OMK 2017 ANSWERS (PART A) AND SOLUTIONS (PART B)

CATEGORY: BONGSU

Part A:

- 1. 13
- 2. 20
- 3. 4
- 4. 8
- 5. 122825
- 6. 13

Part B:

1.

Solution: In a triangle, the sum of two sides is always greater than the other side. So BC + CA > AB. If we let L be the area of a triangle, then $L = \frac{h_A \cdot BC}{2} = \frac{h_B \cdot CA}{2} = \frac{h_C \cdot AB}{2}$. Solving for BC, CA, and AB and substituting into the previous inequality, we have $\frac{2L}{h_A} + \frac{2L}{h_B} > \frac{2L}{h_C}$. Dividing through by 2L gives the desired result.

2.

Solution: (a) 1210, 2020.

(b) 21200.

3.

Solution: Using the identities $1+2+\cdots+n=\frac{n(n+1)}{2}$ and $\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$, we have

$$\begin{split} &\frac{1}{1+2} + \frac{1}{1+2+3} + \frac{1}{1+2+3+4} + \dots + \frac{1}{1+2+3+\dots + 2017} \\ &= \frac{2}{2 \cdot 3} + \frac{2}{3 \cdot 4} + \frac{2}{4 \cdot 5} + \dots + \frac{2}{2017 \cdot 2018} \\ &= 2\left(\frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \dots + \frac{1}{2017} - \frac{1}{2018}\right) \\ &= 2\left(\frac{1}{2} - \frac{1}{2018}\right) = \frac{1008}{1009}. \end{split}$$

So the answer is $\frac{1008}{1009}$.

CATEGORY: MUDA

Part A:

- 1. 30
- 2. 48
- 3. 53
- 4. 7
- 5. 61
- 6. 12

Part B:

1.

Solution: Let $\angle A = \theta$. Since AB = CD and BC = DA, we only need to prove that $2(AB^2 + BC^2) = AC^2 + BD^2$. Apply the cosine rule to triangles ABC and BCD to get

$$AC^{2} = AB^{2} + BC^{2} - 2(AB)(BC)\cos(180^{\circ} - \theta)$$
$$BD^{2} = AB^{2} + BC^{2} - 2(AB)(BC)\cos\theta$$

By adding these two equations and using the fact that $\cos(180^{\circ} - \theta) = -\cos\theta$, we get the desired result.

2.

Solution: Let N=2k+3 where $k\geq 1$ is an integer. Then

$$N^2 + 5 = (2k+3)^2 + 5 = 4k^2 + 12k + 14 = k^2 + (k+1)^2 + (k+2)^2 + (k+3)^2.$$

Note that all summands are different and positive since $1 \le k < k+1 < k+2 < k+3$.

Solution: First, we prove the identity

$$\sqrt{1+\frac{1}{k^2}+\frac{1}{(k+1)^2}}=1+\frac{1}{k}-\frac{1}{k+1}.$$

Indeed,

$$\left(1 + \frac{1}{k} - \frac{1}{k+1}\right)^{2} \\
= 1^{2} + \left(\frac{1}{k}\right)^{2} + \left(-\frac{1}{k+1}\right)^{2} + 2(1)\left(\frac{1}{k}\right) + 2(1)\left(-\frac{1}{k+1}\right) + 2\left(\frac{1}{k}\right)\left(-\frac{1}{k+1}\right) \\
= 1 + \frac{1}{k^{2}} + \frac{1}{(k+1)^{2}} + 2\left(\frac{1}{k} - \frac{1}{k+1} - \frac{1}{k(k+1)}\right) \\
= 1 + \frac{1}{k^{2}} + \frac{1}{(k+1)^{2}},$$

due to the fact that $\frac{1}{k} - \frac{1}{k+1} - \frac{1}{k(k+1)} = 0$.

Using the identity, we have this telescoping sum:

$$\begin{split} &\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+\cdots+\sqrt{1+\frac{1}{2016^2}+\frac{1}{2017^2}}\\ &=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+\cdots+1+\frac{1}{2016}-\frac{1}{2017}\\ &=2017-\frac{1}{2017}\\ &=\frac{4068288}{2017}. \end{split}$$

The answer is $\frac{4068288}{2017}$.

CATEGORY: SULONG

Part A:

- 1. 72
- 2. 10
- 3. 340
- 4, 45
- 5. 6
- 6. 7

Part B:

1.

Solution: Let the areas be n, n + 1, n + 2, n + 3. So the area of the quadrilateral is 4n + 6. Triangle CBD is similar to triangle CMN, with ratio 2. Then |CBD| = 4|CMN|. Note that $|CMN| \ge n$ by assumption, so we have

$$|ABD| = |ABCD| - |CBD| = |ABCD| - 4|CMN| \le (4n+6) - 4n = 6.$$

Hence the maximum area is 6.

2.

Solution: (a) It suffices to prove that $(2n^2 + 2n + 1)^2 = (2n^2 + 2n)^2 + (2n + 1)^2$. Using the identity $(x + 1)^2 = x^2 + 2x + 1$, we have

$$(2n^{2} + 2n + 1)^{2} = (2n^{2} + 2n)^{2} + 2(2n^{2} + 2n) + 1$$
$$= (2n^{2} + 2n)^{2} + (4n^{2} + 4n + 1)$$
$$= (2n^{2} + 2n)^{2} + (2n + 1)^{2},$$

as desired.

(b) Fix a_1 to be any odd number. Obviously a_1^2 is a perfect square. Since a_1 is odd, we have $a_1 = 2n_1 + 1$ for some integer n_1 . Take $a_2 = 2n_1^2 + 2n_1$. By part (a), the sum $a_1^2 + a_2^2 = (2n_1 + 1)^2 + (2n_1^2 + 2n_1)^2$ is a perfect square; moreover, it is a square of an odd number. Let the odd number be written as $2n_2 + 1$, for some integer n_2 . Then take $a_3 = 2n_2^2 + 2n_2$. By part (a), the sum $a_1^2 + a_2^2 + a_3^2 = (2n_2 + 1)^2 + (2n_2^2 + 2n_2)^2$ is an odd perfect square. Hence we can repeat this process to construct the 2017 a_i 's.

3.

Solution: The result is trivially true for n=1. Assume that $S_n=n$, and we claim that $S_{n+1}=n+1$. The nonempty subsets of $\{1,2,\ldots,n+1\}$ are of two types: those that do not contain n+1, and those that do. The first type are precisely the nonempty subsets of $\{1,2,\ldots,n\}$ so their contribution to the sum is $S_n=n$, by assumption. The second type are precisely the sets $S \cup \{n+1\}$, where S is any subset of $\{1,2,\ldots,n\}$, including the empty set. The contribution to the sum equals $\frac{1}{n+1}S_n + \frac{1}{n+1} = \frac{n}{n+1} + \frac{1}{n+1} = 1$. Therefore, we have $S_{n+1}=n+1$, as claimed.

Solution 2: If we assume that the empty set has product 1, the sum can be factored as follows:

$$S_n + 1 = \left(1 + \frac{1}{1}\right)\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{3}\right)\cdots\left(1 + \frac{1}{n}\right)$$
$$= \left(\frac{2}{1}\right)\left(\frac{3}{2}\right)\left(\frac{4}{3}\right)\cdots\left(\frac{n+1}{n}\right)$$
$$= n+1$$

using telescoping product. So $S_n = n$.