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ABSTRACT
Quasi-Newton method is one of the most efficient and well known method for solving unconstrained 
optimization problems. In Quasi-Newton method, BFGS update is the finest Hessian update to work 
with. In this paper, an alternative algorithm for the BFGS update is proposed by changing the condition 
for the step size selection  and we conclude the result analysis at the end of this paper by the number 
of the iteration and by the number of the function evaluation. Proven here that our proposed BFGS 
algorithm is better.
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INTRODUCTION 
Consider the unconstrained optimization problem

		            min f x
x R

n
!

] g	 (1)

where f is a twice continuously differentiable function from Rn to R The update BFGS formula is the 
iteration method whereby at the (k+1) th iteration, xk+1 is given by
					   
		  xk+1 = xk + dk ka 	 (2)

where ka  denote the step size  (Cauchy,1847; Curry 1944) 

		   ( )f x darg mink k
> 0

a a= +
a

	 (3)	

and  dk denotes search direction 

		  d B gk k k
1=- - 	 (4)
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and  gk  is the gradient of  f Bk  in (4) is an update Hessian approximation formula defined by
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with s x xk k k1= -+  and y g gk k k1= -+  and this Hessian approximation update formula must satisfy 
the equation B s yk k k1 =+ .

	 In the Section 2 of this article, we discuss the determination of step size and followed by the 
details explanation about the hybrid BFGS search direction with the steepest descent search direction 
in the Section 3.  Numerical results of the methods and their explanation will be shown in the Section 
4 and we conclude the whole article in the Section 5.

STEP SIZE
In order to gain the superlinear convergence in Quasi-Newton method, the determination of the step 
size is very important. Most past researchers used only single formula to determine the step size such 
as Cauchy (1847), Han & Newmann (2003), Mustafa et al. (2004) and many more. The combination 
of step size using two formulas was started by Yuan (2006) and followed by Sofi et al. (2008[i] & 
2008[ii]). Yuan (2006) had proposed the combination of the exact line search ka  (Cauchy, 1847) 
within the formula kc  denoted by
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s

g1 1 4 1 1

2

* * * *

k

k k k

k

k k1

2

1 2
2
2

2

1

m

a a a a

=

- + + +
- - -

d n

 	 (6)

Yuan (2006) used both of exact line search formula ka  at the even iteration and kc  at the odd iteration in the classic 
steepest descent method. Iteration process (7) below show the process and details can be found in Yuan (2006). 
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From this step size combination concept in Yuan (2006), Sofi et al. (2008[i]) had applied this step 
size combination concept in the Quasi-Newton method with some modifications and details can be 
found in Sofi et al. (2008[i]).
	 In this research, we choose one of the famous update Hessian approximation formula in the Quasi-
Newton method and we combine the step size formula between the exact line search formula and 
Armijo (1966) step size formula with some modifications to the algorithm. We applied the modification 
made by Sofi et al. (2008) into this algorithm. Sofi et al. (2008) had found when ( . )0 1k 1a ), the 
descent of the function is not great and state that we must used another formula of step size instead 
of the exact line search.
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	 Armijo line search can be summarize as followed.

Given  , ( , ), ( , )s 0 0 1 0 11 ! !b v  and , , ,Ks s smaxk
2m b b= # - when

	                  	       			 
           	    ( ) ( )f x f x d g dk k k k k

T
k$m vm- + -  	 (8)

where k = 0,1,2,K. However, in the proposed algorithm, we only use Armijo line search when k=2. 
More details explanation about Armijo line search can be seen in Armijo (1966) and Shi (2006).

ALGORITHM
Here, we shown the Algorithm 1 and  Algorithm 2. Both of the algorithms shown the standard ‘general 
BFGS’ and ‘conditional general BFGS’ consequently.  Algorithm 2 is the algorithm that we proposed.

