0152
0.0134

 2.4426
-0.2365
-0.0027
 0.0006

-0.0574
 0.0135
 0.0023
-0.0004

0.4413
0.1113
0.0140
0.0036

 2.4990
-0.2508
-0.0050
 0.0010

  -0.9596
  -0.8232
   0.0304
   0.0344

0.0100
0.0095
0.0003
0.0003

MCAR

30% x
missing

0
1
2
3

 2.3970
-0.2321
-0.0009
 0.0001

-0.1030
 0.0179
 0.0041
-0.0009

0.6097
0.4981
0.0190
0.0155

 2.4699
-0.2399
-0.0037
 0.0008

-0.0301
 0.0101
 0.0013
-0.0002

0.5469
0.1372
0.0166
0.0043

 2.4999
-0.2506
-0.0050
 0.0010

  -0.1096
  -0.6136
  -0.0029
   0.0261

0.0109
0.0120
0.0003
0.0004

60% x
missing

0
1
2
3

 2.3387
-0.1839
 0.0010
-0.0010

-0.1613
 0.0661
 0.0060
-0.0020

0.8598
0.6543
0.0264
0.0214

 2.4372
-0.2223
-0.0034
 0.0004

-0.0628
 0.0277
 0.0016
-0.0006

0.6946
0.1825
0.0214
0.0057

 2.5008
-0.2506
-0.0050
 0.0010

   0.8466
  -0.6032
  -0.0284
   0.0348

0.0148
0.0150
0.0005
0.0005

MAR

30% x
missing

0
1
2
3

 2.1506
-0.3508
-0.0007
 0.0005

-0.3494
-0.1008
 0.0043
-0.0005

0.6509
0.4797
0.0173
0.0145

 2.1833
-0.1749
-0.0019
 0.0002

-0.3167
 0.0751
 0.0031
-0.0008

0.5773
0.1497
0.0153
0.0042

 2.4999
-0.2506
-0.0050
 0.0010

  -0.0941
  -0.6157
  -0.0070
   0.0231

0.0113
0.0123
0.0003
0.0004

60% x
missing

0
1
2
3

 1.9174
-0.4069
 0.0001
-0.0001

-0.5826
-0.1569
 0.0051
-0.0011

0.9814
0.7085
0.0243
0.0225

 1.9613
-0.1300
-0.0017
 0.0001

-0.5387
 0.1200
 0.0033
-0.0009

0.9469
0.2231
0.0238
0.0060

 2.5005
-0.2510
-0.0050
 0.0010

   0.4637
  -1.0000
  -0.0247
   0.0410

0.0146
0.0150
0.0005
0.0005
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*represent each of the simulation estimators, ─ is the true parameters and –. is the assumed estimators

Figure 1: Comparisons of the complete observation estimators and the true parameters for 
complete data by varying the correlation coefficient.

*represent each of the simulation estimators, ─ is the true parameters and –. is the assumed estimators

Figure 2: Comparisons of the MCAR estimators and the true parameters for data with 
60% missing X values by varying the correlation.
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*represent each of the simulation estimators, ─ is the true parameters and –. is the assumed estimators

Figure 3: Comparisons of the MAR estimators and the true parameters for data with 
60% missing X values by varying the correlation.
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CONCLUSION
In conclusion, the strength of correlation is responsible to manipulate the distribution of the response 
variable throughout the simulation process. It will directly influence the performance of the estimators. 
When the correlation coefficient approaches to 1, there exists a substantially strong relationship 
between the response and the predictor variables, therefore the estimators are very close to the assumed 
true parameter values. On the other hand, the relationship between response and predictor variables 
is getting weak when the correlation coefficient moves towards zero, consequently the estimators 
will diverge from the assumed true parameter values.
	 The same condition is applied to the model with a certain proportions of missing X data. 
However, the estimators for the case with missing values, either MCAR or MAR, have performed 
less efficiently than the estimators with complete observations. The accuracy also reduces as the 
degree of missing values increases. Lastly, a further consideration of the missing data on the response 
variable is suggested to be implemented in the model so that the simulation study will fit better in 
the real environment.
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