Algoritma1: General BFGS 
Data  f C2! , x Dd , 
1.	 :k 1=

2.	 xk:= x		    
3.	 :g f xk kd= ] g

4.	 Bk:=In
5.	  :d B gk k k

1=- -   
6.	 Calculate  *

ka  based on (4)
7.	 :x x d*

k k k k1 a= ++

8.	 If  gk 1 # f+ , then stop
9.	 :s d*

k k ka=

10.	 :y g gk k k1= -+

11.	 Calculate  Bk 1
1
+

-  based on (5)
12.	 k:=k+1

Algoritma 2: Conditional General BFGS
Data   f C2! , x Dd 	 , 
1.	 :k 1=

2.	 xk:= x		    
3.	 :g f xk kd= ] g

4.	 Bk:=In
5.	  :d B gk k k

1=- -   
6.	 Calculate  *

ka  based on (4)
7.	 :x x d*

k k k k1 a= ++

8.	 If  gk 1 # f+ , then stop
9.	 Calculate  Bk 1

1
+

-  based on (5)
10.	 k:=k+1
11.	 For  k >2 and if and only if  .0 1<*

k 1a -

	 replace *
ka  with  kc

	 11.1	  kc  calculated by (8)
	 11.2.	 :x x dk k k k1 m= ++ 	   

	 The Algorithm 3.1 use the exact line line search as the step size. However, the Algorithm 3.2 use 
the combination of exact line search and Armijo line search with some conditional implementation to 
the algorithm as we can see at the step 11th  in the Algorithm 3.2. The efficiency of all algorithms are 
tested using some standard problems and further discussion can be found details in the next section.
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NUMERICAL RESULTS
In this section, all numerical results for all algorithms are shown. Seven standard unconstrained 
optimization testing problems are tested on the Algorithm 3.1 and Algorithm 3.2. Listed below are 
the testing problems with their initial points and minimizer points.

Problem 1. (Cube Function, n=2)

	 , .f x x x x x100 11 2 2 1
3 2

1
2

= - + -^ _ ^h i h 	

Initial point: (-1.2, 1.6)
Minimizer:  (1,1)

Problem 2. (Rosenbrock Function, n=2)

	 , .f x x x x x100 11 2 2 1
2 2

1
2

= - + -^ _ ^h i h

Initial point: (x1=1.6, x2=-2.5)
Minimizer: (1,1)

Problem 3. (Rosenbrock Function, n=4)

	 , , , .f x x x x x x x x x x100 1 100 11 2 3 4 2 1
2 2

1
2

4 3
2 2

3
2

= - + - + - + -^ _ ^ _ ^h i h i h

Initial point: (-32, -3.3, -3.2, -3.3)
Minimizer: 

Problem 4. (Shalow Function, n=2)

	 , .f x x x x x11 2 2 1
2 2

1
2

= - + -^ ^ ^h h h

Initial point: (50, 100)
Minimizer: (1,1)

Problem 5. (Shalow Function, n=4)

	 , , , .f x x x x x x x x x x1 11 2 3 4 2 1
2 2

1
2

4 3
2 2

3
2

= - + - + - + -^ ^ ^ ^ ^h h h h h

Initial point: ( ., ., ., .)x x x x20 40 20 401 2 3 4= = = =

Minimizer: (1,1,1,1)

Problem 6. (Strait Function, n=2)

	 , .f x x x x x100 11 2 2 1
2 2

1
2

= - + -^ _ ^h i h

Initial point: (30., 50)
Minimizer: (1,1)
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Problem 7. (Strait Function, n=4)

	 , , , .f x x x x x x x x x x100 1 100 11 2 3 4 2 1
2 2

1
2

4 3
2 2

3
2

= - + - + - + -^ _ ^ _ ^h i h i h

Initial point: (30., 50., 30., 50.)
Minimizer: (1,1,1,1)

Table 1: Numerical Results for Algorithm 3.1 and Algorithm 3.2

Tested 
Problems

Algorithm 3.1 Algorithm 3.2

Number of 
iteration, 

Number of 
function 

evaluation, 

Number of 
iteration, 

Number of 
function 

evaluation, 

1 17 103 10 56

2 19 77 17 63

3 23 93 21 72

4 17 69 17 69

5 14 57 14 57

6 9 37 9 37

7 10 41 10 41

	 Table 1 shows the numbers of iteration  and the numbers of function evaluation nf for Algorithm 
3.1 and Algorithm 3.2 respectively with seven optimization problems tested on both of them. 
	 The bold numbers in Table 1 show the least number of iteration ni and the least number of the 
function evaluation  nf. We can see from Table 1 that Algorithm 3.2 are better for solving unconstrained 
optimization problem compared to Algorithm 3.1. The proposed algorithm works on the tested problem 
1, 2 and 3.

CONCLUSION
In this research, we proposed alternative algorithms where the modification of the step size bring 
the good impact to the BFGS update. Results show that alternative algorithms (Algorithm 3.2) that 
had been proposed are efficient for solving the unconstrained optimization problems tested. We can 
look clearly if we compare the results in Table 1, our proposed  method (Algorithm 3.2) are are more 
effective compared to the standard algorithm (Algorithm 3.1) for the several problems tested. For 
that reason, we believe that there many more methods after this will be conducted and constructed 
in order to find the best solution using the combination of the step size. It is proven helps the origin 
condition of the standard BFGS update. This proposed conditional method based on BFGS update 
class also work on Broyden update class and we can see the effectiveness of the method in Ibrahim 
et al. (2010).
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